Эцн насос санитарный для метеоров. Установка электроцентробежного насоса (уэцн). Обозначение уэцн и эцн

Установка ЭЦН является сложной технической системой и, несмотря на широко известный принцип действия центробежного насоса, представляет собой совокупность оригинальных по конструкции элементов. Принципиальная схема УЭЦН приведена на рисунке 1.1.

Рисунок 1.1 - Принципиальная схема УЭЦН

Установка состоит из двух частей: наземной и погружной. Наземная часть включает автотрансформатор 1, станцию управления 2, иногда кабельный барабан 3 и оборудование устья скважины 4. Погружная часть включает колонну НКТ 5, на которой погружной агрегат спускается в скважину, бронированный трехжильный электрический кабель 6, по которому подается питающее напряжение погружному электродвигателю и который крепится к колонне НКТ специальными зажимами 7. Погружной агрегат состоит из многоступенчатого центробежного насоса 8, оборудованного приемной сеткой 9 и обратным клапаном 10. Часто в комплект погружной установки входит сливной клапан 11, через который сливается жидкость из НКТ при подъеме установки. В нижней части насос сочленен с узлом гидрозащиты (протектором) 12, который, в свою очередь, сочленен с погружным электродвигателем 13. В нижней части электродвигатель 13 имеет компенсатор 14.

1) Погружной центробежный насос (рисунок 1.2) конструктивно представляет собой совокупность ступеней небольшого диаметра, состоящих, в свою очередь, из рабочих колес и направляющих аппаратов, размещаемых в корпусе насоса (трубе).

Рисунок 1.2 - Схема центробежного электронасоса

Рабочие колеса, изготавливаемые из чугуна, бронзы или пластических материалов, крепятся на валу насоса со скользящей посадкой с помощью специальной шпонки. Верхняя часть сборки рабочих колес (вала насоса) имеет опорную пяту (подшипник скольжения), закрепляемую в корпусе насоса. Каждое рабочее колесо опирается на торцевую поверхность направляющего аппарата. Нижний конец насоса имеет подшипниковый узел, состоящий из радиально-упорных подшипников. Узел подшипников изолирован от откачиваемой жидкости и в некоторых конструкциях вал насоса уплотняется специальным сальником. Погружной центробежный насос выполняется в виде отдельных секций с большим числом ступеней в каждой секции (до 120), что позволяет собирать насос с необходимым напором. Отечественная промышленность выпускает насосы обычного и износостойкого исполнения. Насосы износостойкого исполнения предназначены для откачки из скважин жидкостей с определенным количеством механических примесей (указывается в паспорте насоса). Каждый погружной центробежный насос имеет свой шифр, в котором отражены диаметр колонны, подача и напор. Например, насос ЭЦН6-500-750 - электрический центробежный насос для обсадных колонн диаметром 6, с оптимальной подачей 500 м 3 /сут при напоре 750 м.

Принцип действия насоса можно представить следующим образом: жидкость, засасываемая через приемный фильтр, поступает на лопасти вращающегося рабочего колеса, под действием которого она приобретает скорость и давление. Для преобразования кинетической энергии в энергию давления жидкость, выходящая из рабочего колеса, направляется в неподвижные каналы переменного сечения рабочего аппарата, связанного с корпусом насоса, затем жидкость, выйдя из рабочего аппарата попадает на рабочее колесо следующей ступени и цикл повторяется. Центробежные насосы рассчитаны на большую скорость вращения вала.

Все типы ЭЦН имеют паспортную рабочую характеристику (рисунок 1.3) в виде кривых зависимостей (напор, подача), (КПД, подача), (потребляемая мощность, подача). Зависимость напора от подачи является основной характеристикой насоса.


Рисунок 1.3 - Типичная характеристика погружного центробежного насоса

  • 2) Погружной электрический двигатель (ПЭД) - двигатель специальной конструкции и представляет собой асинхронный двухполюсный двигатель переменного тока с короткозамкнутым ротором. Двигатель заполнен маловязким маслом, которое выполняет функцию смазки подшипников ротора и отвода тепла к стенкам корпуса двигателя, омываемого потоком скважинной продукции. Верхний конец вала электродвигателя подвешен на пяте скольжения. Ротор двигателя секционный; секции собраны на валу двигателя, изготовлены из пластин трансформаторного железа и имеют пазы, в которые вставлены алюминиевые стержни, закороченные с обеих сторон секции токопроводящими кольцами. Между секциями вал опирается на подшипники. По всей длине вал электродвигателя имеет отверстие для циркуляции масла внутри двигателя, осуществляемой также через паз статора. В нижней части двигателя имеется масляный фильтр. Секции статора разделены немагнитными пакетами, в которых расположены опорные радиальные подшипники. Нижний конец вала также закреплен в подшипнике. Длина и диаметр двигателя определяют его мощность. Скорость вращения вала ПЭД зависит от частоты тока; при частоте переменного тока 50 Гц синхронная скорость составляет 3000 об/мин. Погружные электродвигатели маркируются с указанием мощности (в кВт) и наружного диаметра корпуса (мм), например, ПЭД 65-117 - погружной электродвигатель мощностью 65 кВт и наружным диаметром 117 мм. Необходимая мощность электродвигателя зависит от подачи и напора погружного центробежного насоса и может достигать сотен кВт.
  • 3) Узел гидрозащиты размещается между насосом и двигателем и предназначен для защиты электродвигателя от попадания в него откачиваемой продукции и смазки радиально-упорного подшипника насоса (при необходимости). Основной объем узла гидрозащиты, формируемый эластичным мешком, заполнен жидким маслом. Через обратный клапан наружная поверхность мешка воспринимает давление продукции скважины на глубине спуска погружного агрегата. Таким образом, внутри эластичного мешка, заполненного жидким маслом, давление равно давлению погружения. Для создания избыточного давления внутри этого мешка на валу протектора имеется турбинка. Жидкое масло через систему каналов под избыточным давлением поступает во внутреннюю полость электродвигателя, что предотвращает попадание скважинной продукции внутрь электродвигателя.
  • 4) Компенсатор предназначен для компенсации объема масла внутри двигателя при изменении температурного режима электродвигателя (нагревание и охлаждение) и представляет собой эластичный мешок, заполненный жидким маслом и расположенный в корпусе. Корпус компенсатора имеет отверстия, сообщающие наружную поверхность мешка со скважиной. Внутренняя полость мешка связана с электродвигателем, а внешняя - со скважиной. При охлаждении масла объем его уменьшается, и скважинная жидкость через отверстия в корпусе компенсатора входит в зазор между наружной поверхностью мешка и внутренней стенкой корпуса компенсатора, создавая тем самым условия полного заполнения внутренней полости погружного электродвигателя маслом. При нагревании масла в электродвигателе объем его увеличивается, и масло перетекает во внутреннюю полость мешка компенсатора; при этом скважинная жидкость из зазора между наружной поверхностью мешка и внутренней поверхностью корпуса выдавливается через отверстия в скважину. Все корпуса элементов погружного агрегата соединяются между собой фланцами со шпильками. Валы погружного насоса, узла гидрозащиты и погружного электродвигателя соединяются между собой шлицевыми муфтами. Таким образом, погружной агрегат УЭЦН представляет собой комплекс сложных электрических, механических и гидравлических устройств высокой надежности, что требует от персонала высокой квалификации.
  • 5) Обратный клапан размещается в головке насоса и предназначен для предотвращения слива жидкости через насос из колонны НКТ при остановках погружного агрегата. Остановки погружного агрегата происходят по многим причинам: отключение электроэнергии при аварии на силовой линии; отключение из-за срабатывания защиты ПЭД; отключение при периодической эксплуатации и т.п. При остановке (обесточивании) погружного агрегата столб жидкости из НКТ начинает стекать через насос в скважину, раскручивая вал насоса (а значит, и вал погружного электродвигателя) в обратном направлении. Если в этот период возобновляется подача электроэнергии, ПЭД начинает вращаться в прямом направлении, преодолевая огромную силу. Пусковой ток ПЭД в этот момент может превысить допустимые пределы, и, если не сработает защита, электродвигатель выходит из строя. Чтобы предотвратить это явление и сократить простои скважины, погружной насос оборудуют обратным клапаном. С другой стороны, наличие обратного клапана при подъеме погружного агрегата не позволяет жидкости стекать из колонны НКТ. Подъем установки проводят, когда колонна НКТ заполнена скважинной продукцией, которая выливается на устье, создавая сверхтяжелые условия работы бригаде подземного ремонта и нарушая все условия обеспечения безопасности жизнедеятельности, противопожарной и экологической защиты, что недопустимо. Поэтому погружной насос оборудуют сливным клапаном. скважина пространственный оборудование
  • 6) Сливной клапан размещается в специальной муфте, соединяющей между собой насосно-компрессорные трубы, и представляет собой, как правило, бронзовую трубку, один конец которой запаян, а другой, открытый конец, на резьбе вворачивается в муфту изнутри. Сливной клапан располагается горизонтально по отношению к вертикальной колонне НКТ. При необходимости подъема установки из скважины в колонну НКТ сбрасывается небольшой груз, который обламывает бронзовую трубку сливного клапана, и жидкость из НКТ при подъеме сливается в затрубное пространство.
  • 6) Электрический кабель предназначен для подачи питающего напряжения на клеммы погружного электродвигателя. Кабель трехжильный, с резиновой или полиэтиленовой изоляцией жил и сверху покрыт металлической броней. Поверхностное бронирование кабеля осуществляется стальной оцинкованной профилированной лентой, что предотвращает токоведущие жилы от механических повреждений при спуске и подъеме установки. Выпускаются кабели круглые и плоские. Плоский кабель имеет меньшие радиальные габариты. Кабели зашифрованы следующим образом: КРБК, КРБП - кабель с резиновой изоляцией, бронированный, круглый; кабель с резиновой изоляцией, бронированный, плоский. Жилы медные, с различным сечением. Кабель крепится к колонне НКТ в двух местах: над муфтой и под муфтой. В настоящее время преимущественно применяются кабели с полиэтиленовой изоляцией.
  • 7) Автотрансформатор предназначен для повышения напряжения, подаваемого на клеммы погружного электродвигателя. Сетевое напряжение составляет 380 В, а рабочее напряжение электродвигателей в зависимости от мощности изменяется от 400 В до 2000 В. С помощью автотрансформатора напряжение промысловой сети 380 В повышается до рабочего напряжения каждого конкретного погружного электродвигателя с учетом потерь напряжения в подводящем кабеле. Типоразмер автотрансформатора соответствует мощности используемого погружного электродвигателя.
  • 8) Станция управления предназначена для управления работой и защиты УЭЦН и может работать в ручном и автоматическом режимах. Станция оснащена необходимыми контрольно-измерительными системами, автоматами, всевозможными реле (максимальные, минимальные, промежуточные, реле времени и т.п.). При возникновении нештатных ситуаций срабатывают соответствующие системы защиты, и установка отключается. Станция управления выполнена в металлическом ящике, может устанавливаться на открытом воздухе, но часто размещается в специальной будке.

Рис. 3 Погружной центробежный насос

1 - входной модуль; 2 - модуль-секция; 3 - модуль-головка

Погружные центробежные насосы предназначены для откачки пластовой жидкости из нефтяных скважин. Приводом насосов являются погружные асинхронные двигатели (ПЭД). Погружные центробежные насосы для добычи нефти производятся в соответствии с документацией. В зависимости от поперечного габарита насосы подразделяются на группы 4, 5, 5А и 6. В ОАО «Татнефть» на нефтяных скважинах используются насосы двух групп - 5 и 5А.

Группа насоса условно определяет минимальный внутренний диаметр эксплуатационной колонны скважины.

Диаметры корпусов насосов в группе:

5А - 103 мм

Разные исполнения насосов в основном отличаются конструкцией и используемыми материалами ступеней и их элементов, осевых и радиальных опор валов насосов, входного модуля, материалом валов, но конструктивная схема насосов всех исполнений одинакова при разных вариантах конструктивного исполнения насосов, обозначаемых цифрами от 1 до 4, которые указывают, что в составе насоса:

    Входной модуль, соединение секций фланцевое;

    Входной модуль, соединение секций типа «фланец-корпус»;

    Нижняя секция с приёмной сеткой, соединение секций фланцевое;

    Нижняя секция с приёмной сеткой, соединение секций типа «фланец-корпус».

    Структура условного обозначения насосов

    Погружной насос собирается из соединенных между собой модуль-секций (в зависимости от напора их количество может изменяться от 1 до 4), к которым снизу присоединяется входной модуль, а сверху - модуль–головка. Кроме того, в состав насоса входят обратный и сливной клапаны.

Модуль секция является основной частью насоса и состоит из корпуса, вала, пакета ступеней (рабочих колёс и направляющих аппаратов), верхнего и нижнего радиальных подшипников, верхней осевой опоры, головки и основания. Пакет ступеней с валом, радиальными подшипниками и осевой опорой помещаются в корпусе и зажимаются концевыми деталями. Соединение валов модуль-секций, модуля-секции с входным модулем, входного модуля с валом гидрозащиты и гидрозащиты с погружным двигателем осуществляется при помощи шлицевых муфт.

При вращении рабочих колёс перекачиваемая жидкость через входной модуль поступает на первую ступень насоса и получает приращение напора от ступени к ступени. Верхний, промежуточный и нижний подшипники являются радиальными опорами вала, а верхняя осевая опора воспринимает нагрузки, действующие вдоль оси вала (или осевые нагрузки).

Соединения составных частей УЭЦН герметизируются резиновыми кольцами.

Входной модуль (рис. 4) состоит из основания с отверстиями для прохода пластовой жидкости, закрытыми сеткой для предотвращения попадания в полость насоса мусора. В подшипниках основания вращается вал, который при помощи шлицевых муфт соединяется с валом гидрозащиты электродвигателя.

Модуль головка (рис. 5) состоит из корпуса 1, с одной стороны которого выполнена внутренняя коническая резьба для соединения с колонной НКТ, с другой - фланец для соединения с модуль-секцией.

Обратный клапан (рис. 6) предназначен для предотвращения обратного вращения установки под воздействием столба жидкости при остановках и облегчения запуска установки. Кроме того, он используется для опрессовки НКТ после спуска установки в скважину. Обратный клапан состоит из корпуса, с одной стороны которого выполнена внутренняя, с другой - наружная конические резьбы для подсоединения к колонне НКТ. Внутри корпуса размещается обрезиненное седло 2, на которое опирается тарельчатый запорный орган 3, имеющий возможность осевого перемещения в направляющий втулке 4. Под воздействием потока перекачиваемой жидкости клапан открывается, при остановке насоса - закрывается.

Рис. 4 Входной модуль Рис 5 Модуль-головка

Обратный клапан устанавливается на первой над насосом трубе колонны НКТ, комплектация им электропогружных установок является обязательной. Сливной клапан (рис. 6) предназначен для слива жидкости из колонны НКТ при подъеме насоса из скважины и устанавливается на второй или третьей трубе колонны НКТ выше обратного клапана для того, чтобы, при необходимости, имелась возможность установки между ними шламоуловителя.


Рис. 5 - Обратный клапан Рис. 6 - Сливной клапан

Сливной клапан состоит из корпуса 1, имеющего аналогичные с обратным клапаном резьбы. В корпус вворачивается штуцер 2, который уплотнён резиновым кольцом 3.

Перед подъёмом насоса из скважины штуцер сбивается специальным инструментом, сбрасываемым в НКТ. Жидкость через отверстие в штуцере вытекает из НКТ в затрубное пространство.

Погружные электроцентробежные насосы - это многоступенчатые центробежные насосы (имеющие до 120 ступеней), приводимые во вращение погружным электродвигателем ПЭД. Питание подводится к электродвигателю с поверхности по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. Установка ЭЦН опускается в скважину на 150 - 300 м ниже расчетного динамического уровня. Жидкость поднимается на поверхность по НКТ, к внешней стороне которых прикреплен специальными поясками кабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка ЭЦН включает в себя следующие элементы (рисунок 3.1): многоступенчатый центробежный насос (1); звено гидрозащиты или протектор (2); маслозаполненный электродвигатель ПЭД (3); бронированный трехжильный кабель (4); обратный клапан (5); спускной клапан (6); трансформатор или автотрансформатор (7); станцию управления (8) .

Рис.3.1.

  • 1 - погружной центробежный насос; 2 - гидрозащита (протектор);
  • 3 - погружной электродвигатель; 4 - электрический кабель;
  • 5 - обратный клапан; 6 - спускной клапан; 7 - трансформатор; 8 - СУ

Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции ЭЦН соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и приобретает напор, равный внешнему гидравлическому сопротивлению. Установки ЭЦН отличаются относительно низкой металлоемкостью, широким диапазоном рабочих характеристик как по напору, так и по расходу, достаточно высоким КПД, возможностью откачки больших объемов жидкости и большим межремонтным периодом.

На рисунке 3.2, а, показана одна ступень ЭЦН, а на рисунке 3.2, б, соединение ступеней.


Рис.3.2.

а - одиночная ступень; б - соединение ступеней в секцию ЭЦН

На рисунке 3.3 показан разрез ЭЦН, а на рисунке 3.4 - насос типа ЭЦНМИК.

В шифре ЭЦН заложены их основные номинальные параметры, такие как подача и напор при работе на оптимальном режиме. Например, ЭЦН5-40-950 означает центробежный электронасос группы 5 с подачей 40 м 3 /сут (по воде) и напором 950 м.

Рис. 3.3.

1 - компрессионно-диспергирующая ступень; 2 - шнек; 3 - обойма; 4 - радиально-упорный подшипник


Рис. 3.4.

В шифре насосов буква «И» означает износостойкость. В износостойких насосах рабочие колеса изготавливаются не из металла, а из полиамидной смолы. В корпусе насоса примерно через каждые 20 ступеней устанавливаются промежуточные резинометаллические центрирующие вал подшипники, в результате чего насос износостойкого исполнения имеет меньше ступеней и соответственно напор.

Все типы насосов имеют паспортную рабочую характеристику в виде кривых зависимостей Н=ДС)) (напор, подача), /;=ДС>) (КПД, подача), N=f (0) (потребляемая мощность, подача). Обычно эти зависимости даются в диапазоне рабочих значений расходов или в несколько большем интервале (рисунок 3.5). Характеристики большого числа насосов могут быть найдены на интернет- сайтах производителей насосного оборудования .


Рис. 3.5.

Всякий центробежный насос, в том числе и ЭЦН, может работать при закрытой выкидной задвижке (точка А: 0=0; Н=Н тах) и без противодавления на выкиде (точка В: 0=0 тах; Н=0). Поскольку полезная работа насоса пропорциональна произведению подачи на напор, то для этих двух крайних режимов работы насоса полезная работа будет ровна нулю, а следовательно, и КПД будет равен нулю. При определенном соотношении Р и Н, обусловленном минимальными внутренними потерями насосом, КПД достигает максимального значения, равного примерно 0,5 - 0,6. Обычно насосы с малой подачей и малым диаметром рабочих колес, а так же с большим числом ступеней имеют пониженный КПД. Подача и напор, соответствующие максимальному КПД, называются оптимальным режимом работы насоса. Зависимость /7=ДР), около своего максимума уменьшается плавно, поэтому вполне допустима работа ЭЦН при режимах, отличающихся от оптимального в ту или другую сторону на некоторую величину. Пределы этих отклонений зависят от конкретной характеристики ЭЦН и должны соответствовать разумному снижению КПД насоса (на 3...5 %).

Это обуславливает целую область возможных режимов работы ЭЦН, которая называется рекомендованной областью (рисунок 3.5, штриховка).

Подбор насоса к скважинам по существу сводится к выбору такого типоразмера ЭЦН, чтобы он, будучи спущен в скважину, работал в условиях оптимального или рекомендованного режима при откачке заданного дебита скважины с данной глубины .

Напор, который может преодолеть насос, прямо пропорционален числу ступеней. Развиваемый одной ступенью при оптимальном режиме работы, он зависит, от размеров рабочего колеса, которые зависят в свою очередь от радиальных габаритов насоса.

Устройство ПЭД завода «Борец» в разрезе изображено на рисунке 3.6. В таблице 3.1 приведены технические характеристики ПЭД.

Электроэнергия подается к ПЭД по трехжильному кабелю, спускаемому в скважину параллельно НКТ (рисунок 3.7). Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работает в тяжелых условиях. Верхняя его часть находится в газовой среде, иногда под значительным давлением, нижняя - в нефти и подвергается еще большему давлению. При спуске и подъеме насоса, особенно в искривленных скважинах, кабель подвергается сильным механическим воздействиям (прижимы, трение, заклинивание между колонной и НКТ и так далее). По кабелю передается электроэнергия при высоких напряжениях. Использование высоковольтных двигателей позволяет уменьшить ток и, следовательно, диаметр кабеля. Однако кабель для питания высоковольтного ПЭД должен обладать и более надежной, а иногда и более толстой изоляцией. Все кабели, применяемые для ЭЦН, сверху покрыты эластичной стальной оцинкованной лентой для защиты от механических повреждений. Кабели могут быть круглого и плоского сечения.

Рис. 3.6.

Таблица 3.1

Технические характеристики асинхронных ПЭД

Тип двигателя

Мощность, кВт

Габаритный размер, мм

Линейное напряжение, В

Ток, А

сое ф

КПД, %

Темп. окр. среды, °С, не более

ПЭД16-103БВ5

ПЭД22-103БВ5

ПЭД32-103БВ5

ПЭД45-103БВ5

ПЭДС63-103БВ5

ПЭДС90-103БВ5

ПЭД45-117БВ5

ПЭД63-117БВ5

ПЭДС90-117БВ5

ПЭДС125-П7БВ5

ПЭД63-123БВ5

ПЭД 125-123 БВ5

ПЭДС250-123БВ5

ПЭДС180-130ЛВ5

ПЭДС250-130ЛВ5

Рис.3.7.

1 - жила; 2 - изоляция; 3 - оболочка; 4 - оплетка; 5 - броня

Круглый кабель крепится к НКТ, а плоский - только к нижним трубам колонны НКТ и к насосу. Переход от круглого кабеля к плоскому сращивается методом горячей вулканизации в специальных пресс-формах и при недоброкачественном выполнении такой сростки может служить источником нарушения изоляции и отказов. В последнее время переходят только к плоским кабелям, идущим от ПЭД вдоль колонны НКТ до станции управления. Однако изготовление таких кабелей сложнее, чем круглых.

Круглые кабели имеют резиновую (нсфтсстойкая резина) или полиэтиленовую изоляцию, что отображено в шифре: КРБК означает кабель резиновый бронированный круглый или КРБП - кабель резиновый бронированный плоский. При использовании полиэтиленовой изоляции в шифре вместо буквы Р пишется П: КПБК - для круглого кабеля и КПБП - для плоского.

Кабельный ввод является одним из важнейших элементов установки ПЭД, так как именно этот узел обеспечивает герметичность электродвигателя. Место кабельного ввода в ПЭД показано на рисунке 3.8.

Рис.3.8.

Все кабели имеют броню из волнистой оцинкованной стальной ленты, что придает им нужную прочность.

Кабели обладают активным и реактивным сопротивлением. Активное сопротивление зависит от сечения кабеля и варьируется в пределах от 0,6 до 1,32 Ом/км.

Реактивное сопротивление зависит от коэффициента мощности сов^ (при его значении 0,86 - 0,9 составляет примерно 0,1 Ом/км).

В кабеле ПЭД имеют место значительные потери электрической мощности, обычно от 3 до 15% общих потерь в установке . Потери мощности связаны с падением напряжения в кабеле. Эти потери напряжения, зависящие от тока, температуры кабеля, его сечения, вычисляются по обычным формулам электротехники и составляют примерно от 25 до 125 В/км . Поэтому на устье скважины напряжение, подаваемое к кабелю, всегда должно быть выше на величину потерь по сравнению с номинальным напряжением ПЭД. Возможности такого повышения напряжения предусмотрены в автотрансформаторах или трансформаторах, имеющих для этой цели в обмотках несколько дополнительных отводов.

Первичные обмотки трехфазных трансформаторов и автотрансформаторов рассчитаны на напряжение промысловой электросети, обычно 0,4 кВ, к которой они и подсоединяются через станции управления. Вторичные обмотки рассчитаны на рабочее напряжение погружного двигателя. Эти рабочие напряжения в различных ПЭД изменяются от 350 до 3000 В. Для компенсации падения напряжения в питающем кабеле от вторичной обмотки трансформатора делаются 6 (иногда 8) отводов, позволяющих регулировать напряжение на концах вторичной обмотки с помощью перестановки перемычек. Перестановка перемычки на одну ступень повышает напряжение на 30...60 В в зависимости от типа трансформатора.

Все трансформаторы и автотрансформаторы немаслозаполненные с воздушным охлаждением, закрыты металлическим кожухом и предназначены для установки в укрытом месте.

Трансформаторы, в отличии от автотрансформаторов, позволяют производить непрерывный контроль сопротивления изоляции вторичной обмотки трансформатора, кабеля и статорной обмотки ПЭД. При уменьшении сопротивления изоляции до установленной величины (ниже 30 кОм) установка автоматически отключается.

При использовании автотрансформаторов, имеющих прямую электрическую связь между первичной и вторичной обмотками, такой контроль изоляции осуществлять невозможно.

Существует большое количество специфических установок ЭЦН, предназначенных для одновременной работы в скважине с другими насосами, для добычи воды. ПЭД также могут использоваться не только с ЭЦН, но и для приво- да насосов других типов: винтовых, диафрагменных. Погружные центробежные насосы применяются не только для эксплуатации нефтедобывающих скважин.

Вот некоторые примеры использования ЭЦН:

  • - в водозаборных и артезианских скважинах для снабжения технической водой систем ППД и для бытовых целей (обычно это насосы с большими подачами, но с малыми напорами);
  • - в системах ППД при использовании пластовых высоконапорных вод при оборудовании водозаборных скважин с непосредственной закачкой воды в соседние нагнетательные скважины (подземные кустовые насосные станции, для этих целей используются насосы с внешним диаметром 375 мм, подачей до 3000 м 3 /сут и напором до 2000 м);
  • - для внутрипластовых систем поддержания пластового давления при закачке воды из нижнего водоносного пласта в верхний нефтяной или из верхнего водоносного в нижний нефтяной через одну скважину (используются так называемые перевернутые насосные установки, у которых в верхней части расположен двигатель, затем гидрозащита и в самом низу сам центробежный насос);
  • - специальные компоновки насоса в корпусах и с каналами перетока для одновременной, но раздельной эксплуатации двух и более пластов одной скважины (такие конструкции по существу являются приспособлениями известных элементов стандартной установки погружного насоса для работы в скважине в сочетании с другим оборудованием: газлифт, ШГН, фонтан, ЭЦН);
  • - специальные установки погружных центробежных насосов на кабель- канате. Стремление увеличить радиальные габариты ЭЦН и улучшить его технические характеристики, а также стремление упростить спускоподъемные работы при замене ЭЦН привели к созданию установок, спускаемых в скважину на специальном кабель-канате. Кабель-канат выдерживает нагрузку 100 кН. Он имеет сплошную двухслойную (крест на крест) наружную оплетку из прочных стальных проволок, обвитых вокруг электрического трехжильного кабеля, с помощью которого осуществляется питание ПЭД.