Имеет ли воздух вес и сколько он весит? Сколько весит воздух Воздух имеет вес и силу

Многих может удивить тот факт, что воздух имеет определенный ненулевой вес. Точное значение этого веса определить не так просто, поскольку на него сильно влияют такие факторы, как химический состав, влажность, температура и давление. Рассмотрим подробнее вопрос о том, сколько весит воздух.

Что такое воздух

Прежде чем отвечать на вопрос о том, сколько весит воздух, необходимо разобраться с тем, что представляет собой эта субстанция. Воздух - это газовая оболочка, которая существует вокруг нашей планеты, и которая представляет гомогенную смесь различных газов. В состав воздуха входят следующие газы:

  • азот (78,08%);
  • кислород (20,94%);
  • аргон (0,93%);
  • водяной пар (0,40%);
  • углекислый газ (0,035%).

Помимо перечисленных выше газов, в воздухе также присутствуют в минимальных количествах неон (0,0018%), гелий (0,0005%), метан (0,00017%), криптон (0,00014%), водород (0,00005%), аммиак (0,0003%).

Интересно отметить, что разделить эти компоненты можно, если конденсировать воздух, то есть превратить его в жидкое состояние путем увеличения давления и уменьшения температуры. Поскольку каждый компонент воздуха обладает своей температурой конденсации, то таким способом удается выделить все компоненты из воздуха, что используется на практике.

Вес воздуха и факторы, которые на него влияют

Что мешает ответить точно на вопрос, сколько весит кубометр воздуха? Конечно же, ряд факторов, которые могут сильно влиять на этот вес.

Во-первых, это химический состав. Выше приведены данные для состава чистого воздуха, однако, в настоящее время этот воздух во многих местах планеты сильно загрязнен, соответственно, его состав будет другим. Так, вблизи больших городов в воздухе содержится больше углекислого газа, аммиака, метана, чем в воздухе сельской местности.

Во-вторых, влажность, то есть количество водяного пара, которое содержится в атмосфере. Чем более влажный воздух, тем меньше он весит при прочих равных условиях.

В-третьих, температура. Это один из важных факторов, чем меньше ее значение, тем выше плотность воздуха, и, соответственно, тем больше его вес.

В четвертых, атмосферное давление, которое непосредственно отражает количество молекул воздуха в определенном объеме, то есть его вес.

Чтобы понять, как совокупность этих факторов влияет на вес воздуха, приведем простой пример: масса одного метра кубического сухого воздуха при температуре 25°C, находящегося вблизи поверхности земли, составляет 1,205 кг, если же рассматривать аналогичный объем воздуха вблизи поверхности моря при температуре 0°C, то его масса уже будет равна 1,293 кг, то есть увеличится на 7,3%.

Изменение плотности воздуха с высотой

С увеличением высоты падает давление воздуха, соответственно, уменьшается его плотность и вес. Атмосферный воздух при давлениях, которые наблюдаются на Земле, можно в первом приближении считать идеальным газом. Это означает, что давление и плотность воздуха математически связываются друг с другом через уравнение состояния идеального газа: P = ρ*R*T/M, где P - давление, ρ - плотность, T - температура в кельвинах, M - молярная масса воздуха, R - универсальная газовая постоянная.

Из приведенной выше формулы можно получить формулу зависимости плотности воздуха от высоты, если учесть, что давление изменяется по закону P = P 0 +ρ*g*h, где P 0 - давление у поверхности земли, g - ускорение свободного падения, h - высота. Подставляя эту формулу для давления в предыдущее выражение, и выражая плотность, получаем: ρ(h) = P 0 *M/(R*T(h)+g(h)*M*h). С помощью этого выражения можно определить плотность воздуха на любой высоте. Соответственно вес воздуха (правильнее говорить масса) определяется по формуле m(h) = ρ(h)*V, где V - заданный объем.

В выражении зависимости плотности от высоты можно заметить, что от высоты также зависят температура и ускорение свободного падения. Последней зависимостью можно пренебречь, если речь идет о высотах не более 1-2 км. Что касается температуры, то ее зависимость от высоты хорошо описывается следующим эмпирическим выражением: T(h) = T 0 -0,65*h, где T 0 - температура воздуха вблизи поверхности земли.

Чтобы не вычислять постоянно плотность для каждой высоты, ниже приведем таблицу зависимости главных характеристик воздуха от высоты (до 10 км).

Какой воздух является самым тяжелым

Рассмотрев основные факторы, которые определяют ответ на вопрос о том, сколько весит воздух, можно понять, какой воздух будет самым тяжелым. Говоря кратко, холодный воздух весит всегда больше, чем теплый, поскольку плотность последнего ниже, и сухой воздух весит больше, чем влажный. Последнее утверждение легко понять, поскольку составляет 29 г/моль, а молярная масса молекулы воды равна 18 г/моль, то есть меньше в 1,6 раза.

Определение веса воздуха при заданных условиях

Теперь решим конкретную задачу. Ответим на вопрос о том, сколько весит воздух, занимающий объем 150 л, при температуре 288 К. Учтем, что 1 литр составляет тысячную часть от кубического метра, то есть 1 л = 0,001 м 3 . Что касается температуры 288 К, то она соответствует 15°C, то есть является типичной для многих районов нашей планеты. Далее нужно определить плотность воздуха. Сделать это можно двумя способами:

  1. Рассчитать по приведенной выше формуле для высоты 0 метров над уровнем моря. В этом случае получается значение ρ = 1,227 кг/м 3
  2. Посмотреть в приведенную выше таблицу, которая построена, исходя из T 0 = 288,15 К. В таблице стоит значение ρ = 1,225 кг/м 3 .

Таким образом, получилось два числа, которые хорошо согласуются друг с другом. Небольшое различие связано с погрешностью 0,15 К при определении температуры, а также с тем, что воздух является все же не идеальным, а реальным газом. Поэтому для дальнейших расчетов возьмем среднее из двух полученных значений, то есть ρ = 1,226 кг/м 3 .

Теперь, пользуясь формулой связи массы, плотности и объема, получаем: m = ρ*V = 1,226 кг/м 3 * 0,150 м 3 = 0,1839 кг или 183,9 грамма.

Также можно ответить, сколько весит литр воздуха при заданных условиях: m = 1,226 кг/м 3 * 0,001 м 3 = 0,001226 кг или приблизительно 1,2 грамма.

Почему мы не чувствуем, что воздух давит на нас

Сколько весит 1 м3 воздуха? Чуть больше 1 килограмма. Весь же атмосферный стол нашей планеты давит на человека своим весом в 200 кг! Это достаточно большая масса воздуха, которая могла бы доставить много неприятностей человеку. Почему же мы ее не чувствуем? Это объясняется двумя причинами: во-первых, внутри самого человека имеется также внутреннее давление, которое оказывает противодействие внешнему атмосферному давлению, во-вторых, воздух, будучи газом, оказывает давление во всех направлениях одинаково, то есть давления во всех направлениях уравновешивают друг друга.

Светлана Чебышева

Опыт №1. «Где спрятался воздух?»

Оборудование: целлофановые пакеты, зубочистки.

Скажите, вы видите воздух вокруг нас? (нет, не видим)

Значит, воздух, какой? (невидимый) .

Давайте поймаем воздух.

Возьмите со стола целлофановые пакеты и попробуйте поймать воздух.

Закрутите пакеты.

Что произошло с пакетами? (они надулись, приобрели форму)

Попробуйте сдавить пакет. Почему не получается? (внутри находится воздух)

Где можно использовать это свойство воздуха? (надувной матрац, спасательный круг).

Давайте сделаем вывод: Воздух не имеет формы, он приобретает форму того предмета в который он попадает.

А теперь посмотрите на свою руку через пакет. Вы видите руку? (видим) .

Значит, воздух, какой? (он прозрачный, бесцветный, невидимый).

Давайте проверим, действительно внутри находится воздух?

Возьмите острую палочку и осторожно проколите мешочек. Поднесите его к лицу и нажмите на него руками.

Что вы чувствуете? (шипение) .

Так выходит воздух. Мы его не видим, но чувствуем.

Какой сейчас можно сделать вывод? Воздух нельзя увидеть, но его можно почувствовать.

Вывод: Воздух прозрачный, невидимый, бесцветный, не имеет формы.

Опыт №2. «Как увидеть воздух?»

Оборудование: трубочки для коктейля, стаканы с водой.

Подуйте через трубочку на свою ладошку.

Что почувствовала ладошка? (движение воздуха – ветерок) .

Воздухом мы дышим через рот или через нос, а потом его выдыхаем.

Можно ли увидеть воздух, которым мы дышим?

Давайте попробуем. Погрузите трубочку в стакан с водой и подуйте.

На воде появились пузырьки.

Откуда взялись пузырьки? (Это воздух, который мы выдыхали) .

Куда плывут пузырьки – поднимаются вверх или опускаются на дно?

(Воздушные пузырьки поднимаются вверх) .

Потому что воздух легкий, он легче воды. Когда весь воздух выйдет, пузырьков не будет.

Вывод: Воздух легче воды.



Опыт №3. «Воздух - невидимка»

Оборудование: большая прозрачная ёмкость с водой, стакан, салфетка.

На дно стакана необходимо закрепить бумажную салфетку. Перевернуть стакан вверх дном и медленно опустить его в ёмкость с водой.

Обратить внимание детей на то, что стакан нужно держать очень ровно. Вынули стакан из воды и потрогали салфетку, она оказалась сухой.

Что получается? Попадает ли вода в стакан? Почему нет?

Это доказывает, что в стакане находился воздух, который не пустил воду в стакан. А раз воды нет, значит, она намочить салфетку не может.

Детям предлагается снова опустить стакан в банку с водой, но теперь предлагается держать стакан не прямо, а немного наклонив его.

Что появляется в воде? (Видны пузырьки воздуха) .

Откуда они взялись? Воздух выходит из стакана, и его место занимает вода.

Вывод: Воздух прозрачный, невидимый.



Опыт №4. «Движение воздуха»

Оборудование: Заранее сделанные из цветной бумаги веера.

Ребята, а мы можем почувствовать движение воздуха? А увидеть?

На прогулке мы часто наблюдаем движение воздуха (качаются деревья, бегут облака, крутится вертушка, пар изо рта) .

А в комнате мы можем почувствовать движение воздуха? Как? (вентилятор) .

Воздух не видим, зато мы его можем ощутить.

Возьмите веера и помашите им в лицо.

Что вы чувствуете? (Чувствуем, как воздух движется) .

Вывод: Воздух движется.


Опыт №5. «Имеет ли воздух вес?»

Оборудование: два одинаково надутых воздушных шарика, зубочистка, весы (можно заменить палкой длинной около 60-ти см. На её середине закрепите верёвочку, а на концах воздушные шары) .

Предложите детям подумать, что произойдёт, если вы проткнёте один из шаров острым предметом.

Проткните зубочисткой один из надутых шаров.

Из шарика выйдет воздух, а конец, к которому он привязан, поднимется вверх. Почему? (Шарик без воздуха стал легче) .

Что произойдёт, когда мы проткнём и второй шарик?

Проткните зубочисткой второй шарик.

У вас опять восстановится равновесие. Шарики без воздуха весят одинаково, так же, как и надутые.

Вывод: Воздух имеет вес.



Опыт 7. Воздух легче воды.

Опыт 6. Чем больше воздуха в мяче, тем выше он скачет.

Опыт 5. Воздух толкает предметы.

Опыт 4.Запираем воздух в шарик.

Опыт 3. Буря в стакане.

Детям предлагается опустить в стакан с водой соломинку и дуть в неё. Что получается? (Получается буря в стакане воды).

Детям предлагается подумать, где можно найти много воздуха сразу? (В воздушных шариках). Чем мы надуваем шарики? (Воздухом) Воспитатель предлагает детям надуть шары и объясняет: мы как бы ловим воздух и запираем его в воздушном шарике. Если шарик сильно надуть, он может лопнуть. Почему? Воздух весь не поместится. Так что главное - не перестараться. (предлагает детям поиграть с шарами).

После игры можно предложить детям выпустить воздух из одного шарика. Есть ли при этом звук? Предлагается детям подставить ладошку под струю воздуха. Что они чувствуют? Обращает внимание детей: если воздух из шарика выходит очень быстро, он как бы толкает шарик, и тот движется вперёд. Если отпустить такой шарик, он будет двигаться до тех пор, пока из него не выйдет весь воздух.

Воспитатель интересуется у детей, в какой хорошо знакомой им игрушке много воздуха. Эта игрушка круглая, может прыгать, катиться, её можно бросать. А вот если в ней появится дырочка, даже очень маленькая, то воздух выйдет из неё и, она не сможет прыгать. (Выслушиваются ответы детей, раздаются мячи). Детям предлагается постучать об пол сначала спущенным мячом, потом - обычным. Есть ли разница? В чём причина того, что один мячик легко отскакивает от пола, а другой почти не скачет?

Вывод: чем больше воздуха в мяче, тем лучше он скачет.

Детям предлагается "утопить" игрушки, наполненные воздухом, в том числе спасательные круги. Почему они не тонут?

Вывод: Воздух легче воды.

Попробуем взвесить воздух. Возьмите палку длинной около 60-ти см. На её середине закрепите верёвочку, к обоим концам которой привяжите два одинаковых воздушных шарика. Подвесьте палку за верёвочку. Палка висит в горизонтальном положении. Предложите детям подумать, что произойдёт, если вы проткнёте один из шаров острым предметом. Проткните иголкой один из надутых шаров. Из шарика выйдет воздух, а конец палки, к которому он привязан, поднимется вверх. Почему? Шарик без воздуха стал легче. Что произойдёт, когда мы проткнём и второй шарик? Проверьте это на практике. У вас опять восстановится равновесие. Шарики без воздуха весят одинаково, так же, как и надутые.

Опыт 9.Тёплый воздух вверху, холодный внизу.

Для его проведения нужны две свечи. Проводить исследования лучше в прохладную или холодную погоду. Приоткройте дверь на улицу. Зажгите свечи. Держите одну свечу внизу, а другую вверху образовавшейся щели. Пусть дети определят, куда наклоняется пламя свечей (пламя нижней будет направлено внутрь комнаты, верхней - наружу). Почему так происходит? У нас в комнате тёплый воздух. Он легко путешествует, любит летать. В комнате такой воздух поднимается и убегает через щель вверху. Ему хочется поскорее вырваться наружу и погулять на свободе.



А с улицы к нам вползает холодный воздух. Он замёрз и хочет погреться. Холодный воздух тяжёлый, неповоротливый (он ведь замёрз!), поэтому предпочитает оставаться у земли. Откуда он будет входить к нам в комнату - сверху или снизу? Значит, вверху дверной щели пламя свечи "наклоняется" тёплым воздухом (он ведь убегает из комнаты, летит на улицу), а внизу холодным (он ползёт навстречу с нами).

Вывод: Получается, что один воздух, тёплый, движется вверху, а навстречу ему, внизу, ползёт "другой", холодный. Там, где двигаются и встречаются тёплый и холодный воздух, появляется ветер. Ветер - это движение воздуха.

Когда мы хотим подчеркнуть лёгкость, почти «невесомость» чего-то, мы обычно говорим «воздушный», тем самым подчёркивая, что воздух представляется нам чем-то, не имеющим веса. В этом люди были уверены на протяжении многих веков, и уверенность подкреплялась авторитетом такого уважаемого учёного, как Аристотель. Этот великий древнегреческий философ однажды задался вопросом, есть ли вес у воздуха. Как подобает учёному, он решил проверит это в эксперименте. На одну чашу весов он положил надутый воздухом кожаный бурдюк, на другую – точно такой же бурдюк, только пустой. Чаши весов уравновесились, следовательно, воздух ничего не весит!

Не будем судить строго: в то время физика только зарождалась, и Аристотель, как всякий первопроходец, не мог избежать ошибок. Чтобы понять, в чём была ошибка великого учёного, вспомним точное значение слова «вес»: сила, с которой тело действует на опору или подвес. То, что мы в быту называем весом и измеряем в килограммах – это масса, свойство тел изменять свою скорость при действии на них силы. Смешивать эти понятия не надо: в невесомости тела теряют именно вес, а не массу, так что в космическом корабле шкаф будет висеть в воздухе, но сдвинуть его с места будет не легче, чем на Земле. Так вот, с помощью весов измеряют именно вес, но вес этот соответствует определённой массе, а поскольку интересует нас при этом именно масса, для простоты мы говорим при этом о граммах и килограммах, а не о ньютонах, в которых измеряется сила, но измеряется-то именно сила, вот именно с силой и вышла ошибка. Когда кожаный бурдюк, надули, увеличился его объём, следовательно, изменилась действующая на него выталкивающая сила окружающего воздуха (закон Архимеда, который во времена Аристотеля ещё не был открыт), вот чаши весов и уравновесились.

Другим путём пошёл Г.Галилей. Он взвешивал не мешок, а полый медный шар, который свой объём изменять не может. Исследователь положил его на весы, а затем откачал воздух из шара. И что же? Шар стал легче! Это означало, что «невесомый» воздух весил!

По тем временам такое заявление могло выглядеть чрезвычайно смелым (шутка ли - спорить с самим Аристотелем, чьи взгляды «освящались» авторитетом католической церкви!), но сейчас мы понимаем, что это логично. Чтобы тело обладало весом (т.е. действовало на опору), нужно, в сущности, немного – чтобы на него действовала сила земного притяжения. На воздух она действует. Будь это не так, у нас бы и атмосферы не осталось, все атомы газов, составляющих её, разлетелись бы в космическом пространстве, следовательно, есть у воздуха и вес, который действует на земную поверхность и на всё, что на ней находится. Вес этот действительно невелик – напёрсток воды, например, весит больше, чем литр воздуха, но… его много! Если мы возьмём воздух от земной поверхности до верхней границы атмосферы на площади в один квадратный сантиметр – это будет вес, соответствующий одному килограмму. Площадь человеческой ладони – около 70 квадратных сантиметров, следовательно, воздух оказывает на неё такое воздействие, как если бы мы держали на ладони предмет массой в 70 кг! А на человеческое тело в целом воздух действует с силой, соответствующей 15 тоннам, это три грузовика-пятитонки!

Но мы этой тяжести не ощущаем по одной простой причине: внутри нашего тела тоже есть воздух, и действует он с такой же силой, уравновешивая вес воздуха снаружи. Иначе и быть не может, ведь наш биологический вид возник на этой планете, в условиях этой атмосферы. А вот атмосфера Венеры, например, раздавила бы нас в два счёта!

Когда мы поднимаем наполненное водою ведро, то сразу чувствуем его большую тяжесть. Подняв ведро без воды, мы ощущаем только тяжесть самого сосуда. Но это ведро ведь не пустое, оно наполнено воздухом; стало быть, сам воздух не имеет никакого веса? Может быть, воздух в ведре ничего не весит потому, что уходит из открытого ведра. Возьмем бурдюк или бычий пузырь, наполним его воздухом, завяжем и попробуем взвесить, а затем выдавим из него воздух и снова взвесим. Окажется, что показания весов оба раза будут одинаковыми, быть, действительно, воздух ничего не весит и это можно считать доказанным? Вместе с тем, если согласиться с отсутствием веса воздуха, то многие явления покажутся непонятными.

Почему, например, медицинские банки втягивают кожу человека. Почему, если мы наполним водой стакан с хорошо пришлифованными краями точно по эти края и накроем его бумажкой, а затем быстро перевернем стакан, то вода из стакана не выльется? Почему действует насос, перекачивающий воду снизу вверх?

Все эти явления казались долгое время необъяснимыми, но насос же и позволил открыть истину.

В поисках объяснения обратились к знаменитому ученому Галилею, тогда 80-летнему старцу. До нас дошли два варианта дальнейших событий. По первому из них Галилей будто бы смутился и не знал, что ответить. По второму варианту Галилей взвесил «пустую» бутылку, затем сильно разогрел ее, закрыл пробкой и, охладив, взвесил вторично. Оказалось, что на этот раз бутылка весила меньше.Сохранились сведения, что в XVII веке в саду герцога Тосканско во Флоренции построили насос, чтобы перекачивать воду для фонтана на высоту больше 10 метров, но это никак не удавалось. Насос был сделан так же хорошо, как и все другие, прекрасно работавшие, и поэтому неудача с ним казалась совершенно непонятной.

Галилей правильно объяснил уменьшение веса бутылки, указав, что при нагревании воздух расширился и был вытеснен из бутылки в атмосферу. Следовательно, в бутылке его оказалось меньше, поэтому и вес бутылки во второй раз стал меньшим. Таким образом Галилеи установил, что воздух имеет вес, но весит он меньше воды, и новый насос, больший, чем предшествовавшие, не работал только потому, что вес наружного воздуха не уравновешивал слишком высокого столба воды.

Несомненно, правильнее второй вариант дошедшего до нас рассказа, так как известно, что Галилей уже раньше делал подобные расчеты. Он объяснил силу, уравновешивающую давление воздуха «силой пустоты» В те времена существовало мнение, что природа «боится пустоты», и как только где-либо пустота образуется, природа ее тотчас заполняет. Но при этом оставалось необъяснимым то, что эта «боязнь пустоты» прекращалась выше 10 метров. Следовательно, загадка так и не была разрешена полностью.

Ученик Галилея, Торричелли продолжал исследование вопроса и произвел ряд опытов, которые позволили ему надежно доказать, что воздух имеет вес, и привели его в 1643 году к изобретению прибора, известного нам теперь под названием барометра . Торричелли наполнил ртутью закрытую с одного конца стеклянную трубку длиной 100 сантиметров и погрузил ее открытым концом в сосуд с ртутью. При этом ртуть из трубки вся не вылилась, но, немного опустившись, остановилась на уровне около 76 сантиметров; Торричелли сделал совершенно правильный вывод, что ртуть поддерживается в трубке весом наружного воздуха.

Давление воздуха на поверхность ртути в чашке уравновешивается давлением ртутного столба.

В течение нескольких лет выводы Торричелли не были подтверждены. Наконец, в 1647 году французский ученый Паскаль задумал окончательно выяснить этот вопрос. Он обратился к своему родственнику Перье, жившему в городе Клермон, у подножья горы Пью-де-Дом, с просьбой проделать необходимые наблюдения. Просьба Паскаля была выполнена 19 сентября 1648 года, и с этой даты то, что воздух имеет вес, перестало вызывать сомнения.

Перье поступил так. Он заготовил две одинаковые трубки Торричелли и, измерив высоту ртутного столба в трубках у подножья горы, оставил одну из них на месте, а с другой поднялся на вершину. На высоте 975 метров он опять измерил высоту ртути в трубке. Оказалось, что на вершине она была на 8 миллиметров ниже, чем у подножья горы.

Изумленный полученным результатом, Перье много раз проверял свои измерения и, только окончательно убедившись в их правильности, спустился вниз. В находившейся внизу трубке ртуть осталась на прежнем уровне. На том же уровне она остановилась и в принесенной сверху трубке.

Таким образом, было окончательно доказано, что воздух имеет вес и поэтому в нижних слоях он давит с большей силой, чем вверху, где над головой наблюдателя остается меньшее его количество. Воздух давит на поверхность Земли с такой же силой, с какой давил бы слой воды толщиной в 10,3 метра. Вот почему насос герцога Тосканского, поднятый над уровнем воды выше 10 метров, не работал. Ртуть в 13,6 раза тяжелее воды. Поэтому она устанавливалась в трубке Торричелли на высоте около 76 сантиметров (76х13,6=1033,6 сантиметра). Давлением воздуха объясняется и действие медицинской банки, а также и то, что вода из перевернутого, но закрытого бумажкой стакана не выливается.

Мы не замечаем этого большого веса воздуха, так как человеческий организм приспособился к нему и чувствует себя нормально именно в этих условиях. Все внутренние органы человека наполнены воздухом, имеющим такое же давление, как и давление атмосферы у поверхности Земли вне нашего организма; это внутреннее давление уравновешивает внешнее. Поднимаясь высоко в горы или на самолете, человек сильно ощущает уменьшение с высотой давления воздуха (рис. 2) и переносит происходящее при этом его понижение только до известного предела, после которого наступает ощущение удушья или даже смерть.

Рыбы, живущие в океане на больших глубинах, приспособились к еще большему давлению, слагающемуся из веса атмосферы и веса огромной массы воды. Выловленные на больших глубинах и поднятые на поверхность моря, рыбы гибнут: их разрывает внутреннее давление, не уравновешиваемое внешним.

Почему же мы не ощущаем веса воздуха, когда поднимаем наполненное воздухом ведро? Да потому, что мы взвешиваем его в самом же воздухе. Подобно этому, опустив ведро в колодец и наполнив его водой, мы не ощущаем веса воды в ведре. Но достаточно приподнять ведро из воды в воздух, как сразу почувствуется его тяжесть.

Один кубический метр воздуха весит 1,3 килограмма, а вся атмосфера, окружающая земной шар, - 5 300 000 000 000 000 тонн. Как видим, воздух весит очень и очень много. Вес 1 кубического метра воздуха, равный 1,3 килограмма, мы получаем тогда, когда взвешиваем воздух на уровне моря и при температуре 0°. Чем выше от поверхности Земли, тем плотность воздуха становится меньшей и вес 1 его кубического метра уменьшается. Так, на высоте 12 километров 1 кубический метр воздуха весит 319 граммов, то есть в четыре раза меньше, чем внизу; на высоте 25 километров - 43 грамма, а на высоте 40 километров - только 4 грамма (рис. 3). Увеличение плотности воздуха книзу и разрежение его вверху обусловливаются земным притяжением. Но как бы ни был разрежен воздух, он, как газ, заполняет все предоставленное ему пространство и, следовательно, распространяется далеко вверх от поверхности Земли.

До каких же высот простирается земная атмосфера? И можно ли вообще установить ее границу или же плотность воздуха постепенно сходит на нет?

Правильно второе предположение, но тем не менее теоретически мы можем установить границы воздушного океана. Это сделать нетрудно, так как мы знаем вес всей атмосферы, лежащей над нашей головой, и можем вычислить вес кубического метра воздуха на любой высоте.

Если бы воздух на всех высотах имел ту же плотность, что и у поверхности Земли, то средняя высота воздушной оболочки, окружающей земной шар, была бы близка к 8 километрам. Но плотность воздуха с высотой быстро уменьшается, и поэтому высота атмосферы должна быть во много сотен раз больше.

Еще М. В. Ломоносов разбирал вопрос о высоте земной атмосферы. Рассуждал он так. Воздух состоит из бесчисленного количества мельчайших частиц - молекул. Молекулы газа находятся в непрерывном движении, несутся вверх, вниз, в стороны. Внизу, где воздух плотен и число молекул огромно, они непрестанно сталкиваются между собою и как бы «толкутся» на месте. Чем выше, тем меньше молекул в одном и том же объеме воздуха, и путь, который они пролетают от одного столкновения с соседней молекулой до другого, - длиннее. Расположенные на больших высотах молекулы воздуха при этом часто летят вниз, к Земле; они падают под влиянием силы тяжести, как и все другие тела. Падение продолжается до столкновения с молекулами, расположенными ниже, в более плотных слоях. Оттолкнувшись от них, падавшая молекула снова летит вверх. Такое движение - вверх и вниз - все молекулы проделывают бесчисленное количество раз. Но вверх молекула движется только до известного уровня. Этот уровень определяется силой земного притяжения, вследствие которого все тела падают на Землю, движутся по ее поверхности и не уносятся от нее в мировое пространство. Выскакивают за этот уровень и уходят из атмосферы только те молекулы которые на большой высоте получили от столкновения с соседней молекулой толчок такой силы, которая превышает силу земного притяжения на этой высоте.

Более поздние исследования подтвердили правильность рассуждений М В. Ломоносова и показали, что такая теоретическая граница земной атмосферы лежит над полюсом на высоте 28 тысяч километров, над экватором на высоте 42 тысячи километров, то есть более чем в четыре и в семь раз превышает земной радиус.

Нас, земных жителей, в первую очередь интересует высота тех слоев атмосферы, которые имеют еще измеримую плотность и где совершаются те метеорологические и физические явления, которые мы имеем возможность наблюдать и с которыми мы должны считаться.

С такой точки зрения высота земной атмосферы определится слоем толщиной в 800-1000 километров.

Перье измерял давление атмосферы высотой столбика ртути в трубке Торричелли, определяя длину его в миллиметрах. Такой способ измерения сохранился и поныне. Современные ртутные барометры в принципе ничем не отличаются от трубки Торричелли. Они только совершеннее технически, что позволяет производить отсчеты очень точно, улавливая самые незначительные (до 1/10 миллиметра) изменения высоты ртутного столба.

Как мы уже знаем, на уровне моря атмосферное давление в среднем соответствует давлению ртутного столба высотой в 760 миллиметров. Но эта величина не остается постоянной. В разных местах в разное время года и при разной погоде она меняется в широких пределах Крайние отмеченные до сих пор значения давления составляют 680 и 802 миллиметра.

Изменение давления воздуха играет значительную роль в явлениях погоды. Но эта роль все же не решающая. Поэтому и предсказывать «погоду, используя измерение только одного давления, нельзя. Стало быть, не следует придавать большого значения надписям, имеющимся на некоторых металлических барометрах-анероидах: «буря», «дождь» или «сухо». Мы легко согласимся с этим, если вспомним описанный выше опыт Перье: барометр меняет свои показания не только от состояния погоды, но и от высоты, на которой он сейчас находится. Это его свойство широко используется в авиации, где по показаниям такого же барометра-анероида (альтиметра ) определяют высоту самолета.

Для облегчения отсчетов на шкале альтиметра показана не величина давления, а соответствующая высота.

Для ряда теоретических вычислений значительно удобнее величину давления воздуха выражать не длиной ртутного столба, следовательно, не в миллиметрах, а в единицах давления. В качестве такой единицы принят «бар», равный давлению миллиона дин 2 на 1 квадратный сантиметр, что соответствует давлению ртутного столба длиной 750,1 миллиметра. В практике применяется одна тысячная часть бара - миллибар. Давление ртутного столба длиной в 1 миллиметр равно 1,333 миллибарам. Соответственно этому 1 миллибар приблизительно равен 0,75 миллиметра ртутного столба. В настоящее время в метеорологии почти повсеместно применяют миллибары, но так как шкалы большинства барометров сделаны в миллиметрах, то отсчет величины давления с помощью специальных таблиц переводится затем в миллибары.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .