Кого в экологии называют консументами первого порядка. Пищевая цепь. Экосистема. Признаки экосистемы

Фитофаги и плотоядные

Структура живого вещества экосистемы. Биотическая структура. Автотрофы и гетеротрофы

Экосистема. Признаки экосистемы

Гомеостаз экосистемы. Экологические сукцессии. Виды природных и антропогенных сукцессий. Понятия климакса, устойчивости и изменчивости экосистем.

Популяции в экосистеме.

Продуценты. Консументы I, II порядка. Детритофаги. Редуценты.

Фитофаги и плотоядные.

Структура живого вещества экосистемы. Биотическая структура. Автотрофы и гетеротрофы.

Экосистема. Признаки экосистемы.

Тема 3. Экосистема. Структура экосистем

Биопотребление. Численность населения и устойчивость биосферы

Понятия ноосферы и техносферы

Термин «экосистема» предложил английский эколог А. Тенсли в 1935 году.

Экосистема – это любая совокупность взаимодействующих живых организмов и условий среды.

«Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создаёт чётко определённые биотические структуры и круговорот веществ между живой и неживой частями, представляет собой экологическую систему , или экосистему » (Ю. Одум, 1986).

Экосистемами являются, например, муравейники, участок леса, территория фермы, кабина космического корабля, географический ландшафт или даже весь земной шар.

Экологи используют также термин «биогеоценоз», предложенный русским учёным В.Н. Сукачёвым. Этим термином обозначается совокупность растений, животных, микроорганизмов, почвы и атмосферы на однородном участке суши. Биогеоценоз – это один из вариантов экосистемы.

Между экосистемами, как и между биогеоценозами, обычно нет чётких границ, и одна экосистема постепенно переходит в другую. Большие экосистемы состоят из экосистем меньшего размера.

Рис. «Матрёшка» экосистем

На рис. показана «матрёшка» экосистем. Чем меньше размер экосистемы, тем теснее взаимодействуют входящие в её состав организмы. В муравейнике живёт организованный коллектив муравьёв, в котором все обязанности распределены. Есть муравьи-охотники, охранники, строители.

Экосистема муравейника входит в состав лесного биогеоценоза, а лесной биогеоценоз – часть географического ландшафта. Состав лесной экосистемы более сложный, в лесу совместно проживают представители многих видов животных, растений, грибов, бактерий. Связи между ними не столь тесны, как у муравьёв в муравейнике. Многие животные проводят в лесной экосистеме только часть времени.



Внутри ландшафта разные биогеоценозы связаны надземным и подземным движением воды, в которой растворены минеральные вещества. Наиболее интенсивно перемещается вода с минеральными веществами в пределах водосборного бассейна – водоёма (озера, реки) и примыкающих к нему склонов, с которых в этот водоём стекают надземные и подземные воды. В экосистему водосборного бассейна входят несколько разных экосистем – лес, луг, участки пашни. Организмы всех этих экосистем могут не иметь прямых взаимоотношений и связаны через подземные и надземные потоки воды, которые перемещаются к водоёму.

В пределах ландшафта переносятся семена растений, перемещаются животные. Нора лисы или логово волка находятся в одном биогеоценозе, а охотятся эти хищники на большой территории, состоящей из нескольких биогеоценозов.

Ландшафты объединяются в физико-географические районы (например, Русская равнина, Западно-Сибирская низменность), где разные биогеоценозы связаны общим климатом, геологическим строением территории и возможностью расселения животных и растений. Связи между организмами, включая человека, в экосистемах физико-географического района и биосферы осуществляются через изменение газового состава атмосферы и химического состава водоёмов.

Наконец, все экосистемы земного шара связаны через атмосферу и Мировой океан, в который поступают продукты жизнедеятельности организмов, и составляют единое целое – биосферу .

В состав экосистемы входят:

1) живые организмы (их совокупность можно назвать биоценозом или биотой экосистемы);

2) неживые (абиотические) факторы – атмосфера, вода, питательные элементы, свет;

3) мёртвое органическое вещество – детрит.

Особое значение для выделения экосистем имеют трофические , т.е. пищевые взаимоотношения организмов, регулирующие всю энергетику биотических сообществ и всей экосистемы в целом.

Прежде всего, все организмы делятся на две большие группы – автотрофов и гетеротрофов.

Автотрофные организмы используют неорганические источники для своего существования, тем самым создавая органическую материю из неорганической. К таким организмам относятся фотосинтезирующие зелёные растения суши и водной среды, синезелёные водоросли, некоторые бактерии за счёт хемосинтеза и др.

Поскольку организмы достаточно разнообразны по видам и формам питания, то они вступают между собой в сложные трофические взаимодействия, тем самым выполняя важнейшие экологические функции в биотических сообществах. Одни из них производят продукцию, другие потребляют, третьи преобразуют её в неорганическую форму. Их называют соответственно: продуценты, консументы и редуценты.

Продуценты – производители продукции, которой потом питаются все остальные организмы – это наземные зелёные растения, микроскопические морские и пресноводные водоросли, производящие органические вещества из неорганических соединений.

Консументы – это потребители органических веществ. Среди них есть животные, употребляющие только растительную пищу – травоядные (корова) или питающиеся только мясом других животных – плотоядные (хищники), а также употребляющие и то, и другое – «всеядные » (человек, медведь).

Редуценты (деструкторы) – восстановители. Они возвращают вещества из отмерших организмов снова в неживую природу, разлагая органику до простых неорганических соединений и элементов (например, на CO 2 , NO 2 и H 2 O). Возвращая в почву или в водную среду биогенные элементы, они тем самым, завершают биохимический круговорот. Это делают в основном бактерии, большинство других микроорганизмов и грибы. Функционально редуценты – это те же консументы, поэтому их часто называют микроконсументами .

А.Г. Банников (1977) полагает, что и насекомые также играют важную роль в процессах разложения мёртвой органики и в почвообразовательных процессах.

Микроорганизмы, бактерии и другие более сложные формы в зависимости от среды обитания подразделяют на аэробные , т.е. живущие при наличии кислорода, и анаэробные – живущие в бескислородной среде.

Все живые организмы по способу питания разделяются на две группы:

автотрофы (от греч. аутос – сам и трофо – питание);

гетеротрофы (от греч. гетерос – другой).

Автотрофы используют неорганический углерод (неорганические источники энергии ) и синтезируют органические вещества из неорганических, это – продуценты экосистемы. По источнику (используемой) энергии они, в свою очередь, также делятся на две группы:

Фотоавтотрофы – для синтеза органических веществ используют солнечную энергию. Это зелёные растения, имеющие хлорофилл (и другие пигменты) и усваивающие солнечный свет. Процесс, при котором происходит его усвоение, называется фотосинтезом.

(Хлорофилл – зелёный пигмент, обуславливающий окраску хлоропластов растений в зелёный цвет. При его участии осуществляется процесс фотосинтеза.

Хоропласты – зелёные пластиды, которые встречаются в клетках растений и некоторых бактерий. С их помощью происходит фотосинтез.)

Хемоавтотрофы – для синтеза органических веществ используют химическую энергию. Это серобактерии и железобактерии, получающие энергию при окислении соединений серы и железа (хемосинтез). Хемоавтотрофы играют значительную роль только в экосистемах подземных вод. Их роль в наземных экосистемах сравнительно невелика.

Гетеротрофы используют углерод органических веществ, которые синтезированы продуцентами, и вместе с этими веществами получают энергию. Гетеротрофы являются консументами (от лат. консумо – потребляю), потребляющими органическое вещество, и редуцентами , разлагающими его до простых соединений.

Фитофаги (растительноядные). К ним относятся животные, которые питаются живыми растениями. Среди фитофагов есть и небольшие животные, такие как тля или кузнечик, и гиганты, такие как слон. К фитофагам относятся почти все сельскохозяйственные животные: коровы, лошади, овцы, кролики. Есть фитофаги среди водных организмов, например, рыба белый амур, поедающий растения, которыми зарастают оросительные каналы. Важные фитофаг – бобр. Он питается ветками деревьев, а из стволов сооружает плотины, регулирующие водный режим территории.

Зоофаги (хищники, плотоядные). Зоофаги разнообразны. Это и мелкие животные, питающиеся амёбами, червями или рачками. И крупные, такие, как волк. Хищники, питающиеся более мелкими хищниками, называются хищниками второго порядка. Есть растения-хищники (росянка, пузырчатка), которые используют в пищу насекомых.

Симбиотрофы . Это бактерии и грибы, которые питаются корневыми выделениями растений. Симбиотрофы очень важны для жизни экосистемы. Нити грибов, опутывающие корни растений, помогают всасыванию воды и минеральных веществ. Бактерии-симбиотрофы усваивают газообразный азот из атмосферы и связывают его в доступные растениям соединения (аммиак, нитраты). Этот азот называется биологическим (в отличие от азота минеральных удобрений).

К симбиотрофам относятся и микроорганизмы (бактерии, одноклеточные животные), которые обитают в пищеварительном тракте животных-фитофагов и помогают им переваривать пищу. Такие животные, как корова, без помощи симбиотрофов не способны переварить поедаемую траву.

Детритофаги – организмы, питающиеся мёртвым органическим веществом. Это многоножки, дождевые черви, жуки-навозники, раки, крабы, шакалы и многие другие.

Некоторые организмы используют в пищу как растения, так и животных и даже детрит, и относятся к эврифагам (всеядным) – медведь, лиса, свинья, крыса, курица, ворона, тараканы. Эврифагом является и человек.

Редуценты – организмы, которые по своему положению в экосистеме близки к детритофагам, так как они тоже питаются мёртвым органическим веществом. Однако редуценты – бактерии и грибы – разрушают органические вещества до минеральных соединений, которые возвращаются в почвенный раствор и снова используются растениями.

Для переработки трупов редуцентам нужно время. Поэтому в экосистеме всегда есть детрит – запас мёртвого органического вещества. Детрит – это опад листьев на поверхности лесной почвы (сохраняется 2 – 3 года), ствол упавшего дерева (сохраняется 5 – 10 лет), гумус почвы (сохраняется сотни лет), отложения органического вещества на дне озера – сапропель – и торф на болоте (сохраняется тысячи лет). Наиболее долго сохраняющимся детритом являются каменный уголь и нефть.

На рис. показана структрура экосистемы, основу которой составляют растения – фотоавтотрофы, а в таблице приведены примеры представителей разных трофических групп для некоторых экосистем.

Рис. Структура экосистемы

Органические вещества, созданные автотрофами, служат пищей и источником энергии для гетеротрофов: консументы-фитофаги поедают растения, хищники первого порядка – фитофагов, хищники второго порядка – хищников первого порядка и т.д. Такая последовательность организмов называется пищевой цепью , её звенья расположены на разных трофических уровнях (представляют разные трофические группы).

Трофический уровень – это место каждого звена в пищевой цепи. Первый трофический уровень – это продуценты, все остальные – консументы. Второй трофический уровень – это растительноядные консументы; третий – плотоядные консументы, питающиеся растительноядными формами; четвёртый – консументы, потребляющие других плотоядных и т.д. следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т.д. порядков (рис.).

Рис. Пищевые взаимосвязи организмов в биогеоценозе

Чётко распределяются по уровням лишь консументы, специализирующиеся на определённом виде пищи. Однако есть виды, питающиеся мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.

На рис. приведено пять примеров пищевых цепей.

Рис. Некоторые пищевые цепи в экосистемах

Две первые пищевые цепи представляют естественные экосистемы – наземные и водные. В наземной экосистеме цепь замыкают такие хищники, как лиса, волк, орлы, питающиеся мышами или сусликами. В водной экосистеме солнечная энергия, усвоенная в основном водорослями, переходит к мелким консументам – рачкам-дафниям, далее к мелким рыбам (плотва) и, наконец, к крупным хищникам – щуке, сому, судаку. В сельскохозяйственных экосистемах пищевая цепь может быть полной – при разведении сельскохозяйственных животных (третий пример), или укороченной, когда выращиваются растения, непосредственно использующиеся человеком в пищу (четвёртый пример).

Приведённые примеры упрощают действительную картину, так как одно и то же растение может быть съедено разными травоядными животными, а они, в свою очередь, стать жертвами разных хищников. Лист растения могут съесть гусеница или слизень, гусеница может стать жертвой жука или насекомоядной птицы, которая может заодно склевать и самого жука. Жук может стать также жертвой и паука. Поэтому в реальной природе складываются не пищевые цепи, а пищевые сети .

При переходе энергии с одного трофического уровня на другой (от растений к фитофагам, от фитофагов к хищникам первого порядка, от хищников первого порядка к хищника второго порядка) с экскрементами и затратами на дыхание теряется примерно 90 % энергии. Кроме того, фитофаги съедают только около 10 % биомассы растений, остальная часть пополняет запас детрита и затем её разрушают редуценты. Поэтому вторичная биологическая продукция в 20 – 50 раз меньше, чем первичная.

Рис. Основные типы экосистем

(продуцентами). В отличие от редуцентов , консументы не способны разлагать органические вещества до неорганических .

Отдельно взятый организм может являться в разных трофических цепях консументом разных порядков, например, сова , поедающая мышь , является одновременно консументом второго и третьего порядка, а мышь - первого и второго, так как мышь питается и растениями , и растительноядными насекомыми .

Любой консумент является гетеротрофом , так как не способен синтезировать органические вещества из неорганических. Термин «консумент (первого, второго и так далее) порядка» позволяет более точно указать место организма в цепи питания. Редуценты (например, грибы , бактерии гниения) также являются гетеротрофами, от консументов их отличает способность полностью разлагать органические вещества (белки , углеводы , липиды и другие) до неорганических (углекислый газ , аммиак , мочевина , сероводород), завершая круговорот веществ в природе, создавая субстрат для деятельности продуцентов (автотрофов).

См. также

Напишите отзыв о статье "Консументы"

Примечания

Отрывок, характеризующий Консументы

– Нельзя ли достать книгу? – сказал он.
– Какую книгу?
– Евангелие! У меня нет.
Доктор обещался достать и стал расспрашивать князя о том, что он чувствует. Князь Андрей неохотно, но разумно отвечал на все вопросы доктора и потом сказал, что ему надо бы подложить валик, а то неловко и очень больно. Доктор и камердинер подняли шинель, которою он был накрыт, и, морщась от тяжкого запаха гнилого мяса, распространявшегося от раны, стали рассматривать это страшное место. Доктор чем то очень остался недоволен, что то иначе переделал, перевернул раненого так, что тот опять застонал и от боли во время поворачивания опять потерял сознание и стал бредить. Он все говорил о том, чтобы ему достали поскорее эту книгу и подложили бы ее туда.
– И что это вам стоит! – говорил он. – У меня ее нет, – достаньте, пожалуйста, подложите на минуточку, – говорил он жалким голосом.
Доктор вышел в сени, чтобы умыть руки.
– Ах, бессовестные, право, – говорил доктор камердинеру, лившему ему воду на руки. – Только на минуту не досмотрел. Ведь вы его прямо на рану положили. Ведь это такая боль, что я удивляюсь, как он терпит.
– Мы, кажется, подложили, господи Иисусе Христе, – говорил камердинер.
В первый раз князь Андрей понял, где он был и что с ним было, и вспомнил то, что он был ранен и как в ту минуту, когда коляска остановилась в Мытищах, он попросился в избу. Спутавшись опять от боли, он опомнился другой раз в избе, когда пил чай, и тут опять, повторив в своем воспоминании все, что с ним было, он живее всего представил себе ту минуту на перевязочном пункте, когда, при виде страданий нелюбимого им человека, ему пришли эти новые, сулившие ему счастие мысли. И мысли эти, хотя и неясно и неопределенно, теперь опять овладели его душой. Он вспомнил, что у него было теперь новое счастье и что это счастье имело что то такое общее с Евангелием. Потому то он попросил Евангелие. Но дурное положение, которое дали его ране, новое переворачиванье опять смешали его мысли, и он в третий раз очнулся к жизни уже в совершенной тишине ночи. Все спали вокруг него. Сверчок кричал через сени, на улице кто то кричал и пел, тараканы шелестели по столу и образам, в осенняя толстая муха билась у него по изголовью и около сальной свечи, нагоревшей большим грибом и стоявшей подле него.

В природе популяции разных видов интегрируются в макросистемы более высокого ранга - в так называемые сообщества, или биоценозы.

Биоценоз (от греч. bios - жизнь, koinos - общий) - это организованная группа взаимосвязанных популяций растений, живот­ных, грибов и микроорганизмов, живущих совместно в одних и тех же условиях среды.

Понятие «биоценоз» было предложено в 1877 г. немецким зоологом К. Мебиусом. Мебиус, изучая устричные банки, пришел к выводу, что каждая из них представляет собой сообщество живых существ, все члены которого находятся в тесной взаимосвязи. Био­ценоз является продуктом естественного отбора. Выживание его, устойчивое существование во времени и пространстве зависит от характера взаимодействия составляющих популяций и возможно лишь при обязательном поступлении извне лучистой энергии Солнца.

Каждый биоценоз имеет определенную структуру, видовой состав и территорию; ему свойственны определенная организация пищевых связей и определенный тип обмена веществ

Но никакой биоценоз не может развиваться сам по себе, вне и независимо от среды. В результате в природе складываются определенные комплексы, совокупности живых и неживых компонентов. Сложные взаимодейст­вия отдельных частей их поддерживаются на основе разносторонней взаимной приспособ­ленности.

Пространство с более или менее однород­ными условиями, заселенное тем или иным сообществом организмов (биоценозом), назы­вается биотопом.

Иначе говоря, биотоп - это место сущест­вования, местообитание, биоценоза. Поэтому биоценоз можно рассматривать как историче­ски сложившийся комплекс организмов, харак­терный для какого-то конкретного биотопа.

Любой биоценоз образует с биотопом диа­лектическое единство, биологическую макроси­стему еще более высокого ранга - биогеоценоз. Термин «биогеоценоз» предложил в 1940 г. В. Н. Сукачев. Он практически тождест­вен широко распространенному за рубежом термину «экосистема», который был предло­жен в 1935 г. А. Тенсли. Существует мнение, будто термин «биогеоценоз» в значительно большей степени отражает структурные харак­теристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается прежде всего ее функциональная сущность. Фактически между этими терминами различий нет. Несом­ненно, В. Н. Сукачев, формулируя понятие «биогеоценоз», объединял в нем не только структурную, но и функциональную значимость макросистемы. По В. Н. Сукачеву, биогео­ценоз - это совокупность на известном про­тяжении земной поверхности однородных природных явлений - атмосферы, горной породы, гидрологических условий, расти­тельности, животного мира, мира микроорга­низмов и почвы. Эта совокупность отличается спецификой взаимодействий слагающих ее ком­понентов, их особой структурой и определен­ным типом обмена веществ и энергии между собой и с другими явлениями природы.

Биогеоценозы могут быть самых различных размеров. Кроме того, они отличаются боль­шой сложностью - в них подчас трудно учесть все элементы, все звенья. Это, к примеру, такие естественные группировки, как лес, озе­ро, луг и т. д. Примером сравнительно простого и четкого биогеоценоза может служить неболь­шой водоем, пруд. К неживым компонентам его относятся вода, растворенные в ней веще­ства (кислород, углекислый газ, соли, органиче­ские соединения) и грунт - дно водоема, где также содержится большое количество разно­образных веществ. Живые компоненты водо­ема разделяются на производителей первичной продукции - продуценты (зеленые растения), потребителей - консументы (первичные - рас­тительноядные животные, вторичные - плото­ядные животные и т. д.) и разрушителей - деструкторы (микроорганизмы), которые раз­лагают органические соединения до неорганических. Любой биогеоценоз, независимо от его размеров и сложности, состоит из этих основ­ных звеньев: производителей, потребителей, разрушителей и компонентов неживой приро­ды, а также из множества других звеньев. Между ними возникают связи самых различных порядков - параллельные и перекрещивающи­еся, запутанные и переплетенные и т. д.

В целом биогеоценоз представляет внутрен­нее противоречивое диалектическое единство, находящееся в постоянном движении и измене­нии. «Биогеоценоз - не сумма биоценоза и среды, - указывает Н. В. Дылис, - а целостное и качественно обособленное явление природы, действующее и развивающееся по своим соб­ственным закономерностям, основу которых составляет метаболизм его компонентов».

Живые компоненты биогеоценоза, т. е. сба­лансированные животно-растительные сообще­ства (биоценозы), являются высшей формой существования организмов. Они характеризу­ются относительно устойчивым составом фауны и флоры и обладают типичным набором живых организмов, сохраняющих свои основные при­знаки во времени и пространстве. Устойчивость биогеоценозов поддерживается саморегуляцией, т. е. все элементы системы существуют совместно, никогда полностью не уничтожая друг друга, а только ограничивая численность особей каждого вида до какого-то предела. Именно поэтому между видами животных, рас­тений и микроорганизмов исторически сложи­лись такие взаимоотношения, которые обеспе­чивают развитие и удерживают размножение их на определенном уровне. Перенаселенность одного из них может возникнуть по какой-то причине как вспышка массового размножения, и тогда сложившееся соотношение между вида­ми временно нарушается.

Чтобы упростить изучение биоценоза, его условно можно расчленить на отдельные ком­поненты: фитоценоз - растительность, зооце­ноз - животный мир, микробоценоз - микро­организмы. Но такое дробление приводит к искусственному и фактически неправильному выделению из единого природного комплекса группировок, которые самостоятельно сущест­вовать не могут. Ни в одном местообитании не может быть динамической системы, которая состояла бы только из растений или только из животных. Биоценоз, фитоценоз и зооценоз необходимо рассматривать как биологические единства разных типов и ступеней. Такой взгляд объективно отражает реальное положение в современной экологии.

В условиях научно-технического прогресса деятельность человека преобразует природные биогеоценозы (леса, степи). На смену им при­ходят посевы и посадки культурных растений. Так формируются особые вторичные агробиогеоценозы, или агроценозы, количество кото­рых на Земле постоянно увеличивается. Агроценозами являются не только сельскохозяйственные поля, но и полезащитные лесные поло­сы, пастбища, искусственно возобновляемые леса на вырубках и пожарищах, пруды и водо­хранилища, каналы и осушенные болота. Агробиоценозы по своей структуре характеризуют­ся незначительным количеством видов, но вы­сокой их численностью. Хотя в структуре и энергетике естественных и искусственных био­ценозов есть много специфичных черт, резких различий между ними не существует. В естест­венном биогеоценозе количественное соотно­шение особей разных видов взаимно обуслов­лено, поскольку в нем действуют механизмы, регулирующие это соотношение. В результате в таких биогеоценозах устанавливается стабиль­ное состояние, поддерживающее наиболее выгодные количественные пропорции составля­ющих его компонентов. В искусственных агроценозах нет подобных механизмов, там человек полностью взял на себя заботу об упорядочи­вании взаимоотношений между видами. Изу­чению структуры и динамики агроценозов уделяется большое внимание, так как уже в обозримом будущем первичных, естественных, биогеоценозов практически не останется.

По участию в биогенном круговороте веществ в биоценозах различают три группы организмов:

1) Продуценты (производители) - автотрофные организмы, создающие органические вещества из неорганических. Основными продуцентами во всех биоценозах являются зеленые растения. Деятельность продуцентов определяет исходное накопление органических веществ в биоценозе;

Консументы I порядка .

Этот трофический уровень составлен непосредственными потребителями первичной продукции. В наиболее типичных случаях, когда последняя создается фотоавтотрофами, это растительноядные животные (фитофаги). Виды и эколо­гические формы, представляющие этот уровень, весьма разнообразны и приспособлены к питанию разными видами растительного корма. В связи с тем, что растения обычно прикреплены к субстрату, а ткани их часто очень прочны, у многих фитофагов эволюционно сформиро­вался грызущий тип ротового аппарата и различного рода приспособ­ления к измельчению, перетиранию пищи. Это зубные системы грызущего и перетирающего типа у различных растительноядных млекопитающих, мускульный желудок птиц, особенно хорошо выра­женный у зерноядных, и.т. п. Сочетание этих структур определяет возможность перемалыва­ния твердой пищи. Грызущий ротовой аппарат свойствен многим насекомым и др.

Некоторые животные приспособлены к питанию соком растений или нектаром цветков. Эта пища богата высококалорийными, легко­усвояемыми веществами. Ротовой аппарат у питающихся таким обра­зом видов устроен в виде трубочки, с помощью которой всасывается жидкая пища.

Приспособления к питанию растениями обнаруживаются и на физиологическом уровне. Особенно выражены они у животных, пита­ющихся грубыми тканями вегетативных частей растений, содержащи­ми большое количество клетчатки. В организме большинства животных не продуцируются целлюлозолитические ферменты, а расщепление клетчатки осуществляется симбиотическими бактериями (и некоторы­ми простейшими кишечного тракта).

Консументы частично используют пищу для обеспечения жизнен­ных процессов («затраты на дыхание»), а частично строят на ее основе собственное тело, осуществляя таким образом первый, принципиаль­ный этап трансформации органического вещества, синтезированного продуцентами. Процесс создания и накопления биомассы на уровне консументов обозначается как, вторичная продукция.

Консументы II порядка .

Этот уровень объединяет животных с плотоядным типом питания (зоофаги). Обычно в этой группе рассматривают всех хищников, поскольку их специфические черты практически не зависят от того, является ли жертва фитофагом, или плотоядна. Но строго говоря, консументами II порядка следует считать только хищников, питающихся растительноядными животны­ми и соответственно представляющих второй этап трансформации органического вещества в цепях питания. Химические вещества, из которых строятся ткани животного организма, довольно однородны, поэтому трансформация при переходе с одного уровня консументов на другой не имеет столь принципиального характера, как преобразо­вание растительных тканей в животные.

При более тщательном подходе уровень консументов II порядка следует разделять на подуровни соответственно направлению потока вещества и энергии. Например, в трофической цепи «злаки - кузне­чики - лягушки - змеи - орлы» лягушки, змеи и орлы составляют последовательные подуровни консументов II порядка.

Растительный материал (например, нектар) → муха → паук → землеройка → сова

Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица

Редуценты и детритофаги (детритные пищевые цепи)

Существуют два главных типа пищевых цепей – пастбищные и детритные. Выше были приведены примеры пастбищных цепей, в которых первый трофический уровень занимают зеленые растения, второй – пастбищные животные и третий – хищники. Тела погибших растений и животных еще содержат энергию и «строительный материал», так же как и прижизненные выделения, например, моча и фекалии. Эти органические материалы разлагаются микроорганизмами, а именно грибами и бактериями, живущими как сапрофиты на органических остатках. Такие организмы называютсяредуцентами . Они выделяют пищеварительные ферменты на мертвые тела или отходы жизнедеятельности и поглощают продукты их переваривания. Скорость разложения может быть различной. Органические вещества мочи, фекалий и трупов животных потребляются за несколько недель, тогда как упавшие деревья и ветви могут разлагаться многие годы. Очень существенную роль в разложении древесины (и других растительных остатков) играют грибы, которые выделяют фермент целлюлозу, размягчающий древесину, и это дает возможность мелким животным проникать внутрь и поглощать размягченный материал.

Кусочки частично разложившегося материала называют детритом, и многие мелкие животные (детритофаги) питаются им, ускоряя процесс разложения. Поскольку в этом процессе участвуют как истинные редуценты (грибы и бактерии), так и детритофаги (животные), и тех и других иногда называют редуцентами, хотя в действительности этот термин относится только к сапрофитным организмам.

Детритофагами могут в свою очередь питаться более крупные организмы, и тогда создается пищевая цепь другого типа – цепь, начинающаяся с детрита:



Детрит → детритофаг → хищник

К детритофагам лесных и прибрежных сообществ относятся дождевой червь, мокрица, личинка падальной мухи (лес), полихета, багрянка, голотурия (прибрежная зона).

Приведем две типичные детритные пищевые цепи наших лесов:

Листовая подстилка → Дождевой червь → Черный дрозд → Ястреб-перепелятник

Мертвое животное → Личинки падальных мух → Травяная лягушка → Обыкновенный уж

Некоторые типичные детритофаги - это дождевые черви, мокрицы, двупарноногие и более мелкие (<0,5 мм) животные, такие, как клещи, ногохвостки, нематоды и черви-энхитреиды.

Пищевые сети

В схемах пищевых цепей каждый организм бывает представлен как питающийся другими организмами какого-то одного типа. Однако реальные пищевые связи в экосистеме намного сложнее, т. к. животное может питаться организмами разных типов из одной и той же пищевой цепи или даже из разных пищевых цепей. Это в особенности относится к хищникам верхних трофических уровней. Некоторые животные питаются как другими животными, так и растениями; их называют всеядными (таков, в частности, и человек). В действительности пищевые цепи переплетаются таким образом, что образуется пищевая (трофическая) сеть. В схеме пищевой сети могут быть показаны только некоторые из многих возможных связей, и она обычно включает лишь одного или двух хищников каждого из верхних трофических уровней. Такие схемы иллюстрируют пищевые связи между организмами в экосистеме и служат основой для количественного изучения экологических пирамид и продуктивности экосистем.

Экологические пирамиды.

Пирамиды численности.

Для изучения взаимоотношений между организмами в экосистеме и для графического представления этих взаимоотношений удобнее использовать не схемы пищевых сетей, а экологические пирамиды . При этом сначала подсчитывают число различных организмов на данной территории, сгруппировав их по трофическим уровням. После таких подсчетов становится очевидным, что численность животных прогрессивно уменьшается при переходе от второго трофического уровня к последующим. Численность растений первого трофического уровня тоже нередко превосходит численность животных, составляющих второй уровень. Это можно отобразить в виде пирамиды численности.



Для удобства количество организмов на данном трофическом уровне может быть представлено в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема). На рисунке показана пирамида численности, отображающая реальную ситуацию в природе. Хищники, расположенные на высшем трофическом уровне, называются конечными хищниками.

Четвертый трофический уровень Третичные консументы

Третий трофический уровень Вторичные консументы

Второй трофический уровень Первичные консументы

Первый трофический Первичные продуценты

уровень

Пирамиды биомассы.

Неудобств, связанных с использованием пирамид численности, можно избежать путем построения пирамид биомассы , в которых учитывается суммарная масса организмов (биомассы) каждого трофического уровня. Определение биомассы включает не только учет численности, но и взвешивание отдельных особей, так что это более трудоемкий процесс, требующий больше времени и специального оборудования. Таким образом, прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема.

При отборе образцов - иными словами, в данный момент времени - всегда определяется так называемая биомасса на корню, или урожай на корню. Важно понимать, что эта величина не содержит никакой информации о скорости образования биомассы (продуктивности) или ее потребления; иначе могут возникнуть ошибки по двум причинам:

1. Если скорость потребления биомассы (потеря вследствие поедания) примерно соответствует скорости ее образования, то урожай на корню не обязательно свидетельствует о продуктивности, т.е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой за данный период времени, например за год. Например, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса.

2. Продуцентом небольших размеров, таким, как водоросли, свойственна высокая скорость возобновления, т.е. высокая скорость роста и размножения, уравновешенная интенсивным потреблением их в пищу другими организмами и естественной гибелью. Таким образом, хотя биомасса на корню может быть малой по сравнению с крупными продуцентами (например, деревьями), продуктивность может быть не меньшей, так как деревья накапливают биомассу в течение длительного времени. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя он мог бы поддержать жизнь такой же массы животных. Вообще популяции крупных и долговечных растений и животных обладают меньшей скоростью обновления по сравнению с мелкими и короткоживущими и аккумулируют вещество и энергию в течение более длительного времени. Зоопланктон обладает большей биомассой, чем фитопланктон, которым он питается. Это характерно для планктонных сообществ озер и морей в определенное время года; биомасса фитопланктона превышает биомассу зоопланктона во время весеннего «цветения», но в другие периоды возможно обратное соотношение. Подобных кажущихся аномалий можно избежать, применяя пирамиды энергии.