Мгновенный нагреватель воды. Как выбрать нагреватель воды проточный электрический на кран. Сравнение разных нагревателей

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно:

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух . Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C . Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе. Но использование ОУ явно упростит жизнь и даст лучшие характеристики.


Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3 . Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.


Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением: K=1+R2/R1

Но увы, мир не идеален. … На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.


Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.


При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:


Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2 ).

Основной коэффициент усиления задается резисторами R3 и R4 . Остальные же элементы (R5 , R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6 ). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться:-)

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.


После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.


В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:


Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.


Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье .

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:


Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — это не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала.

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется .

Материал подготовлен исключительно для сайта

Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 - 5000 Гц . Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для звуковой частоты.

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Длительное пребывание без горячей воды превращает жизнь человека в серое уныние. Все люди стараются решить данную проблему, и каждый это делает по-своему. Одни устанавливают большой бойлер, другие отдают предпочтение кранам со встроенным нагревателем воды.

Прибор почти ничем не отличается от обычного смесителя. Краны мгновенного функционирования подключаются к холодному шлангу. Нагрев осуществляется внутри оборудования. В течение 3-5 секунд вода будет температурой до 70 °C. Стоит отметить, что проточный электрический водонагреватель на кран сделан из специального стального сплава, который не подвергается коррозии и не образует накипь.

Прибор имеет 3 режима функционирования:

  • «Выкл» — ручка находится в положении «вниз». Вода не поступает, электросхемы обесточены.
  • «Холодный» — рычаг находится в положении «влево». Электросеть отключена, а из крана бежит обычная вода комнатной температуры.
  • «Горячий» – ручка повёрнута вправо. Включена электросистема и в течение нескольких секунд из крана начинает течь горячая вода.

Существуют модели смесителей, в которых регулятор температуры находится снаружи конструкции. Это удобно – электроника производит контроль над всеми необходимыми показателями.

Преимущества и недостатки

К достоинствам можно отнести:

  • Быстрый нагрев воды. Горячая жидкость будет подана уже через 5 секунд после включения.
  • Прекрасные технические характеристики нагревателя холодной воды на кран в ванной или на кухне. Температура жидкости — до 70 °C, хороший напор, компактные размеры, локальная область использования.
  • Постоянная температура. Не будет колебаний в сторону появления кипятка или, наоборот, поступления слишком холодной жидкости.
  • Отлично впишется в любой интерьер и никогда не испортит внешний вид помещения.

Проточный нагреватель, надевающийся на кран, почти не имеет недостатков. Можно отметить только высокое энергопотребление – 3 кВт в час. Ещё один недостаток – низкая проходная способность (до 6 литров в минуту). Однако данного показателя вполне хватает, чтобы наполнить ванну или помыть посуду на кухне.

Обзор смесителей китайского производства с функцией нагрева

Наименование модели Особенности Характеристики t нагр., °С Потреб-ляемая энергия, кВт Цена, рубли
«Акватерм» Привлекательный дизайн, быстрый монтаж, фильтр для очистки воды. Высококлассный электронагревательный элемент, защита от перегрева и поражения электротоком. 60 3 3 900
«Делимано» Быстрая подача горячей воды,привлекательный дизайн, возможность регулирование температуры. Материал: пластик, металл. Рабочее давление:0,4-0,6 МПа. 50-60 3 2 500
«Аквастрим» Компактные размеры, экономия электроэнергии. Корпус выполнен из композитного пластика. 60 2,5 3 500
«RAPID™» Мгновенный подогрев воды, экономия ресурсов по сравнению с бойлером – 30%, простая установка. Высокоуровневая защита от перегрева. 60 3 3 900
«Corraveni» Клапан сделан из керамики, поверхностная отделка – из хромированной стали. Имеется самоконтролируемая система температуры воды. 60 3 4 200

Перед приобретением данных устройств необходимо обращать внимание на потребляемую мощность. Этот показатель должен быть минимальным, так как чем он ниже, тем будет больше экономия ресурсов, а значит и денежных средств.