Морфологические адаптации - адаптаций животных к факторам среды. Пример адаптации людей и животных в окружающем мире. Физиологические адаптации: примеры Формы адаптаций организмов

Преимущества строения

Это оптимальные пропорции тела, расположение и густота волосяного или перьевого покрова и т.п. Хорошо известен облик водного млекопитающего – дельфина. Его движения легки и точны. Самостоятельная скорость движения в воде достигает 40 километров в час. Плотность воды в 800 раз выше плотности воздуха. Торпедовидная форма тела позволяет избежать образования завихрений потоков воды, обтекающих дельфина.


Обтекаемая форма тела способствует быстрому передвижению животных и в воздушной среде. Маховые и контурные перья, покрывающие тело птицы, полностью сглаживают его форму. Птицы лишены выступающих ушных раковин, в полёте они обычно втягивают ноги. В результате птицы по скорости передвижения намного превосходят всех других животных. Например, сокол сапсан пикирует на свою жертву со скоростью до 290 километров в час.
У животных, ведущих скрытный, затаивающийся образ жизни, полезным оказываются приспособления, придающие им сходство с предметами окружающей среды. Причудливая форма тела у рыб, обитающих в зарослях водорослей (морской конёк-тряпичник, рыба-клоун, морская игла и др.), помогает им успешно скрываться от врагов. Сходство с предметами среды обитания широко распространено у насекомых. Известны жуки, своим внешним видом напоминающие лишайники, цикады, сходные с шипами тех кустарников, среди которых они живут. Насекомые палочники похожи на небольшую

бурую или зелёную веточку, а прямокрылые насекомые имитируют лист. Плоское тело имеют рыбы, ведущие придонный образ жизни (напр., камбала).

Покровительственная окраска

Позволяет быть незаметным среди окружающего фона. Благодаря покровительственной окраске организм становится трудно различимым и, следовательно, защищенным от хищников. Яйца птиц, откладываемые на песок или на землю, имеют серый и бурый цвет с пятнышками, сходный с цветом окружающей почвы. В тех случаях, когда яйца недоступны для хищников, они обычно лишены окраски. Гусеницы бабочек часто зелёные, под цвет листьев, или тёмные, под цвет коры или земли. Донные рыбы обычно окрашены под цвет песчаного дна (скаты и камбалы). При этом камбалы обладают ещё способностью менять окраску в зависимости от цвета окружающего фона. Способность менять окраску путём перераспределения пигмента в покровах тела известна и у наземных животных (хамелеон). Животные пустынь, как правило, имеют желто-бурую или песочно-желтую окраску. Однотонная покровительственная окраска свойственна как насекомым (саранча) и мелким ящерицам, так и крупным копытным (антилопы) и хищникам (лев).


Предостерегающая окраска


Предупреждает потенциального врага о наличии защитных механизмов (наличие ядовитых веществ или специальных органов защиты). Предостерегающая окраска выделяет из окружающей среды яркими пятнами или полосами ядовитых, жалящих животных и насекомых (змеи, осы, шмели).

Мимикрия

Подражательное сходство некоторых животных, главным образом насекомых, с другими видами, обеспечивающее защиту от врагов. Четкую границу между нею и покровительственной окраской или формой провести трудно. В самом узком смысле мимикрия - это имитация видом, беззащитным перед некоторыми хищниками, внешности вида, избегаемого этими потенциальными врагами из-за несъедобности или наличия особых средств защиты.

Мимикрия – это результат гомологичных (одинаковых) мутаций у разных видов, которые помогают выжить незащищённым животным. Для видов-подражателей важно, чтобы их численность была невелика по сравнению с моделью, которой они подражают, иначе у врагов не будет выработан устойчивый отрицательный рефлекс на предостерегающую окраску. Низкая численность мимикрирующих видов поддерживается высокой концентрацией летальных генов в генофонде. В гомозиготном состоянии эти гены вызывают летальные мутации, в результате чего высокий процент особей не доживает до половозрелого состояния.


Реакции на неблагоприятные факторы среды только при некоторых условиях являются губительными для живых организмов, а в большинстве случаев они имеют адаптивное значение. Поэтому эти ответные реакции были названы Селье «общим адаптационным синдромом». В более поздних работах термины «стресс» и «общий адаптационный синдром» он употреблял как синонимы.

Адаптация — это генетически детерминированный процесс формирования защитных систем, которые обеспечивают повышение устойчивости и протекание онтогенеза в неблагоприятных для него условиях.

Адаптация является одним из важнейших механизмов, который повышает устойчивость биологической системы, в том числе растительного организма, в изменившихся условиях существования. Чем лучше организм адаптирован к какому-то фактору, тем он устойчивее к его колебаниям.

Генотипически обусловленная способность организма изменять метаболизм в определенных пределах в зависимости от действия внешней среды называется нормой реакции . Она контролируется генотипом и свойственна всем живым организмам. Большинство модификаций, которые возникают в пределах нормы реакции, имеют адаптивное значение. Они соответствуют изменениям среды обитания и обеспечивают лучшую выживаемость растений при колебаниях условии окружающей среды. В этой связи такие модификации имеют эволюционное значение. Термин «норма реакции» введен В.Л. Йогансеном (1909).

Чем больше способность вида или сорта модифицироваться в соответствии с окружающей средой, тем шире его норма реакции и выше способность к адаптации. Это свойство отличает устойчивые сорта сельскохозяйственных культур. Как правило, несильные и кратковременные изменения факторов внешней среды не приводят к существенным нарушениям физиологических функций растений. Это обусловлено их способностью сохранять относительное динамическое равновесие внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. В то же время резкие и продолжительные воздействия приводят к нарушению многих функций растения, а нередко и к его гибели.

Адаптация включает в себя все процессы и приспособления (анатомические, морфологические, физиологические, поведенческие и др.), которые способствуют повышению устойчивости и способствуют выживанию вида.

1. Анатомо-морфологические приспособления . У некоторых представителей ксерофитов длина корневой системы достигает несколько десятков метров, что позволяет растению использовать грунтовую воду и не испытывать недостатка влаги в условиях почвенной и атмосферной засухи. У других ксерофитов наличие толстой кутикулы, опушенность листьев, превращение листьев в колючки уменьшают потери воды, что очень важно в условиях недостатка влаги.

Жгучие волоски и колючки защищают растения от поедания животными.

Деревья в тундре или на больших горных высотах имеют вид приземистых стелющихся кустарников, зимой они засыпаются снегом, который защищает их от сильных морозов.

В горных районах с большими суточными колебаниями температуры растения часто имеют форму распластанных подушек с плотно расположенными многочисленными стеблями. Это позволяет сохранять внутри подушек влагу и относительно равномерную в течение суток температуру.

У болотных и водных растений формируется специальная воздухоносная паренхима (аэренхима), которая является резервуаром воздуха и облегчает дыхание частей растения, погруженных в воду.

2. Физиолого-биохимические приспособления . У суккулентов приспособлением для произрастания в условиях пустынь и полупустынь является усвоение СО 2 в ходе фотосинтеза по CAM-пути. У этих растений устьица днем закрыты. Таким образом, растение сохраняет внутренние запасы воды от испарения. В пустынях вода является главным фактором, ограничивающим рост растений. Устьица открываются ночью, и в это время происходит поступление СО 2 в фотосинтезирующие ткани. Последующее вовлечение СО 2 в фотосинтетический цикл происходит днем уже при закрытых устьицах.

К физиолого-биохимическим приспособлениям относятся способность устьиц открываться и закрываться, в зависимости от внешних условий. Синтез в клетках абсцизовой кислоты, пролина, защитных белков, фитоалексинов, фитонцидов, повышение активности ферментов, противодействующих окислительному распаду органических веществ, накопление в клетках сахаров и ряд других изменений в обмене веществ содействует повышению устойчивости растений к неблагоприятным условиям внешней среды.

Одна и та же биохимическая реакция может осуществляться несколькими молекулярными формами одного и того же фермента (изоферментами), при этом каждая изоформа проявляет каталитическую активность в относительно узком диапазоне некоторого параметра окружающей среды, например температуры. Наличие целого ряда изоферментов позволяет растению осуществлять реакцию в значительно более широком диапазоне температур, по сравнению с каждым отдельным изоферментом. Это дает возможность растению успешно выполнять жизненные функции в изменяющихся температурных условиях.

3. Поведенческие приспособления, или избегание действия неблагоприятного фактора . Примером могут служить эфемеры и эфемероиды (мак, звездчатка, крокусы, тюльпаны, подснежники). Они проходят весь цикл своего развития весной за 1,5-2 месяца, еще до наступления жары и засухи. Таким образом, они как бы уходят, или избегают попадания под влияние стрессора. Подобным образом раннеспелые сорта сельскохозяйственных культур формируют урожай до наступления неблагоприятных сезонных явлений: августовских туманов, дождей, заморозков. Поэтому селекция многих сельскохозяйственных культур направлена на создание раннеспелых сортов. Многолетние растения зимуют в виде корневищ и луковиц в почве под снегом, защищающим их от вымерзания.

Адаптация растений к неблагоприятным факторам осуществляется одновременно на многих уровнях регуляции — от отдельной клетки до фитоценоза. Чем выше уровень организации (клетка организм, популяция) тем большее число механизмов одновременно участвует в адаптации растений к стрессам.

Регуляция метаболических и адаптационных процессов внутри клетки осуществляется с помощью систем: метаболической (ферментативной); генетической; мембранной. Эти системы тесно связаны между собой. Так, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Синтез ферментов и их активность контролируются на генетическом уровне, в то же время ферменты регулируют нуклеиновый обмен в клетке.

На организменном уровне к клеточным механизмам адаптации добавляются новые, отражающие взаимодействие органов. В неблагоприятных условиях растения создают и сохраняют такое количество плодоэлементов, которое в достаточном количестве обеспечено необходимыми веществами, чтобы сформировать полноценные семена. Например, в соцветиях культурных злаков и в кронах плодовых деревьев в неблагоприятных условиях более половины заложившихся завязей могут опасть. Такие изменения основаны на конкурентных отношениях между органами за физиологически активные и питательные вещества.

В условиях стрессов резко ускоряются процессы старения и опадения нижних листьев. При этом нужные растениям вещества перемещаются из них в молодые органы, отвечая стратегии выживания организма. Благодаря реутилизации питательных веществ из нижних листьев сохраняются жизнеспособными более молодые — верхние листья.

Действуют механизмы регенерации утраченных органов. Например, поверхность ранения покрывается вторичной покровной тканью (раневой перидермой), рана на стволе или ветке зарубцовывается наплывами (каллюсами). При утрате верхушечного побега у растений пробуждаются спящие почки и усиленно развиваются боковые побеги. Весеннее восстановление листьев вместо опавших осенью — это также пример естественной регенерации органов. Регенерация как биологическое приспособление, обеспечивающее вегетативное размножение растений отрезками корня, корневища, слоевища, стеблевыми и листовыми черенками, изолированными клетками, отдельными протопластами, имеет большое практическое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и пр.

В процессах защиты и адаптации на уровне растения участвует и гормональная система. Например, при действии неблагоприятных условий в растении резко возрастает содержание ингибиторов роста: этилена и абсциссой кислоты. Они снижают обмен веществ, тормозят ростовые процессы, ускоряют старение, опадение органов, переход растения в состояние покоя. Торможение функциональной активности в условиях стресса под влиянием ингибиторов роста является характерной для растений реакцией. Одновременно с этим в тканях снижается содержание стимуляторов роста: цитокинина, ауксина и гиббереллинов.

На популяционном уровне присоединяется отбор, который приводит к появлению более приспособленных организмов. Возможность отбора определяется существованием внутрипопуляционной изменчивости устойчивости растений к разным факторам внешней среды. Примером внутрипопуляционной изменчивости по устойчивости может служить недружность появления всходов на засоленной почве и увеличение варьирования сроков прорастания при усилении действия стрессора.

Вид в современном представлении состоит из большого числа биотипов — более мелких экологических единиц, генетически одинаковых, но проявляющих разную устойчивость к факторам внешней среды. В различных условиях не все биотипы одинаково жизненны, и в результате конкуренции остаются лишь те из них, которые наиболее отвечают данным условиям. То есть, устойчивость популяции (сорта) к тому или иному фактору определяется устойчивостью составляющих популяцию организмов. Устойчивые сорта имеют в своем составе набор биотипов, обеспечивающих хорошую продуктивность даже в неблагоприятных условиях.

Вместе с тем, в процессе многолетнего культивирования у сортов изменяется состав и соотношение биотипов в популяции, что отражается на продуктивности и качестве сорта, часто не в лучшую сторону.

Итак, адаптация включает в себя все процессы и приспособления, повышающие устойчивость растений к неблагоприятным условиям среды (анатомические, морфологические, физиологические, биохимические, поведенческие, популяционные и др.)

Но для выбора наиболее эффективного пути адаптации главным является время, в течение которого организм должен приспособиться к новым условиям.

При внезапном действии экстремального фактора ответ не может быть отложен, он должен последовать незамедлительно, чтобы исключить необратимые повреждения растения. При длительных воздействиях небольшой силы адаптационные перестройки происходят постепенно, при этом увеличивается выбор возможных стратегий.

В этой связи различают три главные стратегии адаптации: эволюционные , онтогенетические и срочные . Задача стратегии — эффективное использование имеющихся ресурсов для достижения основной цели — выживания организма в условиях стресса. Стратегия адаптации направлена на поддержание структурной целостности жизненно важных макромолекул и функциональной активности клеточных структур, сохранение систем регуляции жизнедеятельности, обеспечение растений энергией.

Эволюционные, или филогенетические адаптации (филогенез — развитие биологического вида во времени) — это адаптации, возникающие в ходе эволюционного процесса на основе генетических мутаций, отбора и передающиеся по наследству. Они являются наиболее надежными для выживания растений.

У каждого вида растений в процессе эволюции выработались определенные потребности к условиям существования и приспособленность к занимаемой им экологической нише, стойкое приспособление организма к среде обитания. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в результате длительного действия соответствующих условий. Так, теплолюбивые и короткодневные растения характерны для южных широт, менее требовательные к теплу и длиннодневные растения — для северных. Хорошо известны многочисленные эволюционные адаптации к засухе растений-ксерофитов: экономное расходование воды, глубоко залегающая корневая система, сбрасывание листьев и переход в состояние покоя и другие приспособления.

В этой связи сорта сельскохозяйственных растений проявляют устойчивость именно к тем факторам внешней среды, на фоне которых проводится селекция и отбор продуктивных форм. Если отбор проходит в ряде последовательных генераций на фоне постоянного влияния какого-либо неблагоприятного фактора, то устойчивость сорта к нему может быть существенно увеличена. Закономерно, что сорта селекции НИИ сельского хозяйства Юго-Востока (г. Саратов), более устойчивы к засухе, чем сорта, созданные в селекционных центрах Московской области. Таким же путем в экологических зонах с неблагоприятными почвенноклиматическими условиями сформировались устойчивые местные сорта растений, а эндемичные виды растений устойчивы именно к тому стрессору, который выражен в ареале их обитания.

Характеристика устойчивости сортов яровой пшеницы из коллекции Всероссийского института растениеводства (Семенов и др., 2005)

Сорт Происхождение Устойчивость
Энита Подмосковье Средне засухоустойчивый
Саратовская 29 Саратовская обл. Засухоустойчивый
Комета Свердловская обл. Засухоустойчивый
Каразино Бразилия Кислотоустойчивый
Прелюдия Бразилия Кислотоустойчивый
Колониас Бразилия Кислотоустойчивый
Тринтани Бразилия Кислотоустойчивый
ППГ-56 Казахстан Солеустойчивый
Ошская Киргизия Солеустойчивый
Сурхак 5688 Таджикистан Солеустойчивый
Мессель Норвегия Соленеустойчивый

В природной обстановке условия среды обычно изменяются очень быстро, и времени, в течение которого стрессовый фактор достигает повреждающего уровня, недостаточно для формирования эволюционных приспособлений. В этих случаях растения используют не постоянные, а индуцируемые стрессором защитные механизмы, формирование которых генетически предопределено (детерминировано).

Онтогенетические (фенотипические) адаптации не связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода адаптаций требует сравнительно много времени, поэтому их называют долговременными адаптациями. Одним из таких механизмов является способность ряда растений формировать водосберегающий путь фотосинтеза CAM-типа в условиях водного дефицита, вызванного засухой, засолением, действием низких температур и других стрессорами.

Эта адаптация связана с индукцией экспрессии «неактивного» в нормальных условиях гена фосфоенолпируваткарбоксилазы и генов других ферментов CAM-пути усвоения СО 2 , с биосинтезом осмолитов (пролина), с активацией антиоксидантных систем и изменением суточных ритмов устьичных движений. Все это приводит к очень экономному расходованию воды.

У полевых культур, например, у кукурузы, аэренхима в обычных условиях произрастания отсутствует. Но в условиях затопления и недостатка в тканях кислорода в корнях у нее происходит гибель части клеток первичной коры корня и стебля (апоптоз, или программируемая смерть клеток). На их месте образуются полости, по которым кислород из надземной части растения транспортируется в корневую систему. Сигналом для гибели клеток является синтез этилена.

Срочная адаптация происходит при быстрых и интенсивных изменениях условий обитания. В основе ее лежит образование и функционирование шоковых защитных систем. К шоковым защитным системам относятся, например, система белков теплового шока, которая образуется в ответ на быстрое повышение температуры. Эти механизмы обеспечивают кратковременные условия выживания при действии повреждающего фактора и тем самым создают предпосылки для формирования более надежных долговременных специализированных механизмов адаптации. Примером специализированных механизмов адаптации является новообразование антифризных белков при низких температурах или синтез сахаров в процессе перезимовки озимых культур. Вместе с тем, если повреждающее действие фактора превышает защитные и репарационные возможности организма, то неминуемо наступает смерть. В этом случае организм погибает на этапе срочной или на этапе специализированной адаптации в зависимости от интенсивности и продолжительности действия экстремального фактора.

Различают специфические и неспецифические (общие) ответные реакции растений на стрессор.

Неспецифические реакции не зависят от природы действующего фактора. Они одни и те же при действии высокой и низкой температуры, недостатка или избытка влаги, высокой концентрации солей в почве или вредных газов в воздухе. Во всех случаях в клетках растений повышается проницаемость мембран, нарушается дыхание, возрастает гидролитический распад веществ, увеличивается синтез этилена и абсцизовой кислоты, тормозится деление и растяжение клеток.

В таблице представлен комплекс неспецифических изменений, протекающих у растений под влиянием различных факторов внешней среды.

Изменение физиологических параметров у растений под действием стрессовых условий (по Г.В, Удовенко, 1995)

Параметры Характер изменения параметров в условиях
засухи засоления высокой температуры низкой температуры
Концентрация ионов в тканях Растет Растет Растет Растет
Активность воды в клетке Падает Падает Падает Падает
Осмотический потенциал клетки Растет Растет Растет Растет
Водоудерживающая способность Растет Растет Растет
Водный дефицит Растет Растет Растет
Проницаемость протоплазмы Растет Растет Растет
Интенсивность транспирации Падает Падает Растет Падает
Эффективность транспирации Падает Падает Падает Падает
Энергетическая эффективность дыхания Падает Падает Падает
Интенсивность дыхания Растет Растет Растет
Фотофосфорилирование Снижается Снижается Снижается
Стабилизация ядерной ДНК Растет Растет Растет Растет
Функциональнаяя активность ДНК Снижается Снижается Снижается Снижается
Концентрация пролина Растет Растет Растет
Содержание водорастворимых белков Растет Растет Растет Растет
Синтетические реакции Подавлены Подавлены Подавлены Подавлены
Поглощение ионов корнями Подавлено Подавлено Подавлено Подавлено
Транспорт веществ Подавлен Подавлен Подавлен Подавлен
Концентрация пигментов Падает Падает Падает Падает
Деление клеток Тормозится Тормозится
Растяжение клеток Подавлено Подавлено
Число плодоэлементов Снижено Снижено Снижено Снижено
Старение органов Ускорено Ускорено Ускорено
Биологический урожай Понижен Понижен Понижен Понижен

Исходя из данных таблицы видно, что устойчивость растений к нескольким факторам сопровождается однонаправленными физиологическими изменениями. Это дает основание считать, что повышение устойчивости растений к одному фактору может сопровождаться повышением устойчивости к другому. Это подтверждено экспериментами.

Опытами в Институте физиологии растений РАН (Вл. В. Кузнецов и др.) показано, что кратковременная тепловая обработка растений хлопчатника сопровождается повышением их устойчивости к последующему засолению. А адаптация растений к засолению приводит к повышению их устойчивости к высокой температуре. Тепловой шок повышает способность растений приспосабливаться к последующей засухе и, наоборот, в процессе засухи повышается устойчивость организма к высокой температуре. Кратковременное воздействие высокой температурой повышает устойчивость к тяжелым металлам и УФ-Б облучению. Предшествующая засуха способствует выживанию растений в условиях засоления или холода.

Процесс повышения устойчивости организма к данному экологическому фактору в результате адаптации к фактору иной природы называется кросс-адаптацией .

Для изучения общих (неспецифических) механизмов устойчивости большой интерес представляет ответ растений на факторы, вызывающие у растений водный дефицит: на засоление, засуху, низкие и высокие температуры и некоторые другие. На уровне целого организма все растения реагируют на водный дефицит одинаково. Характерно угнетение роста побегов, усиление роста корневой системы, синтеза абсцизовой кислоты, снижение устьичной проводимости. Спустя некоторое время, ускоренно стареют нижние листья, и наблюдается их гибель. Все эти реакции направлены на снижение расходования воды за счет сокращения испаряющей поверхности, а также за счет увеличения поглотительной деятельности корня.

Специфические реакции — это реакции на действие какого-либо одного стрессового фактора. Так, фитоалексины (вещества со свойствами антибиотиков) синтезируются в растениях в ответ на контакт с болезнетворными микроорганизмами (патогенами).

Специфичность или не специфичность ответных реакций, подразумевает, с одной стороны, отношение растения к различным стрессорам и, с другой стороны, характерность реакций растений различных видов и сортов на один и тот же стрессор.

Проявление специфических и неспецифических ответных реакций растений зависит от силы стресса и скорости его развития. Специфические ответные реакции возникают чаще, если стресс развивается медленно, и организм успевает перестроиться и приспособиться к нему. Неспецифические реакции обычно возникают при более кратковременном и сильном действии стрессора. Функционирование неспецифических (общих) механизмов устойчивости позволяет растению избегать больших затрат энергии для формирования специализированных (специфических) механизмов адаптации в ответ на любое отклонение от нормы условий их обитания.

Устойчивость растений к стрессовому воздействию зависит от фазы онтогенеза. Наиболее устойчивы растения и органы растений в покоящемся состоянии: в виде семян, луковиц; древесные многолетние — в состоянии глубокого покоя после листопада. Наиболее чувствительны растения в молодом возрасте, так как в условиях стресса процессы роста повреждаются в первую очередь. Вторым критическим периодом является период формирования гамет и оплодотворения. Действие стресса в этот период приводит к снижению репродуктивной функции растений и снижению урожая.

Если стрессовые условия повторяются и имеют небольшую интенсивность, то они способствуют закаливанию растений. На этом основаны методы повышения устойчивости к низким температурам, жаре, засолению, повышенному содержанию в воздухе вредных газов.

Надежность растительного организма определяется его способностью не допускать или ликвидировать сбои на разных уровнях биологической организации: молекулярном, субклеточном, клеточном, тканевом, органном, организменном и популяционном.

Для предотвращения сбоев в жизнедеятельности растений под влиянием неблагоприятных факторов используются принципы избыточности , гетерогенности функционально равнозначных компонентов , системы репарации утраченных структур .

Избыточность структур и функциональных возможностей — один из основных способов обеспечения надежности систем. Избыточность и резервирование имеет многообразные проявления. На субклеточном уровне повышению надежности растительного организма способствуют резервирование и дублирование генетического материала. Это обеспечивается, например, двойной спиралью ДНК, увеличением плоидности. Надежность функционирования растительного организма в изменяющихся условиях поддерживается также благодаря наличию разнообразных молекул информационной РНК и образованию гетерогенных полипептидов. К ним относятся и изоферменты, которые катализируют одну и ту же реакцию, но отличаются по свои физико-химическим свойствам и устойчивостью структуры молекул в изменяющихся условиях среды.

На уровне клетки пример резервирования — избыток клеточных органелл. Так, установлено, что для обеспечения растения продуктами фотосинтеза достаточно части имеющихся хлоропластов. Остальные хлоропласты как бы остаются в резерве. То же касается и общего содержания хлорофилла. Избыточность проявляется также в большом накоплении предшественников для биосинтеза многих соединений.

На организменном уровне принцип избыточности выражается в образовании и в разновременной закладке большего, чем требуется для смены поколений, числа побегов, цветков, колосков, в огромном количестве пыльцы, семязачатков, семян.

На популяционном уровне принцип избыточности проявляется в большом числе особей, различающихся по устойчивости к тому или иному стрессовому фактору.

Системы репарации также работают на разных уровнях — молекулярном, клеточном, организменном, популяционном и биоценотическом. Репаративные процессы идут с затратой энергии и пластических веществ, поэтому репарация возможна только при сохранении достаточной интенсивности обмена веществ. Если обмен веществ прекращается, то прекращается и репарация. В экстремальных условиях внешней среды особенно большое значение имеет сохранение дыхания, так как именно дыхание обеспечивает энергией репарационные процессы.

Восстановительная способность клеток адаптированных организмов определяется устойчивостью их белков к денатурации, а именно устойчивостью связей, которые определяют вторичную, третичную и четвертичную структуру белка. Например, устойчивость зрелых семян к высоким температурам, как правило, связана с тем, что после обезвоживания их белки приобретают устойчивость к денатурации.

Главным источником энергетического материала как субстрата дыхания является фотосинтез, поэтому от устойчивости и способности фотосинтетического аппарата восстанавливаться после повреждений зависит энергообеспечение клетки и связанные с ним репарационные процессы. Для поддержания фотосинтеза в экстремальных условиях в растениях активизируется синтез компонентов мембран тилакоидов, происходит торможение окисления липидов, восстанавливается ультраструктура пластид.

На организменном уровне примером регенерации может служить развитие замещающих побегов, пробуждение спящих почек при повреждении точек роста.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Поведенческие адаптации - это выработанные в процессе эволюции особ-ти поведения, позволяющие приспособиться и выжить в опр условиях среды.

Типичный пример - зимний сон у медведя.

Также примерами могут служить 1)создание убежищ, 2)передвижение с целью выбора опт температурных условий, особенно в усл-х экстремальных t. 3)процесс выслеживания и преследования добычи у хищников, а у жертв - в опр ответных реакциях (например затаивание).

Обычный для животных способ приспособления к неблагоприятным периодам - миграция.(сайгаки ежегодно уходят на зиму в малоснежные южные полупустыни, где зимние травы в связи с сухостью климата более питательны и доступны. Однако летом травостои полупустынь быстро выгорают, поэтому на период размножения сайгаки переходят в более влажные северные степи).

Примеры : 4)поведение при поиске пищи и полового партнера, 5)спаривание, 6)выкармливание потомства, 7)избегание опасности и защита жизни в случае угрозы, 8)агрессия и угрожающие позы, 9)заботу о потомстве, которая повышает вероятность выживания детёнышей, 10)объединение в стаи, 11)имитация ранения или смерти в случае угрозы нападения.

21.Жизненные формы, как рез-т приспособления организмов к действию комплекса экологических ф-ров. Классификация жизненных форм растений по К.Раункиеру, И.Г.Серебрякову, животных по Д.Н.Кашкарову.

Термин «жизненная форма» был введен в 80-х Е. Вармингом. Он понимал под жизненной формой «форму, в которой вегетативное тело растения (индивида) находится в гармонии с внешней средой в течение всей его жизни, от колыбели до гроба, от семени до отмирания». Это очень глубокое опр-ние.

Жизненные формы как типы приспособительных структур демонстрируют :1)разнообразие путей приспособления разных видов растений даже к одним и тем же условиям,

2)возможность сходства этих путей у растений совершенно неродственных, принадлежащих к разным видам, родам, семействам.

->Классификация жизненных форм основана на стр-ре вегетативных органов и отражает IIи конвергентные пути экологической эволюции.

По Раункиеру: применил свою систему для выясн-я взаимосвязи жизненных форм растений и климата.

Он выделил важный признак, хар-щий приспособление растений к перенесению неблагоприятного времени года - холодного или сухого.

Этот признак - положение почек возобновления на растении по отношению к уровню субстрата и снегового покрова. Раункиер связал это с защитой почек в неблагоприятное время года.

1)фанерофиты - почки зимуют или переносят засушливый период «открыто», высоко над землей (деревья, кустарники, деревянистые Лианы, эпифиты).


-> они обычно защищены спец почечными чешуями, имеющими ряд приспособлений для сохранения конуса нарастания и молодых зачатков листьев, заключенных в них от потери влаги.

2)хамефиты - почки располагаются почти па уровне почвы или не выше 20-30 см над ней (кустарнички, полукустарнички, стелющиеся растения). В холодном и умер климате эти почки очень часто получают зимой дополнительную защиту, помимо собственных почечных чешуи: они зимуют под снегом.

3)криптофиты - 1) геофиты -почки находятся в земле на некоторой глубине (они подразделяются на корневищные, клубневые, луковичные),

2) гидрофиты- почки зимуют под водой.

4)гемикриптофиты - обычно травянистые растения; их почки возобновления нах-ся на уровне почвы или погружены очень неглубоко, в подстилку, образуемую листовым отпадом,- еще один дополнительный «покров» для почек. Среди гемикриптофитов Раункиер различает «иротогеиикриптофиты » с удлиненными побегами, ежегодно отмирающими до основания, где распол-ся почки возобновления, и розеточные гемикриптофиты , у которых укороченные побеги могут зимовать на уровне почвы целиком.

5)терофиты - особая группа; это однолетники, у которых все вегетативные части отмирают к концу сезона и зимующих почек не остается,- эти растения возобновляются на след год из семян, перезимовывающих или переживающих сухой период на почве или в почве.

По Серебрякову:

Использовав и обобщив предложенные в разное время класс-ции, он предложил называть жизненной формой своеобразный габитус – (хар-ная форма, внешний вид орг-ма) опргрупп растений, возникающий в рез-те роста и развития в опр усл-х – как выражение приспособленности к этим условиям.

Основа своей классификации - признак продолжительности жизни всего растения и его скелетных осей.

А. Древесные растения

1.Деревья

2.Кустарники

3.Кустарнички

Б. Полудревесные растения

1.Полукустарники

2.Полукустарнички

В. Наземные травы

1.Поликарпические травы (многолетние травы, цветут много раз)

2.Монокарпические травы (живут несколько лет, цветут один раз и отмирают)

Г. Водные травы

1.Земноводные травы

2.Плавающие и подводные травы

Жизненная форма дерева оказывается выр-ем приспособления кнаибблагоприятным для роста условиям.

Влесах влажных тропиков - больше всего видов деревьев (до 88% в амазонской области Бразилии), а в тундре и высокогорьях настоящих деревьев нет. В области таежных лесов деревья представлены всего несколькими видами. Не более 10–12% от общего числа видов составляют деревья и во флоре умеренной лесной зоны Европы .

По Кашкарову:

I. Плавающие формы.

1. Чисто водные:а) нектон; б) планктон; в) бентос.

2. Полуводные:

а) ныряющие; б) не ныряющие; в) лишь добывающие из воды пищу.

II. Роющие формы.

1.Абсолютные землерои (всю жизнь проводящие под землей).

2.Относительные землерои (выходящие на поверхность).

III. Наземные формы.

1. Не делающие нор: а) бегающие; б) прыгающие; в) ползающие.

2. Делающие норы:а) бегающие; б) прыгающие; в) ползающие.

3. Животные скал.

IV. Древесные лазающие формы.

1.Не сходящие с деревьев.

2.Лишь лазающие по деревьям.

V. Воздушные формы.

1.Добывающие пищу в воздухе.

2.Выискивающие пищу с воздуха.

Во внешнем облике птиц в знач мере проявляются приуроченность их к опртипам местообитаний и характер передвижения при добывании пищи.

1) древесной растительности;

2) открытых пространств суши;

3) болот и отмелей;

4) водных пространств.

В каждой из данных групп выделяют специфические формы:

а) доб-щие пищу с помощью лазания (голуби, попугаи, дятловые, воробьиные)

б) добывающие пищу в полете (длиннокрылые, в лесах - совы, козодои, над водой - трубконосые);

в) кормящееся при передвижении по земле (на открытых пространствах - журавлиные, страусы; лесные - большинство куриных; на болотах и отмелях - некоторые воробьиные, фламинго);

г) добывающие пищу с помощью плавания и ныряния (гагары, веслоногие, гусиные, пингвины).

22.Основные среды жизни и их характеристика: наземно-воздушная и водная .

Наземно-воздушная - обитает большинство животных и растений.
Она хар-ся 7 основными абиотическими факторами:

1.Низкая плотность воздуха затрудняет поддерж формы тела и провоцирует образ-е опорной системы.

ПРИМЕР: 1.Водные растения не имеют механич тканей: они появляются только у наземных форм. 2.У животных обязательно имеется скелет: гидроскелет (у круглых червей), или наружный скелет (у насекомых), или внутренний (у млекопитающих).

Малая плотность среды облегчает передвижение животных. Многие наземные виды способны к полету .(птицы и насекомые, но есть и млекопит, амфибии и рептилии). Полет связан с поиском добычи или расселением. Обитатели суши разм-ся только на Земле, которая служит им опорой и местом прикрепления. В связи с активным полетом у таких организмов модифицированы передние конечности и развиты грудные мышцы .

2) Подвижность воздушных масс

*обеспечивает сущ-е аэропланктона. В его состав входит пыльца, семена и плоды растений, мелкие насекомые и паукообразные, споры грибов, бактерий и низших растений.

Эта экологгруппа орг-в адаптировалась благодаря большой отнSпов-ти крыльев, выростов, паутины, либо за счет очень мелких размеров.

* способ опыления растений ветром - анемофилия - хар-н для берез, елей, сосен, крапивы, злаков и осок.

*расселение с помощью ветра: тополя, березы, ясени, липы, одуванчики и др. Семена этих растений имеют парашютики (одуванчики) или крылышки (клен).

3) Низкое давление , норма=760 мм. Перепады давления, по ср-ю с водной средой обитания, очень малы; так, на h=5800 м оно составляет лишь половину своей нормальной величины.

=>почти все обитатели суши чувствительны к сильным перепадам давления, т. е. являются стенобио́нтами по отношению к этому фактору.

Верхняя граница жизни для большинства позвоночных -6000 м, т.кс высотой падает давление , а значит и уменьшается растворимость о в в крови. Для сохранения постоянной концентрации О 2 в крови частота дыхания должна увеличиваться. Однако, мы выдыхаем не только СО 2 , но и водяные пары, поэтому частое дыхание должно неизменно приводить к обезвоживанию орг-ма. Эта простая зависимость не хар-на только для редких видов организмов: птиц и некоторых беспозвоночных, клещей, пауков и ногохвостков.

4) Газовый состав отличается высоким содержанием О 2: оно более чем в 20 раз выше, чем в водной среде. Это позволяет животным иметь очень высокий уровень обмена веществ. Поэтому только на суше могла возникнуть гомойоте́рмность - способность поддерживать постоянную t тела за счет внутренней энергии. Благодаря гомойтермности птицы и млекопитающие могут сохранять жизненную активность в самых суровых условиях

5) Почва и рельеф очень важны, прежде всего, для растений.Для животных более важна структура почвы, нежели ее хим состав.

*Для копытных, совершающих длитмиграции по плотному грунту, адаптацией явл-ся уменьшение кол-ва пальцев и =>уменьшение Sпов-ти опоры.

*Для обитателей сыпучих песков хар-но увеличение Sпов-ти опоры (вееропалый геккон).

*Плотность грунта важна и для норных животных: луговых собачек, сурков, песчанок и других; у некоторых из них развиваются копательные конечности.

6) Значительный дефицит воды на суше провоцирует развитие разнообразных адаптаций, направленных на экономию воды в организме :

Развитие органов дыхания, способных поглощать О 2 из воздушной среды покровов (легкие, трахеи, легочные мешки)

Развитие водонепроницаемых покровов

Изм-е выделитсистемы и продуктов обмена (мочевины и мочевой кислоты)

Внутреннее оплодотворение.

Помимо обеспечения водой, осадки играют и экологическую роль.

*Снег знач уменьшает колебания t на глуб от 25 см. Глубокий снег защищает почки растений. Для тетеревов, рябчиков и тундряных куропаток сугробы -место ночевки, т.е при 20–30 o мороза на глубине 40 смtсохр-ся ~0 °С.

7) Температурный режим более изменчив, чем водной. ->многие обитатели суши эврибио́нтны к этому ф-ру, т. е. способны сущ-ть в широком диапазоне tи демонстрируют весьма различные способы терморегуляции.

Многие виды животных, обитающих в районах, где зимы снежные, осенью линяют, меняя цвет шерсти или перьев на белый. Возможно, такая сезонная линька птиц и зверей также является адаптацией - маскирующей окраской, что характерно для зайца-беляка, ласки, песца, тундряной куропатки и других. Однако, не все белые животные сезонно меняют окраску, что напоминает нам о неопр изм-ти и невозможности рассматривать все св-ва организма как полезные или вредные.

Водная . Вода покрывает 71% S земного или 1370 м3. Осн масса воды - в морях и океанах – 94-98%, в полярных льдах содержится около 1,2% воды и совсем малая доля – менее 0,5%, в пресных водах рек, озер и болот.

В водной среде обитает около 150 000 видов животных и 10 000 растений, что составляет всего 7 и 8 % от общего числа видов Земли. Т.О на суше эволюция шла намного интенсивнее, чем в воде.

В морях-океанах, как в горах, выражена вертикальная зональность .

Всех обитателей водной среды можно разделить на три группы.

1) Планктон - бесчисленные скопления крошечных орг-мов, которые не могут самост двигаться и переносятся течениями в пов-ном слое морской воды.

Он состоит из раст и живорганизмов- веслоногие рачки, икра и личинки рыб и головоногих моллюсков, +одноклеточные водоросли.

2) Нектон - большое число орг-в свободно плавающих в толще мирового океана. Самые крупные из них - голубые киты и гигантская акула, питающиеся планктоном. Но есть среди обитателей толщи воды и опасные хищники.

3) Бентос - обитатели дна. Некоторые глубоководные обитатели лишены органов зрения, но больш-во может видеть и при тусклом свете. Многие обитатели ведут прикрепленный образ жизни.

Приспособления гидробионтов к высокой плотности воды:

У воды высокая плотность (в 800 раз >плотности воздуха) и вязкость.

1) У растений очень слабо развиты или отсутствуют механические ткани – им опора сама вода. Большинству свойственна плавучесть. Хар-но активное вегетативное размножение, развитие гидрохории – вынос цветоносов над водой и распространение пыльцы, семян и спор поверхностными течениями.

2)Тело имеет обтекаемую форму и смазано слизью, уменьшающей трение при передвижении. Развиты приспособления для повышения плавучести: скопления жира в тканях, плавательные пузыри у рыб.

У пассивно плавающих животных - выросты, шипы, придатки; тело уплощается, происходит редукция скелетных органов.

Разные способы передвижения: изгибание тела, с помощью жгутиков, ресничек, реактивный способ передвижения (головомоллюски).

У придонных животных исчезает или слабо развит скелет, увеличиваются размеры тела, обычна редукция зрения, развитие осязательных органов.

Приспособления гидробионтов к подвижности воды:

Подвижность обусловлена приливами и отливами, морскими течениями, штормами, разными уровнями высотных отметок русел рек.

1) В проточных водоемах растения и животные прочно прикрепляются к неподвижным подводным предметам . Донная поверхность для них в первую очередь – субстрат. Это зеленые и диатомовые водоросли, водяные мхи. Из животных - брюхоногие моллюски, усоногие раки +прячутся в щелях.

2) Разл формы тела. У рыб проточ вод тело в поперечнике круглое, а у рыб, обит-х у дна- тело плоское.

Приспособления гидробионтов к солености воды:

Природным водоемам свойствен определенный химсостав. (карбонаты, сульфаты, хлориды). В пресных водоемах концентрация солей не >0,5 г/, в морях – от 12 до 35 г/л (промилле). При солености более 40 промилле водоем называют гипергалинным или пересоленным.

1) пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны .

*В соленой воде (изотоническая среда) конц-ция солей в телах и тканях гидробионтов одинакова с конц-цией солей, растворенных в воде – они пойкилоосмотичны . ->у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.

2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью , поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат для прикрепления к подводному субстрату.

Типично морские и типично пресноводные видыстеногалинные, не переносят знач изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (щука, лещ, кефаль, приморские лососи).

Приспособление гидробионтов к составу газов в воде:

В воде О 2 - важнейший экологический фактор. Источник его – атм-ра и фотосинтезирующие растения.

При перемешивании воды и при уменьшении t содержание О 2 возрастает. *Некоторые рыбы очень чувствительны к дефициту О 2 (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи.

*Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию О 2 и могут жить на дне глубоких водоемов.

*Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию О 2 в воде, т.к они время от времени поднимаются к пове-ти и заглатывают свежий воздух.

Углекислого газа в воде достаточно – почти в 700 раз >, чем в воздухе. Он исп-ся в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков).






Частным случаем криптической окраски является окраска по принципу противотени. У водных организмов она проявляется чаще, т.к. свет в водной среде падает только сверху. Принцип противотени предполагает более темную окраску верхней части тела и более светлую - нижней (на нее падает тень).




Расчленяющая окраска Расчленяющая окраска также представляет собой частный случай покровительственной окраски, хотя и используется несколько иная стратегия. В этом случае на теле имеются яркие, контрастные полосы или пятна. Издалека хищнику очень трудно различить границы тела потенциальной жертвы.







Предостерегающая окраска Такой вид защитной окраски присущ защищенным животным (как, например, этому голожаберному моллюску, использующему для защиты от врагов азотную кислоту). Яд, жало или другие способы защиты делают животное несъедобным для хищника, а окраска служит для того, чтобы вид объекта сохранился в памяти хищника в сочетании с теми неприятными ощущениями, которые тот испытал при попытке съесть животное.




Угрожающая окраска В отличие от предостерегающей окраски, угрожающая окраска присуща незащищенным, съедобным с точки зрения хищника организмам. Эта окраска не видна все время, в отличие от предостерегающей, она внезапно демонстрируется атакующему хищнику с целью дезориентировать его. Считается, что «глаза» на крыльях многих бабочек служат именно для этой цели.




Мимикрия Под термином «мимикрия» объединяется целый ряд разных форм защитных окрасок, общим для которых есть сходство, организмов, подражание по окраске одних существ другим. Виды мимикрии: 4 Классическая мимикриямимикрия Бейтса 4 Классическая мимикрия, или мимикрия Бейтса - подражание незащищенного организма защищенному; 4 Мимикрия Мюллера 4 Мимикрия Мюллера - сходня окраска («реклама») у ряда видов защищенных организмов; 4 Мимезия 4 Мимезия - подражание неживым предметам; 4 Коллективная мимикрия 4 Коллективная мимикрия - создание общего образа группой организмов; 4 Агрессивная мимикрия 4 Агрессивная мимикрия - элементы подражания у хищника с целью привлечения жертвы.


Классическая мимикрия, или мимикрия Бейтса (бейтсовская мимикрия) Незащищенный (уже - съедобный) организм подражает по окраске защищенному (несъедобному). Таким образом имитатором эксплуатируется стереотип, сформированный в памяти хищника контактом с моделью (защищенным организмом). На фотографии - муха- журчалка, подражающая по окраске и форме тела осе.


Мимикрия Мюллера (мюллеровская мимикрия) В этом случае ряд защищенных, несъедобных видов имеют сходную окраску («одна реклама на всех»). Таким образом достигается следующий эффект: с одной стороны, хищнику не надо пробовать по одному организму каждого вида, общий образ одного ошибочно съеденного животного будет достаточно прочно запечатленным. С другой стороны, хищнику не придется запоминать десятки разных вариантов яркой предостерегающей окраски разных видов. Пример - сходная окраска ряда видов Отряда перепончатокрылых.





Агрессивная мимикрия При агрессивной мимикрии хищник имеет приспособления, позволяющие ему привлекать потенциальную жертву. Примером может служить рыба-клоун, у которой на голове имеются выросты, напоминающие червячков, и к тому же способные шевелиться. Сама рабы лежит на дне (у нее великолепная криптическая окраска!) и ожидает приближения жертвы, занятой поиском пищи.


Относительный характер приспособленности Каждая из приведенных защитных окрасок адаптивна, т.е. полезна для организмов лишь в определенных условиях среды обитания. При изменении этих условий (например, цвета фона для покровительственной окраски) она может даже стать дезадаптивной, вредной. Подумайте, в каких ситуациях проявится относительный характер приспособленности при: 4п4предостерегающей окраске; 4м4мимикрии Бейтса; 4к4коллективной мимикрии?



Животные и растения вынуждены приспосабливаться ко множеству факторов, причем эти приспособления вырабатываются в процессе определенного промежутка времени, часто в процессе эволюции и естественного отбора, закрепляясь на генетическом уровне.

Адаптация (от лат. adapto - приспособляю) – приспособления строения и функций организмов к условиям среды в процессе эволюции.

При анализе организации любого животного и растения всегда обнаруживается поразительное соответствие формы и функций организма условиям среды. Так, среди морских млекопитающих дельфины обладают наиболее совершенными приспособлениями к быстрому движению в водной среде: торпедообразная форма, особое строение кожи и подкожной клетчатки, повышающее обтекаемость тела, а следовательно, и быстроту скольжения в воде.

Различают три основные формы проявления адаптаций: анатомо-морфологические, физиологические и поведенческие.

Анатомо-морфологические адаптации – это какие-то внешние и внутренние особенности в строении тех или иных органов растений и животных, позволяющие им обитать в определенной среде при определенном сочетании экологических факторов. У животных часто связаны с образом жизни, характером питания. Примеры:

· Твердый панцирь черепах, обеспечивающий защиту от хищных животных

· Дятел – долотообразный клюв, жесткий хвост, характерное расположение пальцев.

Физиологические адаптации заключаются в способности организмов изменять некоторые свои физиологические процессы при наступлении критических периодов в их жизни

· Запах цветка может служить для привлечения насекомых и тем самым способствовать опылению растения.

· Глубокий покой у многих растений, произрастающих в средних широтах северного полушария, впадение в оцепенение или в спячку у некоторых животных с наступлением холодного периода).

· Биологические антифризы, увеличивающие вязкость внутренних сред и препятствующие образованию кристаллов льда, которые разрушили бы клетки (до 10 % у муравьев, до 30 % у ос).

· В темноте чувствительность глаза к свету повышается в течение часа во много тысяч раз, что связано как с восстановлением зрит, пигментов, так и с изменениями в нервных элементах и нервных клетках коры головного мозга.

· Примером физиологических адаптаций являются также особенности ферментативного набора в пищеварительном тракте животных, определяемые набором и составом пищи. Так, обитатели пустынь способны обеспечивать свою потребность во влаге путем биохимического окисления жиров.

Поведенческие (этологические) адаптации – это формы приспособительного поведения животных. Примеры:

· Для обеспечения нормально теплообмена с окружающей средой: создание убежищ, суточные и сезонные кочевки животных с целью выбора оптимальных температурных условий.



· Колибри Oreotrochis estella , живущая в высокогорных Андах, строит гнезда на скалах, причем на стороне, обращенной к Востоку. В течение ночи камни отдают тепло, накопленное за день, тем самым обеспечивая комфортную температуру до утра.

· В районах с суровым климатом, но снежными зимами температура под снегом может быть на 15-18ºС выше внешней. Посчитано, что белая куропатка, ночуя в подснежной лунке, экономит до 45 % энергии.

· Многие животные используют групповые ночевки: пищухи род Certhia (птицы) собираются в холодную погоду группами до 20 особей. Аналогичное явление описано у грызунов.

· Приспособительное поведение может появляться у хищников в процессе выслеживания и преследования добычи.

Большинство адаптаций представляет собой сочетание перечисленных типов . Например, кровососание у комаров обеспечивается сложной комбинацией таких адаптаций, как развитие специализированных частей ротового аппарата, приспособленных к сосанию, формирование поискового поведения для нахождения животного-жертвы, а также выработка слюнными железами специальных секретов, которые предотвращают свертывание высасываемой крови.

Одно из фундаментальных свойств живой природы – это цикличность большинства происходящих в ней процессов, что обеспечивает адаптацию растений и животных при своем развитии с основным периодическим факторам. Остановимся на таком явлении в живой природе как фотопериодизм.

Фотопериодизм – реакция организмов на сезонные изменения долготы дня. Открыт В. Гарнером и Н. Аллардом в 1920 г. во время селекционной работы с табаком.

Свет оказывает ведущее влияние на проявление суточной и сезонной активности организмов. Это важный фактор, поскольку именно смена освещенности обуславливает чередование периода покоя и интенсивной жизнедеятельности, многие биологические явления у растений и животных (т.е. влияет на биоритмику организмов).

Например, до поверхности Земли доходит 43 % солнечных лучей. Растения способны улавливать от 0,1 до 1,3 %. Они поглощают желто-зеленый цвет спектра.

И сигналом о приближении зимы для растений и животных является уменьшение долготы дня. У растений происходит постепенная физиологическая перестройка, накопление запаса энергетических веществ перед зимним покоем. По фотопериодической реакции растительные организмы делятся на две группы:

· Организмы короткого дня – зацветание и плодоношение наступает при 8-12 часовом освещении (гречиха, просо, конопля, подсолнечник).

· Организмы длинного дня. На цветение и плодоношение у растений длинного дня необходимо удлинения дня до 16-20 часов (растения умеренных широт), для которых снижение долготы дня до 10-12 часов является сигналом приближения неблагоприятного осенне-зимнего периода. Это картофель, пшеница, шпинат.

· Нейтральные к длине для растения. Цветение наступает при любой длине дня. Это одуванчик, горчица и томат.

Подобное обнаруживается и у животных. В течение суток активность у каждого организма приходится на определенные часы. Механизмы, позволяющие организмам циклически менять свое состояние называются "биологическими часами".

Библиографический список к разделу

1. Гальперин, М.В. Общая экология: [учеб. для сред. проф. образования] / М.В. Гальперин. - М. : Форум: Инфра-М, 2006. – 336 с.

2. Коробкин, В.И. Экология [Текст] / В.И. Коробкин, Л.В. Передельский. – Ростов-на-Дону: Феникс, 2005. – 575 с.

3. Миркин, Б.М. Основы общей экологии [Текст] : учеб. пособие для студентов вузов, обучающихся по естественнонауч. специальностям / Б.М. Миркин, Л.Г. Наумова; [под ред. Г.С. Розенберга]. - М. : Унив. кн., 2005. – 239 с.

4. Степановских, А.С. Общая экология: [учеб. для вузов по экол. специальностям] / А.С. Степановских. - 2-е изд., доп. и перераб. - М. : ЮНИТИ, 2005. – 687 с.

5. Фуряев, В.В. Общая экология и биология: учеб. пособие для студентов специальности 320800 очн. формы обучения / В.В. Фуряев, А.В. Фуряева; Федер. агентство по образованию, Сиб. гос. технол. ун-т, Ин-т леса им. В. Н. Сукачева. - Красноярск: СибГТУ, 2006. – 100 с.

6. Голубев, А.В. Общая экология и охрана окружающей среды: [учеб. пособие для всех специальностей] / А.В. Голубев, Н.Г. Николаевская, Т.В. Шарапа; [под ред. авт.] ; Гос. образоват. учреждение высшего проф. образования "Моск. гос. ун-т леса". – М. : МГУЛ, 2005. - 162 с.

7. Коробкин, В.И. Экология в вопросах и ответах [Текст] : учеб. пособие для студентов вузов / В.И. Коробкин, Л.В. Передельский. - 2-е изд., перераб. и доп. - Ростов н/Д: Феникс, 2005. - 379 с. : схем. - Библиогр.: с. 366-368. - 103.72 р.

Контрольные вопросы к разделу 3

1. Понятие среды обитания, ее виды.

2. Что такое экологические факторы, как их классифицируют?

3. Понятие о лимитирующем факторе, примеры.

4. Закон оптимума-пессимума (рисунок). Примеры.

5. Закон взаимодействия экологических факторов. Примеры.

6. Закон толерантности (Шелфорда). Примеры.

7. Экологические правила: Д. Аллена, К. Бергмана, К. Глогера.

8. Адаптации живых организмов, их пути и формы. Примеры.

9. Фотопериодизм, биологические ритмы: понятие, примеры.


РАЗДЕЛ 4: ПОПУЛЯЦИОНННАЯ ЭКОЛОГИЯ