Можно ли настроить параллакс ближние дистанции. Измерение дистанции стрельбы коррекцией параллакса, или Что такое параллакс? Типы регулировки параллакса

Параллакс (Parallax, греч. смена, чередование ) - это изменение видимого положение объекта по отношению к удаленному фону в зависимости от нахождения наблюдателя. Первостепенно этот термин употреблялся для природных явлений, в астрономии и геодезии. Например, вот такое смещение солнца относительно столба при отражении в воде и есть параллакс в природе.

В веб-дизайне параллакс-эффект или параллакс-скроллинг - это специальная техника, когда фоновое изображение в перспективе двигается медленнее, чем элементы переднего плана. Эта технология применяется все чаще, так как выглядит действительно эффектно и круто.

Достигается такой эффект трехмерного пространства с помощью нескольких слоев, которые накладываются друг на друга и при прокручивании движутся с различной скоростью. С помощью такой технологии можно создать не только искусственный трехмерный эффект, можно применять ее к иконкам, изображениям и другим элементам страницы.

Недостатки параллакс-эффекта

Основной минус параллакса - это проблемы с производительностью сайта. Выглядит все красиво и стильно, но применение javascript /jQuery , с помощью которых и создается эффект параллакса, в значительной степени утяжеляет страницу и очень снижает скорость ее загрузки. Это происходит потому, что в его основе лежат сложные вычисления: javascript приходится контролировать положение каждого пикселя на экране. В некоторых случаях ситуация осложняется еще и проблемами с кроссбраузерностью и кроссплатформенностью. Многие разработчики рекомендуют использовать параллакс-эффект применительно к максимум двум элементам страницы.

Альтернативное решение

С появлением CSS 3 задача немного упростилась. С его помощью можно создать очень похожий эффект, который будет намного экономичнее в плане ресурсозатрат. Суть в том, что контент сайта размещается на одной странице, а перемещение по подстраницам происходит методом CSS 3-перехода. Это тот же параллакс, но с некоторым отличием: дело в том, что достичь того, чтобы перемещение осуществлялось с различной скоростью, используя только CSS 3, невозможно. Кроме того, данный стандарт поддерживается не всеми современными браузерами. Поэтому и здесь есть свои сложности.

Вывод

Эффект параллакса хоть и популярен, но далеко не все спешат его использовать при создании сайта по причине вышеозвученных проблем. Видимо, пока просто необходимо время, чтобы технологии смогли преодолеть возникшие трудности. А пока такой вариант можно использовать на сайтах-одностраничниках : так он точно запомнится и сумеет удержать пользователя.

Параллакс на javascript

  • jQuery -эффект параллакс скроллинга - плагин, которые привязывает эффект параллакс к движению колесика мыши
  • Scrolldeck - плагин для создания параллакс-эффекта
  • jParallax - превращает элементы страницы в абсолютно позиционированные слои, движущиеся в соответствии с мышкой

Вы едете в поезде и смотрите в окно… Мелькают столбы, стоящие вдоль рельсов. Медленнее убегают назад постройки, расположенные в нескольких десятках метров от железнодорожного полотна. И уже совсем медленно, нехотя отстают от поезда домики, рощи, которые вы видите вдали, где‑то у горизонта…

Почему это так происходит? На этот вопрос дает ответ рис. 1. В то время как направление на телеграфный столб при перемещении наблюдателя из первого положения во второе изменяется на большой угол P 1 направление на удаленное дерево изменится на значительно меньший угол P 2 . Скорость изменения направления на предмет при движении наблюдателя тем меньше, чем дальше от наблюдателя находится предмет. А из этого следует, что величиной углового смещения предмета, которое называют параллактическим смещением или просто параллаксом, можно характеризовать расстояние до предмета, что широко используется в астрономии.

Разумеется, обнаружить параллактическое смещение звезды, двигаясь по земной поверхности, нельзя: звезды слишком далеки, и параллаксы при таких перемещениях находятся далеко за пределами возможности их измерения. Но если попытаться измерить параллактические смещения звезд при перемещении Земли из одной точки орбиты в противоположную (т. е. повторить наблюдения с интервалом в полгода, рис. 2), то вполне можно рассчитывать на успех. Во всяком случае таким путем измерены параллаксы нескольких тысяч ближайших к нам звезд.

Параллактические смещения, измеренные с использованием годичного движения Земли по орбите, называют годичными параллаксами. Годичный параллакс звезды - это угол (π), на который изменится направление на звезду, если воображаемый наблюдатель переместится из центра Солнечной системы на земную орбиту (точнее - на среднее расстояние Земли от Солнца) в направлении, перпендикулярном направлению на звезду. Легко понять из рис. 2, что годичный параллакс можно определить и как угол, под которым со звезды видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения.

С годичным параллаксом связана и основная единица длины, принятая в астрономии для измерения расстояний между звездами и галактиками, - парсек (см. Единицы расстояний). Параллаксы некоторых ближайших звезд приведены в таблице.

Для более близких небесных тел - Солнца, Луны, планет, комет и других тел Солнечной системы - параллактическое смещение можно обнаружить и при перемещении наблюдателя в пространстве вследствие суточного вращения Земли (рис. 3). В этом случае параллакс вычисляют для воображаемого наблюдателя, перемещаемого из центра Земли в точку экватора, в которой светило находится на горизонте. Для определения расстояния до светила вычисляют угол, под которым виден со светила экваториальный радиус Земли, перпендикулярный лучу зрения. Такой параллакс называют суточным горизонтальным экваториальным параллаксом или просто суточным параллаксом. Суточный параллакс Солнца на среднем расстоянии от Земли равен 8,794″; средний суточный параллакс Луны равен 3422,6″, или 57,04′.

Как уже говорилось, годичные параллаксы непосредственным измерением параллактического смещения (так называемые тригонометрические параллаксы) можно определить только у ближайших звезд, расположенных не далее нескольких сотен парсек.

Однако изучение звезд, для которых тригонометрические параллаксы были измерены, позволило обнаружить статистическую зависимость между видом спектра звезды (её спектральным классом) и абсолютной звездной величиной (см. «Спектр-светимость» диаграмма). Распространив эту зависимость также и на звезды, для которых тригонометрический параллакс неизвестен, получили возможность по виду спектра оценивать абсолютные звездные величины звезд, а затем, сравнивая их с видимыми звездными величинами, астрономы стали оценивать и расстояния до звезд (параллаксы). Параллаксы, определенные таким методом, называются спектральными параллаксами (см. Спектральная классификация звезд).

Существует еще один метод определения расстояний (и параллаксов) до звезд, а также звездных скоплений и галактик - по переменным звездам типа цефеид (этот метод описан в статье Цефеиды) ; такие параллаксы иногда называют цефеидными параллаксами.

παραλλάξ , от παραλλαγή , «смена, чередование») - изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.

Зная расстояние между точками наблюдения D (база ) и угол смещения α в радианах, можно определить расстояние до объекта:

Для малых углов:

Отражение фонаря в воде значительно сдвинуто относительно практически не сместившегося солнца

Астрономия

Суточный параллакс

Суточный параллакс (геоцентрический параллакс) - разница в направлениях на одно и то же светило из центра масс Земли (геоцентрическое направление) и из заданной точки на поверхности Земли (топоцентрическое направление).

Из-за вращения Земли вокруг своей оси положение наблюдателя циклически изменяется. Для наблюдателя, находящегося на экваторе , база параллакса равна радиусу Земли и составляет 6371 км.

Параллакс в фотографии

Параллакс видоискателя

Параллакс видоискателя - несовпадение изображения, видимого в оптическом незеркальном видоискателе, с изображением, получаемым на фотографии. Параллакс почти незаметен, когда фотографируют удалённые объекты, и весьма значителен при съёмке близко расположенных объектов. Он возникает из-за наличия расстояния (базиса) между оптическими осями объектива и видоискателя. Величина параллакса определяется по формуле:

,

где - расстояние (базис) между оптическими осями объектива и видоискателя; - фокусное расстояние объектива фотоаппарата; - расстояние до плоскости наводки (объекта съемки).

Параллакс видоискателя (прицел)

Частным случаем является параллакс прицела. Параллакс - это не высота оси прицела над осью ствола, а погрешность расстояния между стрелком и целью.

Оптический параллакс

Параллакс дальномера

Параллакс дальномера - угол, под которым виден объект во время наводки на резкость с помощью оптического дальномера.

Стереоскопический параллакс

Стереоскопический параллакс - это угол, под которым рассматривают объект двумя глазами или когда его фотографируют стереоскопическим фотоаппаратом.

Временно́й параллакс

Временной параллакс - искажение формы объекта параллаксом, возникающим при съёмке фотоаппаратом со шторным затвором . Так как экспозиция происходит не единовременно по всей площади светочувствительного элемента, а последовательно по мере движения щели, то при съёмке быстро движущихся объектов их форма может искажаться. Например, если объект движется в ту же сторону, что и щель затвора, его изображение будет растянуто, а если в обратную, то сужено.

История

Галилео Галилей предположил, что если бы Земля вращалась вокруг Солнца, то это можно было бы заметить по непостоянству параллакса для удалённых звёзд.

Первые успешные попытки наблюдения годичного параллакса звёзд были выполнены В. Я. Струве для звезды Вега (α Лиры), результаты опубликованы в 1837 году . Однако, научно достоверные измерения годичного параллакса были впервые проведены Ф. В. Бесселем в 1838 году для звезды 61 Лебедя . Приоритет открытия годичного параллакса звёзд признается за Бесселем.

См. также

Литература

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. - М.: «Искусство», 1977.

Ссылки

  • The ABC’s of Distances - обзор об измерении расстояний до астрономических объектов.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Параллакс" в других словарях:

    - (астр.) угол, образуемый зрительными линиями, направленными на один и тот же предмет из двух различ. точек. Как скоро известен параллакс предмета и расстояние между двумя точками, из которых этот предмет наблюдался, то расстояние предмета от… … Словарь иностранных слов русского языка

    - (от греч. parallaxis отклонение) 1) видимое изменение положения предмета (тела) вследствие перемещения глаза наблюдателя.2) В астрономии видимое изменение положения небесного светила вследствие перемещения наблюдателя. Различают параллакс,… … Большой Энциклопедический словарь

    параллакс - кажущееся смещение рассматриваемого объекта при изменении угла его восприятия или перемещении точки наблюдения. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998. параллакс … Большая психологическая энциклопедия

    ПАРАЛЛАКС, угловое расстояние, на которое небесный объект кажется перемещенным по отношению к более далеким объектам, когда за ним наблюдают из противоположных концов базы. Используется для измерения расстояния до объекта. Параллакс звезды… … Научно-технический энциклопедический словарь

    ПАРАЛЛАКС, параллакса, муж. (греч. parallaxis уклонение) (астр.). Угол, измеряющий видимое смещение светила при перемещении наблюдателя из одной точки пространства в другую. Суточный параллакс (угол между направлениями на светило из данного места … Толковый словарь Ушакова

    - (от греч. parallaxis уклонение) кажущееся смещение рассматриваемого объекта при изменении угла его восприятия … Психологический словарь

    - (от греческого parallaxis уклонение) в авиации, космонавтике боковое смещение плоскости конечной орбиты летательного аппарата относительно точки старта, измеряемое обычно по дуге большого круга от точки старта летательного аппарата до следа… … Энциклопедия техники

    - (от греч. parallaxis уклонение) в астрономии изменение направления наблюдатель астр. объектпри смещении точки наблюдения, равное углу, под к рым из центра объектавидно расстояние между двумя положениями точки наблюдения. Обычно используютсяП.,… … Физическая энциклопедия

    Сущ., кол во синонимов: 1 смещение (44) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    параллакс - Видимое изменение в положении объекта по отношению к другому объекту, когда изменяется точка наблюдения … Словарь по географии

Параллакс - явление, обнаруживаемое при наблюдении окружающего пространства, заключающееся в видимом изменении положения одних неподвижных предметов относительно других, расположенных на разных расстояниях друг от друга, при перемещении глаза наблюдателя. С явлением параллакса мы встречаемся на каждом шагу. Например, выглядывая из окна вагона движущегося поезда, мы замечаем, что ландшафт, как бы вращается вокруг удалённого центра в направлении, обратном движению поезда. Близкие предметы уходят из поля зрения быстрее, чем дальние, поэтому и создается впечатление вращения ландшафта. Если предметы лежат в одной плоскости, то параллакс исчезнет, не будет различных перемещений предметов относительно друг друга при перемещении глаза.

Параллаксом в прицелах называют несовпадение плоскости изображения цели, сформированного объективом с плоскостью прицельной сетки прицела. Наклон сетки вызывает параллакс на краях поля зрения. Это называют косым параллаксом. Отсутствие в прицеле плоского изображения цели по всему полю зрения, обусловленного некачественным изготовлением линз и сборки прицела, или при значительных аберрациях оптической системы, вызывает "неустранимый параллакс". Обычно прицел изготавливается таким образом, что изображение удалённой на 100-200 м цели проецируется объективом в плоскость, где расположена прицельная сетка. В этом случае диапазон параллакса как бы располовинивается между дальними и ближними целями. При приближении цели к стрелку её изображение тоже смещается ближе к стрелку (в оптической системе цель и её изображение движутся в одну и ту же сторону). Таким образом, в общем случае для прицела характерно несовпадение изображения цели и сетки. При смещении глаза перпендикулярно оси прицела изображение цели движется в большинстве случаев в ту же сторону относительно центра сетки. Цель как бы "съезжает" с прицельной точки, при наклонах, покачивании головы "мечется" вокруг прицельной точки. Кроме того, сетка и цель не видны одновременно резко, что ухудшает комфортность прицеливания и сводит к минимуму основное преимущество телескопического прицела перед обычным. Из-за этого прицел без фокусировки на дистанцию стрельбы (без устройства устранения параллакса) позволяет осуществить высокоточный выстрел только на одной конкретной дистанции. Качественный прицел с увеличением большим, чем 4х обязательно должен иметь устройство для устранения параллакса. Без этого достаточно трудно найти и удерживать глаз в нужном положении, на линии, соединяющей прицельную метку и точку на цели, сетка в общем случае не находится в центре поля зрения. Небольшое движение прицельной сетки вместе с изображением цели можно обнаружить при покачивании головой, особенно при смещении глаза от расчетного положения выходного зрачка, что объясняется наличием дисторсии в окуляре прицела. Устранить это можно только в прицелах, имеющих параболическую линзу в окуляре. Фокусировкой прицела называют операцию установки изображения, даваемого объективом в заданную плоскость - плоскость прицельной сетки. Расчётным путём определяется зависимость между продольным сдвигом фокусирующей линзы и величиной смещения изображения. Обычно в прицелах перемещают или весь объектив или его внутренний компонент, расположенный вблизи сетки. На оправе объектива прицела наносится шкала, обозначающая дистанцию фокусировки в метрах. Переместив объектив на нужное вам деление (дистанцию стрельбы) вы устраняете параллакс. Прицел, содержащий устройство фокусировки, безусловно, более высококлассное и сложное изделие, поскольку перемещающаяся линза должна сохранять свое положение в пространстве относительно собственной оси, то есть сохранять неизменной линию визирования. Это центрирование фокусирующего компонента объектива относительно геометрической оси трубы объектива достигается за счёт соблюдения жёстких допусков при изготовлении фокусирующего компонента.

Как же узнать, исправлен ваш прицел на параллакс или нет? Очень просто. Необходимо навести центр сетки прицела на объект, находящийся на бесконечности, зафиксировать прицел, и, перемещая глаз по всему выходному зрачку прицела, наблюдать за взаимным положением изображения объекта и сетки прицела,. Если взаимное положение объекта и сетки не изменяется, то вам крупно повезло - прицел исправлен на параллакс. Люди, имеющие доступ к лабораторному оптическому оборудованию могут использовать оптическую скамью и лабораторный коллиматор для создания бесконечно удаленной точки визирования. Остальные могут использовать пристрелочный станок и любой малогабаритный объект, расположенный на расстоянии больше 300 метров. Этим же нехитрым способом можно определять наличие или отсутствие параллакса в коллиматорных прицелах. У этих прицелов отсутствие параллакса - большой плюс, так как скорость прицеливания в таких моделях существенно возрастает за счет использования всего диаметра оптики.

В связи с большим распространением среди людей, близких к стрелковому спорту (снайпер - тоже спортсмен) и охоте, большого количества разнообразных оптических приборов (биноклей, зрительных труб, телескопических и коллиматорных прицелов) все чаще стали возникать вопросы, связанные с качеством изображения, даваемого такими приборами, а также о факторах, влияющих на точность прицеливания.

Начнем с понятия аберрации . Любой реальный оптико-механический прибор является произведенной человеком из каких-то материалов ухудшенной версией идеального прибора, модель которого рассчитывается исходя из простых законов геометрической оптики. Так в идеальном приборе каждой точке рассматриваемого предмета соответствует определенная точка изображения. На самом же деле это не так. Точка никогда не изображается точкой. Ошибки или погрешности изображений в оптической системе, вызываемые отклонениями луча от того направления, по которому он должен был бы идти в идеальной оптической системе, называются аберрациями. Аберрации бывают разные. Наиболее распространены следующие виды аберраций оптических систем: сферическая аберрация, кома, астигматизм и дисторсия . К аберрациям также относятся кривизна поля изображения и хроматическая аберрация (связана с зависимостью показателя преломления оптической среды от длины волны света).

Сферическая аберрация - проявляется в несовпадении главных фокусов для лучей света, прошедших через осесимметричную систему (линзу, объектив и т.д.) на разных расстояниях от оптической оси системы. Вследствие сферической аберрации изображение светящейся точки имеет вид не точки, а окружности с ярким ядром и ослабевающим к периферии ореолом. Исправление сферической аберрации осуществляется подбором определенного сочетания положительных и отрицательных линз, обладающих одинаковыми аберрациями, но с разными знаками. Исправить сферическую аберрацию можно в одиночной линзе используя асферические преломляющие поверхности (вместо сферы, например, поверхность параболоида вращения или что-то подобное).

Кома. Кривизна поверхности оптических систем кроме сферической аберрации вызывает также и другую погрешность - кому. Лучи, идущие от точки объекта, лежащей вне оптической оси системы, образуют в плоскости изображения в двух взаимно перпендикулярных направлениях сложное несимметричное пятно рассеяния, напоминающее по виду запятую (comma, англ. - запятая). В сложных оптических системах кому исправляют совместно со сферической аберрацией подбором линз.

Астигматизм заключается в том, что сферическая поверхность световой волны при прохождении оптической системы может деформироваться, и тогда изображение точки, не лежащей на главной оптической оси системы, представляет собой уже не точку, а две взаимно перпендикулярные линии, расположенные на разных плоскостях на некотором расстоянии друг от друга. Изображения точки в промежуточных между этими плоскостями сечениях имеют вид эллипсов, одно из них имеет форму круга. Астигматизм обусловлен неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка. Астигматизм может быть исправлен таким подбором линз, чтобы одна компенсировала астигматизм другой. Астигматизмом (впрочем, как любыми другими аберрациями) может обладать и человеческий глаз.

Дисторсия - это аберрация, которая проявляется в нарушении геометрического подобия между предметом и изображением. Она обусловлена неодинаковостью линейного оптического увеличения на разных участках изображения. Положительная дисторсия (увеличение в центе меньше чем по краям) носит название подушкообразной. Отрицательная - бочкообразной.
Кривизна поля изображения заключается в том, что изображение плоского предмета получается резким не в плоскости, а на искривленной поверхности. Если линзы, входящие в состав системы, можно считать тонкими, и система исправлена на астигматизм, то изображение плоскости, перпендикулярной оптической оси системы представляет собой сферу радиуса R, причем 1/R=, где fi- фокусное расстояние i-ой линзы, ni - показатель преломления ее материала. В сложной оптической системе кривизну поля исправляют, сочетая линзы с поверхностями разной кривизны так, чтобы величина 1/R равнялась нулю. Хроматическая аберрация обусловлена зависимостью показателя преломления прозрачных сред от длины волны света (дисперсия света). Вследствие ее проявления изображение предмета, освещенного белым светом, становится окрашенным. Для уменьшения хроматической аберрации в оптических системах применяют детали с различной дисперсией, что приводит к взаимной компенсации этой аберрации…"(с)1987, А.М. Морозов, И.В. Кононов, "Оптические приборы", М., ВШ, 1987

Космос - одно из самых загадочных понятий в мире. Если ночью посмотреть на небо, можно увидеть несметное количество звёзд. Да, наверное, каждый из нас слышал, что во Вселенной больше звёзд, чем песчинок в Сахаре. И учёные с древних времён тянулись к ночному небу, стараясь разгадать загадки, скрывающиеся за этой чёрной пустотой. Начиная с древних времён они совершенствовали методы измерения космических расстояний и свойств звёздного вещества (температуры, плотности, скорости вращения). В этой статье мы расскажем о том, что такое параллакс звезд и как он применяется в астрономии и астрофизике.

Явление параллакса тесно связано с геометрией, но прежде чем рассмотреть геометрические законы, лежащие в основе этого явления, окунёмся в историю астрономии и разберёмся в том, кто и когда открыл это свойство движения звёзд и первым применил его на практике.

История

Параллакс как явление изменения положения звёзд в зависимости от расположения наблюдателя известно очень давно. Ещё Галилео Галилей писал об этом в далёком Средневековье. Он лишь предполагал, что если бы можно было заметить изменение параллакса для далёких звёзд, это было бы доказательством того, что Земля вращается вокруг Солнца, а не наоборот. И это было сущей правдой. Однако доказать это Галилео не смог из-за недостаточной чувствительности тогдашней аппаратуры.

Ближе к нашим дням, в 1837 году, Василий Яковлевич Струве провёл серию экспериментов по измерению годичного параллакса для звезды Веги, входящей в созвездие Лира. Позже эти измерения признали недостоверными, когда в следующем после публикации Струве году, 1838-м, Фридрих Вильгельм Бессель измерил годичный параллакс для звезды 61 Лебедя. Поэтому, как бы это ни было печально, приоритет открытия годичного параллакса принадлежит всё-таки Бесселю.

Сегодня параллакс используется как основной метод измерения расстояний до звёзд и при достаточно точной измерительной аппаратуре даёт результаты с минимальной погрешностью.

Нам следует перейти к геометрии перед непосредственным рассмотрением того, что такое метод параллакса. И для начала вспомним самые азы этой интересной, хотя и нелюбимой многими науки.

Основы геометрии

Итак, то, что нам необходимо знать из геометрии для понимания явления параллакса, - это то, как связаны значения углов между сторонами треугольника и их длины.

Начнём с того, что представим себе треугольник. В нём есть три соединяющихся прямых и три угла. И для каждого разного треугольника - свои величины углов и длин сторон. Нельзя изменить размер одной или двух сторон треугольника при неизменных значениях углов между ними, это одна из фундаментальных истин геометрии.

Представим, что перед нами стоит задача узнать значение длин двух сторон, если мы знаем только длину основания и величины углов, прилегающих к нему. Это возможно с помощью одной математической формулы, связывающей значения длин сторон и величин углов, лежащих напротив них. Итак, представим, что у нас есть три вершины (можете взять карандаш и нарисовать их), образующие треугольник: A, B, C. Они образуют три стороны: AB, BC, CA. Напротив каждой из них лежит по углу: угол BCA напротив AB, угол BAC напротив BC, угол ABC напротив CA.

Формула, которая связывает все эти шесть величин вместе, выглядит так:

AB / sin(BCA) = BC / sin(BAC) = CA / sin(ABC).

Как мы видим, всё не совсем просто. У нас откуда-то появился синус углов. Но как нам найти этот синус? Об этом мы расскажем ниже.

Основы тригонометрии

Синус является тригонометрической функцией, определяющей координату Y угла, построенного на координатной плоскости. Чтобы показать это наглядно, обычно чертят координатную плоскость с двумя осями - OX и OY - и отмечают на каждой из них точки 1 и -1. Эти точки расположены на одинаковом расстоянии от центра плоскости, поэтому через них можно провести окружность. Итак, мы получили так называемую единичную окружность. Теперь построим какой-нибудь отрезок с началом в начале координат и концом на какой-нибудь точке нашей окружности. Конец отрезка, который лежит на окружности, имеет определённые координаты на осях OX и OY. И значения этих координат и будут представлять собой соответственно косинус и синус.

Мы выяснили, что такое синус и как его можно найти. Но на самом деле этот способ чисто графический и создан скорее, чтобы понять саму суть того, что представляют собой тригонометрические функции. Он может быть эффективен для углов, не имеющих бесконечных рациональных значений косинуса и синуса. Для последних же более эффективен другой метод, который основа на применении производных и биномиального вычисления. Он носит название ряда Тейлора. Рассматривать этот способ мы не будем потому, как он достаточно сложен для вычисления в уме. Ведь быстрые вычисления - это работа для компьютеров, которые созданы для этого. Ряд Тейлора используется в калькуляторах для вычисления многих функций, включая синус, косинус, логарифм и так далее.

Всё это довольно интересно и затягивающе, но нам пора двигаться дальше и вернуться к тому, на чём мы закончили: на задаче по вычислению значений неизвестных сторон треугольника.

Стороны треугольника

Итак, вернёмся к нашей задаче: нам известны два угла и сторона треугольника, к которой эти углы прилежат. Нам нужно узнать всего лишь один угол и две стороны. Самым лёгким представляется нахождение угла: ведь сумма всех трёх углов треугольника равна 180 градусам, а значит, можно легко найти третий угол, вычтя из 180 градусов значения двух известных углов. А зная значения всех трёх углов и одной из сторон, можно найти длины двух других сторон. Вы можете проверить это самостоятельно на примере любого из треугольников.

А теперь наконец поговорим о параллаксе как о способе измерения расстояния между звёздами.

Параллакс

Это, как мы уже выяснили, один из самых простых и действенных методов измерения межзвёздных расстояний. Параллакс основан на изменении положения звезды в зависимости от расстояния до неё. Например, измерив угол видимого положения звезды в одной точке орбиты, а затем в прямо ей противоположной, мы получим треугольник, в котором известна длина одной стороны (расстояние между противоположными точками орбиты) и два угла. Отсюда мы сможем найти две оставшиеся стороны, каждая из которых равна расстоянию от звезды до нашей планеты в разных точках её орбиты. В этом и заключается метод, с помощью которого можно вычислить параллакс звезд. Да и не только звезд. Параллакс, эффект которого оказывается на деле очень простым, несмотря на это, используется во многих своих вариациях в совершенно разных областях.

В следующих разделах рассмотрим подробнее области применения параллакса.

Космос

Мы говорили об этом не раз, ведь параллакс - это исключительное изобретение астрономов, призванное измерять расстояния до звезд и прочих космических объектов. Однако тут не всё так однозначно. Ведь параллакс - это метод, у которого есть свои вариации. Например, различают суточный, годичный и вековой параллаксы. Можно догадаться, что все они различаются промежутком времени, которое проходит между этапами измерений. Нельзя сказать, что увеличение временного промежутка увеличивает точность измерения, потому как цели у каждого вида этого метода свои, а точность измерений зависит лишь от чувствительности аппаратуры и выбранного расстояния.

Суточный параллакс

Суточный параллакс, расстояние с помощью которого определяется с помощью угла между прямыми, идущими к звезде из двух разных точек: центра Земли и выбранной точки на Земле. Так как мы знаем радиус нашей планеты, не составит особого труда, используя угловой параллакс, вычислить расстояние до звезды, пользуясь описанными нами ранее математическим методом. В основном суточным параллаксом пользуются для измерения недалёких объектов, таких как планеты, карликовые планеты или астероиды. Для более больших используют следующий метод.

Годичный параллакс

Годичный параллакс - это всё тот же метод измерения расстояний с той лишь разницей, что он сфокусирован на измерение расстояний до звёзд. Это как раз тот случай параллакса, что мы рассматривали в примере выше. Параллакс, определение расстояния до звезды с помощью которого может быть довольно точным, должен обладать одной важной чертой: расстояние, с которого измеряется параллакс, должно быть чем больше, тем лучше. Годичный параллакс удовлетворяет этому условию: ведь между крайними точками орбиты расстояние достаточно велико.

Параллакс, примеры методов которого мы рассмотрели, безусловно, представляет собой важную часть астрономии и служит незаменимым инструментом в измерении расстояний до звёзд. Но на деле сегодня пользуются лишь годичным параллаксом, так как суточный может заменить более продвинутая и быстрая эхолокация.

Фотография

Пожалуй, самым известным видом фотографического параллакса можно считать бинокулярный параллакс. Вы его наверняка замечали и сами. Если поднести к глазам палец и по очереди закрывать каждый глаз, можно заметить, что угол зрения на объект меняется. То же самое происходит и при съёмке близких объектов. В объектив мы видим изображение под одним углом зрения, но на самом деле фотография получится с немного другим углом, так как есть разница в расстоянии между объективом и видоискателем (отверстием, через которое мы смотрим, чтобы сделать фотографию).

Перед тем как мы закончим эту статью - пара слов о том, чем же может быть полезно такое явление, как оптический параллакс, и почему стоит узнать о нём больше.

Почему это интересно?

Для начала, параллакс - это уникальное физическое явление, позволяющее нам без особого труда узнать многое об окружающем нас мире и даже о том, что находится за сотни световых лет от него: ведь с помощью этого явления можно вычислять и размеры звёзд.

Как мы уже убедились, параллакс не такое уж далёкое от нас явление, он окружает нас везде, и с помощью него мы видим так, как есть. Это, безусловно, интересно и захватывающе, и именно поэтому стоит обратить внимание на метод параллакса, хотя бы из любопытства. Знание никогда не бывает лишним.

Заключение

Итак, мы разобрали, в чём заключается суть параллакса, почему для определения расстояния до звёзд необязательно иметь сложную аппаратуру, а лишь телескоп и знание геометрии, как это применяется в нашем организме и почему нам может быть это так важно в повседневной жизни. Надеемся, представленная информация была вам полезна!