Способ получение газ из навоза. Методы самостоятельного производства биогаза. Схема самодельной установки

Технология это не новая. Она начала развиваться еще в 18 веке, когда Ян Гельмонт – химик – обнаружил, что навоз выделяет газы, которые способны к воспламенению.

Его исследования продолжил Алессандро Вольта и Хэмфри Деви, которые нашли в газовой смеси метан. В конце 19 века в Англии биогаз из навоза использовали в уличных фонарях. В середина 20 столетия были обнаружены бактерии, которые производят метан и его предшественников.

Дело в том, что в навозе поочередно работают три группы микроорганизмов, которые питаются продуктами жизнедеятельности предыдущих бактерий. Первыми начинают работу ацетогенные бактерии, которые растворяют углеводы, белки и жиры в навозной жиже.

После переработки анаэробными микроорганизмами питательного запаса образуется метан, вода и диоксид углерода. Из-за наличия воды биогаз на данной стадии не способен гореть – ему нужна очистка, поэтому его пропускают через очистные сооружения.

Что такое биометан

Газ, полученный в результате разложения навозной биомассы, является аналогом природного газа. Он почти в 2 раза легче воздуха, поэтому всегда поднимается вверх. Этим объясняется технология производства искусственным методом: вверху оставляют свободное пространство, чтобы вещество могло выделяться и накапливаться, откуда его потом выкачивают насосами для использования в собственных нуждах.

Метан сильно влияет на возникновение парникового эффекта – гораздо больше, чем углекислый газ – в 21 раз. Поэтому, технология переработки навоза – не только экономичный, но и экологичный способ утилизации отходов животноводства.

Биометан используют для следующих потребностей:

  • приготовления пищи;
  • в двигателях внутреннего сгорания автомобилей;
  • для отопления частного дома.

Биогаз выделяет большое количество тепла. 1 кубический метр равноценен сгоранию 1,5 кг каменного угля.

Как получают биометан

Получить его можно не только из навоза, но и водорослей, растительной массы, жира и других животных отходов, остатков переработки сырья рыбных цехов. В зависимости от качества исходного материала, его энергетической емкости, зависит конечный выход газовой смеси.

Минимально получают от 50 кубометров газа с тонны навоза крупного рогатого скота. Максимально – 1 300 кубометров после переработки животного жира. Содержание метана при этом – до 90%.

Один из видов биологического газа – свалочный. Он образуется при разложении мусора на загородных свалках. На Западе уже есть оборудование, которое перерабатывает отходы населения и превращает их в топливо. Как вид бизнеса – это неограниченные ресурсы.

Под его сырьевую базу попадают:

  • пищевая промышленность;
  • животноводство;
  • птицеводство;
  • рыбный промысел и перерабатывающие комбинаты;
  • молокозаводы;
  • производство алкогольных и слабоалкогольных напитков.

Любая промышленность вынуждена утилизировать свои отходы – это дорого и нерентабельно. В домашних условиях при помощи небольшой самодельной установки можно решить сразу несколько проблем: бесплатное отопление дома, удобрение земельного участка высококачественным питательным веществом, оставшимся от переработки навоза, освобождение места и отсутствие запахов.

Технология получения биологического топлива

Все бактерии, которые принимают участие в образовании биогаза, являются анаэробными, то есть кислород для жизнедеятельности им не нужен. Для этого сооружают полностью герметичные емкости для брожения, отводные трубы которых также не пропускают воздух извне.

После заливки в резервуар сырьевой жидкости и повышения температуры до нужной величины бактерии начинают работу. Начинает выделяться метан, который поднимается с поверхности навозной жижи. Он направляется в специальные подушки или резервуары, после чего фильтруется и попадает в газовые баллоны.

Отработанная бактериями жидкость скапливается на дне, откуда ее периодически откачивают и также отправляют на хранение. После этого в резервуар закачивают новую порцию навоза.

Температурный режим функционирования бактерий

Для переработки навоза в биогаз необходимо создать подходящие условия для работы бактерий. некоторые из них активизируются при температуре выше 30 градусов – мезофильные. При этом процесс идет медленнее и первую продукцию можно получить через 2 недели.

Термофильные бактерии работают при температуре от 50 до 70 градусов. Сроки получения биогаза из навоза сокращаются до 3 дней. При этом отходы представляют собой ферментированный шлам, который используют на полях в качестве удобрения для сельскохозяйственных культур. В шламе отсутствуют патогенные микроорганизмы, гельминты и сорняки, так как они погибают при воздействии высоких температур.

Есть особый вид термофильных бактерий, которые способны выжить в среде, нагретой до 90 градусов. Их добавляют в сырье, чтобы ускорить процесс брожения.

Понижение температуры ведет к снижению активности термофильных или мезофильных бактерий. В частных хозяйствах чаще используют мезофиллы, так как для них не нужно специально подогревать жидкость и производство газа обходится дешевле. Впоследствии, когда будет получена первая партия газа, его можно использовать для подогрева реактора с термофильными микроорганизмами.

Важно! Метаногены не переносят резких скачков температур, поэтому зимой их необходимо содержать в тепле постоянно

Как подготовить сырье для заливки в реактор

Для производства биогаза из навоза не нужно специально подсаживать микроорганизмы в жидкость, потому что они уже находятся в экскрементах животных. Нужно лишь поддерживать температурный режим и вовремя подливать новый раствор навоза. Его необходимо правильно готовить.

Влажность раствора должна быть 90% (консистенция жидкой сметаны), поэтому сухие виды экскрементов для начала заливаются водой – кроличий помет, конский, овечий, козий. Свиной навоз в чистом виде не нуждается в разбавлении, так как содержит много мочи.

Следующий этап – разбить твердые частицы навоза. Чем мельче будет фракция, тем лучше бактерии переработают смесь и тем больше газа получится на выходе. Для этого в установках применяют мешалку, постоянно работающую. Она снижает риск образования твердой корки на поверхности жидкости.

Для производства биогаза подходят те виды навоза, которые имеют самую высокую кислотность. Их еще называют холодными – свиной и коровий. Снижение кислотности приостанавливает деятельность микроорганизмов, поэтому необходимо следить в начале, сколько времени необходимо, чтобы они полностью переработали объем резервуара. Затем долить следующую дозу.

Технология очистки газа

При переработке навоза в биогаз получается:

  • 70% метана;
  • 30% углекислого газа;
  • 1% примесей сероводорода и других летучих соединений.

Чтобы биогаз стал пригодным для использования в хозяйстве, его необходимо очистить от примесей. Чтобы удалить сероводород применяют специальные фильтры. Дело в том, что летучие сероводородные соединения, растворяясь в воде, образуют кислоту. Она способствует появлению ржавчины на стенках труб или резервуара, если они изготовлены из металла.

  • Полученный газ сжимается под давлением 9 – 11 атмосфер.
  • Подается в резервуар с водой, где примеси растворяются в жидкости.

В промышленных масштабах для очистки применяют известь или активированный уголь, а также специальные фильтры.

Как уменьшить содержание влаги

Самостоятельно избавиться от примесей воды в газе можно несколькими способами. Один из них – принцип самогонного аппарата. По холодной трубе газ направляется вверх. Жидкость при этом конденсируется и стекает вниз. Для этого трубу проводят под землей, где температура естественным образом снижается. По мере подъема, температура также поднимается, и осушенный газ попадает в хранилище.

Второй вариант – гидрозатвор. После выхода газ поступает в емкость с водой и там очищается от примесей. Такой метод называется одноэтапным, когда с помощью воды биогаз чистят сразу от всех летучих веществ и влаги.


Принцип гидрозатвора

Какие установки применяют для получения биогаза

Если установку планируется разместить вблизи фермы, то лучшим вариантом будет разборная конструкция, которую легко перевезти в другое место. Основной элемент установки – биореактор, в который заливается сырье и происходит процесс брожения. На крупных предприятиях используют цистерны объемом 50 кубических метров.

В частных хозяйствах строят подземные резервуары в качестве биореактора. Их выкладывают из кирпича в подготовленную яму и обмазывают цементом. Бетон повышает степень безопасности конструкции и препятствует попаданию воздуха. Объем зависит от того, сколько сырья в день получают с домашних животных.

Поверхностные системы также популярны в домашних условиях. При желании установку можно разобрать и перенести в другое место, в отличие от стационарного подземного реактора. В качестве цистерны используют пластиковые, металлические или поливинилхлоридные бочки.

По типу управления имеются:

  • автоматические станции, в которых долив и откачка отработанного сырья осуществляется без участия человека;
  • механические, где весь процесс контролируется вручную.

С помощью насоса можно облегчить освобождение резервуара, в который попадают отходы после брожения. Некоторые народные умельцы применяют насосы для откачки газа из подушек (например, автомобильных камер) в очистное сооружение.

Схема самодельной установки для получения биогаза из навоза

Перед сооружением биогазовой установки на своем участке необходимо ознакомиться с потенциальной опасностью, которая может взорвать реактор. Главное условие – отсутствие кислорода.

Метан – это взрывоопасный газ и он способен воспламеняться, но для этого его необходимо нагреть выше 500 градусов. Если биогаз смешается с воздухом, возникнет избыточное давление, которое разорвет реактор. Бетонный может треснуть и будет не пригоден для дальнейшего использования.

Видео: Биогаз из птичьего помета

Чтобы давление не сорвало крышку, применяют противовес, защитную прокладку между крышкой и резервуаром. Емкость заполняют не до конца – должно оставаться как минимум 10% объема для выхода газа. Лучше – 20%.

Итак, чтобы сделать у себя на участке биореактор со всеми приспособлениями, необходимо:

  • Удачно выбрать место, чтобы оно находилось подальше от жилья (мало ли что).
  • Рассчитать предположительное количество навоза, которое ежедневно выдают животные. Как считать – читать ниже.
  • Определиться, где проложить загрузочную и отгрузочную трубу, а также трубу для конденсации влаги в полученном газе.
  • Определиться с местом расположения резервуара для отходов (по умолчанию удобрения).
  • Вырыть котлован, исходя из расчетов количества сырья.
  • Выбрать емкость, которая будет служить резервуаром для навоза и установить ее в котлован. Если планируется бетонный реактор, тогда дно котлована заливается бетоном, стенки выкладываются кирпичом и штукатурятся бетонным раствором. После этого необходимо дать время просохнуть.
  • Стыковки между реактором и трубами также герметизируются на этапе закладки резервуара.
  • Обустроить люк для осмотра реактора. Между ним ставится герметичная прокладка.

Если климат холодный, то перед бетонированием или установкой пластикового резервуара продумывают способы его обогрева. Это могут быть нагревательные приборы или лента, используемая в технологии «теплый пол».

В конце работ проверить реактор на герметичность.

Расчет количества газа

Из одной тонны навоза можно получить примерно 100 кубических метров газа. Вопрос – сколько помета дают домашние животные в сутки:

  • курица – 165 г в сутки;
  • корова – 35 кг;
  • коза – 1 кг;
  • конь – 15 кг;
  • овца – 1 кг;
  • свинья – 5 кг.

Умножить эти показатели на количество голов и получится суточная доза экскрементов, подлежащих переработке.

Больше газа получают от коров и свиней. Если добавить в смесь такие энергетически мощные растения как кукуруза, свекольная ботва, просо, то количество биогаза увеличится. Большой потенциал у болотных растений и водорослей.

Самый высокий – у отходов мясоперабатывающих комбинатов. Если такие хозяйства есть поблизости, то можно скооперироваться и установить один реактор на всех. Сроки окупаемости биореактора 1 – 2 года.

Отходы биомассы после получения газа

После переработки навоза в реакторе побочным продуктом является биошлам. При анаэробной переработке отходов бактерии растворяют около 30% органического вещества. Остальное выделяется в неизменном виде.

Жидкая субстанция также является побочным продуктом метанового брожения и также используется в сельском хозяйстве для корневых подкормок.

Углекислый газ – ненужная фракция, которую производители биогаза стремятся удалить. Но если растворить ее в воде, то эта жидкость также может приносить пользу.

Полное использование продуктов биогазовой установки

Чтобы полностью утилизировать продукты, получаемые после переработки навоза, необходимо содержать теплицу. Во-первых – органическое удобрение можно использовать для круглогодичного выращивания овощей, урожайность которых будет стабильной.

Во-вторых – углекислый газ используется как подкормка – корневая или внекорневая, а его на выходе получается около 30%. Растения поглощают углекислоту из воздуха и при этом лучше растут и набирают зеленую массу. Если проконсультироваться со специалистами данной области, то они помогут установить оборудование, которое переводит углекислый газ из жидкой формы в летучее вещество.

Видео: Биогаз за 2 дня

Дело в том, что для содержания животноводческой фермы полученных энергоресурсов может быть много, особенно летом, когда не нужен подогрев коровника или свинарника.

Поэтому рекомендуется заняться еще одним прибыльным видом деятельности – экологически чистая теплица. Остатки продукции можно хранить в охлаждаемых помещениях – за счет все той же энергии. Холодильное или любое другое оборудование может работать на электричестве, которое вырабатывает газовая аккумуляторная батарея.

Использование в качестве удобрения

Кроме выработки газа биореактор полезен тем, что отходы используются в качестве ценного удобрения, которое сохраняет почти весь азот и фосфаты. При внесении в почву навоза 30 – 40% азота безвозвратно теряется.

Чтобы уменьшить потери азотных веществ, в грунт вносят свежие экскременты, но тогда выделяющийся метан повреждает корневую систему растений. После переработки навоза метан идет на собственные нужды, а все питательные вещества сохраняются.

Калий и фосфор после ферментации переходят в хелатную форму, которая усваивается растениями на 90%. Если смотреть в общем, то 1 тонна ферментированного навоза способна заменить 70 – 80 тонн обычных животных экскрементов.

Анаэробная переработка сохраняет весь имеющийся в навозе азот, переводя его в аммонийную форму, что на 20% увеличивает урожаи любых культур.

Такое вещество не опасно для корневой системы и может вноситься за 2 недели до высадки культур в открытый грунт, чтобы органика успела переработаться на этот раз почвенными аэробными микроорганизмами.

Перед использованием биоудобрение разводят водой в соотношении 1:60. Для этого подходит как сухая, так и жидкая фракция, которая после сбраживания также поступает в резервуар для отработанного сырья.

На гектар нужно от 700 до 1 000 кг/л неразбавленного удобрения. Учитывая, что с одного кубического метра площади реактора в день получается до 40 кг удобрений, то за месяц можно обеспечить не только свой участок, но и соседский, продавая органику.

Какие питательные вещества можно получить после отработки навоза

Основная ценность ферментированного навоза как удобрения – в наличии гуминовых кислот, которые как оболочка сохраняют ионы калия и фосфора. Окисляясь на воздухе при длительном хранении, микроэлементы утрачивают свои полезные качества, но при анаэробной переработке, наоборот, приобретают.

Гуматы положительно влияют на физико-химический состав грунта. В результате внесения органики, даже самые тяжелые почвы становятся более проницаемыми для влаги. Вдобавок, органические вещества являются пищей почвенных бактерий. Они дальше перерабатывают остатки, которые «недоели» анаэробы и выделяют гуминовые кислоты. В результате этого процесса растения получают питательные вещества, которые полностью усваивают.

Кроме основных – азота, калия и фосфора – в составе биоудобрения есть микроэлементы. Но их количество зависит от исходного сырья – растительного или животного происхождения.

Способы хранения шлама

Лучше всего хранить ферментированный навоз в сухом виде. Так его удобнее фасовать и транспортировать. Сухое вещество меньше теряет полезных свойств и его можно хранить в закрытом виде. Хотя в течение года такое удобрение вообще не портится, но дальше его нужно закрыть в мешок или емкость.

Жидкие формы необходимо сохранять в закрытых емкостях с плотно закручивающейся крышкой, чтобы не выветривался азот.

Основная проблема производителей биоудобрений – сбыт в зимнее время, когда растения находятся в состоянии покоя. На мировом рынке стоимость удобрений такого качества колеблется в пределах 130$ за тонну. Если наладить линию по расфасовке концентратов, то окупить свой реактор можно в течение двух лет.

Внесение жидкого навоза в почву – преимущества и недостатки метода

-> Производство, строительство, сельское хозяйство

Биогаз из навоза: просто, экономично, экологично

Предлагаемая статья будет, я думаю, интересна фермерам. Описываемая технология получения биогаза из естественного природного материала (в данном случае - из навоза), по большому счету, позволяет, в первую очередь, безболезненно утилизировать небезопасные продукты жизнедеятельности животных, а уже потом является способом получения относительно недорого источника топлива. Впрочем, давайте по-порядку.

Безусловно, традиционный конский или коровий навоз, да еще щедро сдобренный соломой из подстилки, - это ценное удобрение. Но на современной свиноферме навоз совсем другой. Навоз в помещениях смывают водой, количество стоков от этого увеличивается во много раз, а вот концентрация сухих веществ - т.е. именно то, что определяет ценность навоза как удобрения,- уменьшается буквально практически до нуля. Использовать, в принципе, можно, но...

При этом все это огромное количество жижи приходится где-то хранить, как минимум в зимний период, когда удобрения не вносят. Выдерживать навоз необходимо еще и для того, чтобы обезвредить всегда присутствующих в нем патогенных микробов и семян сорняков, которые после внесения в почву, немедленно пойдут в рост. К тому же очень трудно предотвратить просачивание жидкого навоза в землю, в подземные воды, в реки. Да и зловонного запаха от таких хранилищ никак не избежать. Сегодня обезвреживание навозных стоков превратилось в серьезную проблему в масштабе всей страны.

Способ обезвреживания навоза, как и любых других органических остатков, известен давно - это компостирование. Отходы складывают в кучи, где они под действием микроорганизмов постепенно разлагаются. При этом куча разогревается примерно до 60°С и происходит естественная пастеризация - погибает большинство патогенных микробов и яиц гельминтов, а семена сорняков теряют всхожесть.

Однако качество удобрения при этом страдает: пропадает до 40 % содержащегося в нем азота и немало фосфора. Пропадает и энергия, потому что впустую рассеивается выделяющееся тепло, а в навозе, между прочим, заключена почти половина всей энергии, поступающей на ферму с кормами. Отходы же от свиноферм для компостирования вообще не годятся, так как они слишком жидкие.

Но есть и другой путь переработки органического вещества - анаэробный, без доступа воздуха. Именно такой процесс происходит в естественном биологическом реакторе - желудке всех живых существ. Та же корова производит в сутки до 500 литров метана; из общей продукции метана на Земле почти четверть - 100-200 млн. тонн в год! - имеет «животное» происхождение.

По сравнению с аэробным разложением при компостировании процесс идет медленнее, но зато гораздо экономнее, без лишних энергетических потерь. Конечный продукт - биогаз, в котором 60-70 % метана, который при горении выделяет столько же тепла, сколько килограмм каменного угля, и в два с лишним раза больше, чем килограмм дров.

Таким способом прекрасно перерабатывается тот самый жидкий навоз со свинофермы: пройдя через биореактор, эта зловонная жижа превращается в прекрасное удобрение.

Оборудование для переработки жидкого навоза в биогаз можно приобрести готовое, собственно крупные хозяйства так и поступают, но для фермера-одиночки гораздо выгоднее построить такой биореактор для переработки навоза в биогаз своими силами, благо не так уж это сложно.

Как работает биореактор

Ферментация навоза идет в анаэробных (бескислородных) условиях при температуре 30- 55 °С (оптимально 40 °С). Длительность ферментации не менее 12 суток. Можно использовать как обычный, так и жидкий, бесподстилочный навоз, который легко подается в биореактор насосом.

При ферментации в навозе полностью сохраняются азот и фосфор. Масса навоза практически не изменяется, если не считать испаряемой воды, которая переходит в биогаз. Органическое вещество навоза разлагается на 30-40 %; деструкции подвергаются в основном легко разлагаемые соединения - жир, протеин, углеводы, а основные гумусообразующие компоненты - целлюлоза и лигнин - сохраняются полностью. Благодаря выделению метана и углекислого газа оптимизируется соотношение C/N. Доля аммиачного азота увеличивается. Реакция получаемого органического удобрения - щелочная (рН 7,2-7,8), что делает такое удобрение особенно ценным для кислых почв. По сравнению с удобрением, получаемым из навоза обычным способом, урожайность увеличивается на 10-15 %.

Получаемый биогаз плотностью 1,2 кг/м3 (0,93 плотности воздуха) имеет следующий состав (%): метан - 65, углекислый газ - 34, сопутствующие газы - до 1 (в том числе сероводород - до 0,1). Содержание метана может меняться в зависимости от состава субстрата и технологии в пределах 55-75 %. Содержание воды в биогазе при 40 °С - 50 г/м3; при охлаждении биогаза она конденсируется, и необходимо принять меры к удалению конденсата (осушка газа, прокладка труб с нужным уклоном и пр.). Энергоемкость получаемого газа - 23 мДж/м3, или 5500 ккал/м3.

Немного о цифрах и выгоде

К примеру, реактор объемом 75 кубометров способен «влегкую» перерабатывать все отходы с фермы на 2500 свиней, давая хозяину высококачественное удобрение и от 300 до 500 кубометров газа в сутки. Кроме того, сегодня это единственная технология переработки и обеззараживания отходов свиноводства, которая себя окупает. Причем окупает даже не столько самим получаемым биогазом, сколько экологическим благополучием, ведь в ином случае пришлось бы строить навозохранилища и очистные сооружения. Кроме того, не будем забывать о переработанном навозе, как готовом хорошем удобрении, а значит, меньше будет применяться гербицидов. Сам же биогаз скорее как бесплатное приложение: приятно, но не обязательно.

Именно поэтому не так просто подсчитать экономическую эффективность этой технологии. Обычно считают как раз по полученному биогазу: затрат столько-то, газа получено столько, соответствующее количество солярки стоит столько. В итоге получается выгодно, но сроки окупаемости не рекордные. Но в любом случае, полученного биогаза хватает, чтобы обеспечить до половины энергопотребностей средней фермы, включая отопление и горячую воду и, как следствие, значительно сократить затраты энергии в сельхозпроизводстве, сделать его более экологически чистым и безотходным.

Картина получилась бы значительно более полной и привлекательной, если бы к получаемому энергетическому эффекту прибавить еще эффект экологический, переведя его в деньги. Но как это сделать, пока никто так и не придумал.

Установка по производству биогаза (биореактор)

Установка по производству биогаза может быть построена в любом хозяйстве из доступных материалов.

Основа биогазовой установки - герметичная емкость с теплообменником (теплоноситель - вода, нагретая до 50-60 °С), устройства для ввода и вывода навоза и для отвода газа. Сама конструкция установки во многом определяется местными условиями, наличием материалов.

Для небольшой установки наиболее разумное решение - использовать высвободившиеся топливные цистерны. На рисунке показана схема биореактора на базе стандартной топливной цистерны объемом 50 куб.м. Внутренние перегородки могут быть из металла или кирпича; их основная функция - направлять поток навоза и удлинить путь его внутри реактора, образуя систему сообщающихся сосудов. На приведенной схеме перегородки показаны условно, их число и размещение зависят от свойств навоза - от текучести, количества подстилки.

Чтобы определить объем биореактора, нужно исходить из количества навоза, которое зависит как от численности и массы животных, так и от способа его удаления: при смыве навоза общее количество стоков увеличивается во много раз, что нежелательно, так как требует увеличения затрат энергии на подогрев. Если суточное количество стоков известно, нужный объем реактора можно определить, умножив это количество на 12 (поскольку 12 суток - минимальный срок выдержки навоза) и увеличив полученную величину на 10 % (так как реактор следует заполнять субстратом на 90 %).

Подогревать субстрат до 40°С можно различными способами. Удобнее всего использовать для этого газовые водонагревательные аппараты АГВ-80 или АГВ-120, снабженные автоматикой для поддержания температуры теплоносителя. При питании аппарата получаемым биогазом (вместо природного газа) следует его отрегулировать, уменьшив подачу воздуха. Для уменьшения потерь тепла биореактор необходимо тщательно теплоизолировать. Здесь возможны разные варианты: в частности, можно устроить вокруг него легкий каркас, заполненный стекловатой, нанести на реактор слой пенополиуриетана и пр.

При запуске биореактора необходимо заполнить его на 90 % объема субстратом и продержать не менее 12 суток, после чего можно подавать в реактор новые порции субстрата, извлекая соответствующие количества ферментированного продукта.

Если несколько мелких ферм или индивидуальных хозяйств расположены недалеко, наиболее логичным вариантом будет организовать общую, централизованную переработку отходов и получаемый биогаз подавать обратно на фермы или в хозяйства по трубопроводам. Кстати, давление газа, получаемого в биореакторе (100-300 мм вод. ст.), достаточно для его подачи на расстояние до нескольких сотен метров без газодувок или компрессоров.

Разумеется, постройка и установка даже небольшого реактора для производства биогаза не обойдется без согласований. Документация, представляемая в соответствующие надзорные органы, должна содержать: технологическую схему установки, план размещения биореактора и теплогенератора, потоки энергии и продуктов, трубопроводы, схему подключения насоса и осветительной арматуры, смету расходов. На генплане хозяйства также нужно будет показать основные трубопроводы, подъездные пути, громоотвод. При устройстве и в дальнейшей эксплуатации биореактора необходимо соблюдать нормы и правила работы с установками для сжигания природного газа. В обязательном порядке еще на стадии проектирования следует предусмотреть вентиляцию, которая должна обеспечивать в помещении объемом до 300 м3 восьмикратный обмен воздуха в час. Документацию на подобный объект необходимо будет согласовать с газовой инспекцией, сэс и пожарной охраной.

Применение биогаза в хозяйстве

Ну, а теперь давайте посмотрим, какую экономическую выгоду может принести лично вам установка для производства биогаза.

Примерная суточная производительность реактора при загрузке навоза с содержанием сухого вещества 4-8 % - два объема газа на объем реактора, т.е. биореактор объемом 50 кубов будет давать в сутки 100 кубометров биогаза. На долю «товарного» газа, приходится в среднем около 70 кубов, а остальное идет на технологический подогрев самой установки. Годовой объем производства биогаза получается около 25 тыс. куб.м., что эквивалентно 16,75 т жидкого топлива. Выгодно? Разумеется!

И это еще не учитывая стоимость очищенного переработанного навоза как удобрения.

Ориентировочно переработка «бесподстилочного» навоза от 10 голов крупного рогатого скота позволяет получить в сутки около 20 куб.метра биогаза, от 10 свиней - 1-3 куб.м., от 10 овец - 1-1,2 куб.м., от 10 кроликов - 0,4-0,6 куб.м. Кстати, потребность в газе для односемейного дома, включая отопление и горячее водоснабжение, составляет в среднем 10 куб.м. в сутки, но может сильно колебаться в зависимости от качества теплоизоляции дома.

Тепло, получаемое при сжигании биогаза, может быть использовано, кроме подогрева воды (отопление, горячее водоснабжение) и приготовления пищи, также и для отопления теплиц, а в летний период, когда биогаз в избытке, для сушки сена и других кормов. Можно использовать биогаз и для выработки электроэнергии, но это экономически менее выгодно.

Еще одно направление использования биогаза - утилизация углекислого газа, содержащегося в нем в количестве около 34 %. Извлекая углекислый газ путем отмывки (в отличие от метана он растворяется в воде), можно подавать его в теплицы, где он служит «воздушным удобрением», увеличивая продуктивность растений.

По материалам http://www.newchemistry.ru

Экология потребления. Усадьба: Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт. Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

О преимуществах использования биотехнологий

Технология получения биогаза из различных природных источников не нова. Исследования в этой области начались еще в конце 18 века и успешно развивались в 19 столетии. В Советском Союзе первая биоэнергетическая установка была создана в сороковых годах прошлого века.

Технология переработки навоза в биогаз позволяет уменьшить количество вредных выбросов метана в атмосферу и получить дополнительный источник тепловой энергии

Биотехнологии давно применяются во многих странах, но именно сегодня они приобретают особое значение. Вследствие ухудшения экологической обстановки на планете и высокой стоимости энергоносителей, многие устремляют свои взоры в сторону альтернативных источников энергии и тепла.

Безусловно, навоз является очень ценным удобрением, и если в хозяйстве имеется две коровы, то и проблем с его применением не возникает. Другое дело, когда речь идет о фермерских хозяйствах с большим и средним поголовьем, где в год образуются тонны зловонного и гниющего биологического материала.

Чтобы навоз превратился в качественное удобрение, нужны площади с определенным температурным режимом, а это лишние расходы. Поэтому многие фермеры складируют его, где придется, а затем вывозят на поля.

При несоблюдении условий хранения из навоза улетучиваются до 40% азота и основная часть фосфора, что значительно ухудшает его качественные показатели. Кроме того, в атмосферу выделяется газ метан, оказывающий негативное влияние на экологическую обстановку планеты.

В зависимости от объема сырья, образующегося в сутки, следует подбирать габариты установки и степень ее автоматизации

Современные биотехнологии позволяют не только нейтрализовать вредное воздействие метана на экологию, но и заставить его служить на благо человека, извлекая при этом немалую экономическую выгоду. В результате переработки навоза образуется биогаз, из которого затем можно получить тысячи кВт энергии, а отходы производства представляют собой очень ценное анаэробное удобрение.

Что представляет собой биогаз

Биогаз – это летучее вещество без цвета и какого-либо запаха, в котором содержится до 70% метана. По своим качественным показателям он приближается к традиционному виду топлива – природному газу. Отличается хорошей теплотворной способностью, 1м3 биогаза выделяет столько тепла, сколько получается при сгорании полутора килограмм угля.

Образованию биогаза мы обязаны анаэробным бактериям, которые активно трудятся над разложением органического сырья, в качестве которого используются навоз сельскохозяйственных животных, птичий помет, отходы любых растений.

В самостоятельном производстве биогаза может использоваться птичий помет и продукты жизнедеятельности мелкого и крупного домашнего скота. Сырье может применяться в чистом виде и в форме смеси с включением травы, листвы, старой бумаги

Для активизации процесса необходимо создать благоприятные условия для жизнедеятельности бактерий. Они должны быть схожи с теми, в которых микроорганизмы развиваются в естественном резервуаре – в желудке животных, где тепло и отсутствует кислород. Собственно это и есть два основных условия, способствующих чудесному превращению гниющей навозной массы в экологически чистое топливо и ценные удобрения.

Механизм образования газа из органического сырья

Для получения биогаза нужен герметичный реактор без доступа воздуха, где будет происходить процесс брожения навоза и разложения его на составляющие:

  • Метан (до 70%).
  • Углекислый газ (примерно 30%).
  • Другие газообразные вещества (1-2%).

Образовавшиеся газы поднимаются кверху емкости, откуда их затем выкачивают, а вниз оседает остаточный продукт – высококачественное органическое удобрение, сохранившее в результате обработки все ценные вещества, имеющиеся в навозе – азот и фосфор, и потерявшее значительную часть патогенных микроорганизмов.

Реактор для получения биогаза должен иметь полностью герметичную конструкцию, в которой отсутствует кислород, в противном случае процесс разложения навоза будет проходить крайне медленно

Второе важное условие для эффективного разложения навоза и образования биогаза – соблюдение температурного режима. Бактерии, принимающие участие в процессе, активизируются при температуре от +30 градусов. Причем в навозе содержится два вида бактерий:

  • Мезофильные. Их жизнедеятельность происходит при температуре +30 – +40 градусов;
  • Термофильные. Для их размножения необходимо соблюсти температурный режим +50 (+60) градусов.

Время переработки сырья в установках первого типа зависит от состава смеси и составляет от 12 до 30 суток. При этом 1 литр полезной площади реактора дает 2 л биотоплива. При использовании установок второго типа время выработки конечного продукта сокращается до трех дней, а количество биогаза возрастает до 4,5 л.

Эффективность термофильных установок видна невооруженным глазом, однако и цена их обслуживания очень высока, поэтому прежде чем выбрать тот или иной способ получения биогаза, необходимо очень тщательно все просчитать (кликните для увеличения)

Несмотря на то, что эффективность термофильных установок в десятки раз выше, применяются они гораздо реже, поскольку поддержание высоких температур в реакторе связано с большими расходами. Обслуживание и содержание установок мезофильного типа дешевле, поэтому большинство фермерских хозяйств для получения биогаза используют именно их.

Биогаз по критериям энергетического потенциала немногим уступает привычному газовому топливу. Однако в его составе есть сернокислые испарения, наличие которых следует учесть при выборе материалов для сооружения установки

Расчеты эффективности применения биогаза

Оценить все преимущества использования альтернативного биотоплива, помогут несложные расчеты. Одна корова весом 500 кг производит в сутки примерно 35-40 кг навоза. Этого количества хватит для получения около 1.5 м3 биогаза, из которого в свою очередь можно выработать 3 кВт/ч электроэнергии.

Используя данные из таблицы, нетрудно рассчитать, сколько м3 биогаза можно получить на выходе в соответствии с имеющимся в фермерском хозяйстве поголовьем скота

Для получения биотоплива можно использовать как один вид органического сырья, так и смеси из нескольких компонентов, имеющих влажность 85-90%. Важно, чтобы они не содержали посторонние химические примеси, отрицательно влияющие на процесс переработки.

Самый простой рецепт смеси придумал еще в 2000 году один русский мужик из Липецкой области, который построил своими руками простейшую установку для получения биогаза. Он смешивал 1500 кг коровьего навоза с 3500 кг отходов различных растений, добавлял воду (примерно 65% от веса всех ингредиентов) и разогревал смесь до 35 градусов.

Через две недели бесплатное топливо готово. Эта небольшая установка вырабатывала 40 м3 газа в день, что вполне хватало для обогрева дома и хозпостроек в течение полугода.

Варианты изготовления установок для получения биотоплива

После проведения расчетов необходимо определиться, как изготовить установку, чтобы получить биогаз в соответствии с потребностями своего хозяйства. Если поголовье скота небольшое, то подойдет простейшая установка, которую нетрудно изготовить из подручных средств своими руками.

Крупным фермерским хозяйствам, у которых есть постоянный источник большого количества сырья, целесообразно построить промышленную автоматизированную биогазовую систему. В этом случае вряд ли получится обойтись без привлечения специалистов, которые разработают проект и смонтируют установку на профессиональном уровне.

На схеме наглядно показано, как работает промышленный автоматизированный комплекс по получению биогаза. Строительство таких масштабов можно организовать сразу нескольким фермерским хозяйствам, расположенным поблизости

Сегодня существуют десятки компаний, которые могут предложить множество вариантов: от готовых решений, до разработки индивидуального проекта. Для удешевления строительства можно скооперироваться с соседними хозяйствами (если такие имеются поблизости) и построить одну на всех установку для получения биогаза.

Следует учесть, что для постройки даже небольшой установки необходимо оформить соответствующие документы, сделать технологическую схему, план размещения оборудования и вентиляции (если оборудование устанавливается в помещении), пройти процедуры согласования с СЭС, пожарной и газовой инспекцией.

Конструктивные особенности биогазовой системы

Полноценная биогазовая установка представляет собой сложную систему, состоящую из:

  1. Биореактора, где протекает процесс разложения навоза;
  2. Автоматизированной системы подачи органических отходов;
  3. Устройства для перемешивания биомассы;
  4. Оборудования для поддержания оптимального температурного режима;
  5. Газгольдера – емкости для хранения газа;
  6. Приемника отработанных твердых отходов.

Все вышеперечисленные элементы устанавливаются в промышленные установки, работающие в автоматическом режиме. Бытовые реакторы, как правило, имеют более упрощенную конструкцию.

На схеме представлены основные составляющие автоматизированной биогазовой системы. Объем реактора зависит от суточного поступления органического сырья. Для полноценного функционирования установки реактор должен быть заполнен на две трети объема

Принцип работы и устройство установки для производства биогаза

Основным элементом системы является биореактор. Существует несколько вариантов его исполнения, главное – обеспечить герметичность конструкции и исключить попадание кислорода. Он может быть выполнен в виде металлической емкости различной формы (чаще цилиндрической), расположенной на поверхности. Нередко для этих целей используются 50-ти кубовые пустые топливные цистерны.

Можно приобрести готовые емкости разборной конструкции. Их преимущество – возможность быстрой разборки, и при необходимости – перевозки в другое место. Промышленные поверхностные установки целесообразно применять в крупных хозяйствах, где есть постоянный приток большого количества органического сырья.

Для небольших подворий больше подходит вариант подземного размещения резервуара. Поземный бункер строится из кирпича или бетона. Можно закопать в землю готовые емкости, например, бочки из металла, нержавеющей стали или ПВХ. Возможно также их поверхностное размещение на улице или в специально отведенном помещении с хорошей вентиляцией.

Для изготовления установки по производству биогаза можно приобрести готовые емкости из ПВХ и установить их в помещении, оборудованном системой вентиляции

Независимо от того, где и как размещается реактор, он снабжается бункером для загрузки навоза. Прежде чем загрузить сырье, оно должно пройти предварительную подготовку: его измельчают на фракции не больше 0,7 мм и разбавляют водой. В идеале влажность субстрата должна быть около 90%.

Автоматизированные установки промышленного типа оснащаются системой подачи сырья, включающей приемник, в котором смесь доводится до необходимого увлажнения, трубопровод для подачи воды и насосную установку для перекачки массы в биореактор.

В домашних установках для подготовки субстрата используются отдельные емкости, где отходы измельчаются и перемешиваются с водой. Затем масса загружается в приемный отсек. В реакторах, расположенных под землей, бункер для приема субстрата выводится наружу, подготовленная смесь самотеком по трубопроводу поступает в камеру для брожения.

Если реактор размещен на земле или в помещении, входная труба с приемным устройством могут располагаться в нижней боковой части емкости. Возможно также трубу вывести в верхнюю часть, а на ее горловину надеть раструб. В этом случае биомассу придется подавать при помощи насоса.

В биореакторе также необходимо предусмотреть выходное отверстие, которое делают практически на дне емкости с противоположной стороны от входного бункера. При подземном размещении выходная труба устанавливается косо вверх и ведет в приемник для отходов, по форме напоминающий ящик прямоугольной формы. Его верхний край дожжен находиться ниже уровня входного отверстия.

Входная и выходные трубы располагаются косо вверх на разных сторонах емкости, при этом компенсирующая емкость, в которую поступают отходы, должна быть ниже приемного бункера

Процесс протекает следующим образом: входной бункер принимает новую партию субстрата, которая стекает в реактор, одновременно такое же количество отработанного шлама по трубе поднимается в приемник для отходов, откуда он в дальнейшем вычерпывается и используется в качестве высококачественного биоудобрения.

Хранение биогаза осуществляется в газгольдере. Чаще всего он находится прямо на крыше реактора и имеет форму купола или конуса. Он изготавливается из кровельного железа, а затем, чтобы предотвратить коррозийные процессы, окрашивается несколькими слоями масляной краски. В промышленных установках, рассчитанных на получение большого количества газа, газгольдер нередко выполняется в виде отдельно стоящего резервуара, соединенного с реактором трубопроводом.

Газ, полученный в результате брожения, не подходит для использования, поскольку в нем содержится большое количество водяных паров, и в таком виде он не будет гореть. Чтобы очистить его от фракций воды, газ пропускают через гидрозатвор. Для этого из газгольдера выводится труба, по которой биогаз поступает в емкость с водой, а уже оттуда он по пластиковой или металлической трубе подается потребителям.

Схема установки, расположенной под землей. Входное и выходное отверстия должны располагаться на противоположных сторонах емкости. Над реактором находится водяной затвор, через который для осушения пропускается полученный газ

В некоторых случаях для хранения газа используются специальные мешки-газгольдеры, изготовленные из поливинилхлорида. Мешки помещаются рядом с установкой и постепенно заполняются газом. По мере наполнения, эластичный материал раздувается, и объем мешков увеличивается, позволяя при необходимости временно сохранить большее количество конечного продукта.

Условия эффективной работы биореактора

Для эффективной работы установки и интенсивного выделения биогаза необходимо равномерное брожение органического субстрата. Смесь должна находиться в постоянном движении. В противном случае на ней образуется корка, процесс разложения замедляется, в итоге газа получается меньше, чем изначально рассчитано.

Чтобы обеспечить активное перемешивание биомассы, в верхней или боковой части типового реактора устанавливаются мешалки погружного или наклонного вида, оборудованные электроприводом. В установках кустарного вида перемешивание производится механическим способом при помощи устройства, напоминающего бытовой миксер. Им можно управлять вручную или снабдить электроприводом.

При вертикальном расположении реактора рукоятка мешалки выводится в верхнюю часть установки. Если емкость установлена горизонтально, шнек также располагается в горизонтальной плоскости, и ручка находится сбоку биореактора

Одним из самых главных условий для получения биогаза является поддержание в реакторе необходимого температурного режима. Обогрев может осуществляться несколькими способами. В стационарных установках применяются автоматизированные системы подогрева, которые включаются в работу при падении температуры ниже заданного уровня, и отключаются при наборе необходимого температурного режима.

Для обогрева можно использовать газовые котлы, осуществлять прямой нагрев электрическими отопительными приборами, или встроить в основание емкости нагревательный элемент. Чтобы уменьшить потери тепла рекомендуется вокруг реактора соорудить небольшой каркас со слоем стекловаты или укрыть установку теплоизоляцией. Хорошими теплоизоляционными свойствами обладает пенополистирол.

Чтобы обустроить систему обогрева биомассы, можно провести трубопровод от домового отопления, которое питается от реактора

Как определить нужный объем реактора

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземной установки по производству биогаза

Теперь поговорим о простейшей установке, позволяющей получить биогаз в домашних условиях с наименьшими затратами. Рассмотрим строительство подземной установки. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном. С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанного шлама.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер имеет купольную или конусную форму. Она изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Видео о получении биогаза из навоза

Как происходит строительство подземного реактора, вы можете посмотреть в видеосюжете:

Установка по получению биогаза из навоза позволит существенно сэкономить на оплате тепла и электроэнергии, и пустить на благое дело органический материал, который в избытке имеется в каждом фермерском хозяйстве. Прежде чем начать строительство, необходимо все тщательно просчитать и подготовить.

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам. опубликовано

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

Поэтому в нашем материале речь пойдет о технологии получения биогаза, также мы расскажем о том, как соорудить биоэнергетическую установку.

Определение требующегося объема

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземного сооружения

Теперь поговорим о простейшей установке, позволяющей получить с наименьшими затратами. Рассмотрим строительство подземной системы. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном.

С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанной массы.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер, имеющий купольную или конусную форму. Он изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Выводы и полезное видео по теме

Как сделать самую простейшую установку из обычной бочки, вы узнаете, если посмотрите видео:

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам.

Технология производства биогаза . Современные животноводческие комплексы обеспечивают получение высоких производственных показателей. Применяемые технологические решения позволяют полностью соблюдать требования действующих санитарно-гигиенических норм в помещениях самих комплексов.

Однако большие количества жидкого навоза, сконцентрированные в одном месте, создают значительные проблемы для экологии прилегающих к комплексу территорий. Например, свежий свиной навоз и помёт относятся к отходам, имеющим 3-й класс опасности. Экологические вопросы находятся на контроле надзирающих органов, требования законодательства по этим вопросам постоянно ужесточаются.

Биокомплекс предлагает комплексное решение по вопросам утилизации жидкого навоза, которое включает ускоренную переработку в современных биогазовых установках (БГУ). В процессе переработки, в ускоренном режиме протекают естественные процессы разложения органики с выделением газа включающего: метан, СО2, серу, и т.д. Только получаемый газ не выделяется в атмосферу, вызывая парниковый эффект, а направляется в специальные газогенераторные (когенерационные) установки, которые вырабатывают электрическую и тепловую энергию.

Биогаз - горючий газ , образующийся при анаэробном метановом сбраживании биомассы и состоящий преимущественно из метана (55-75%), двуокиси углерода (25-45%) и примесей сероводорода, аммиака, оксидов азота и других (менее 1%).

Разложение биомассы происходит в результате химико-физических процессов и симбиотической жизнедеятельности 3-х основных групп бактерий, при этом продукты метаболизма одних групп бактерий являются продуктами питания других групп, в определённой последовательности.

Первая группа - гидролизные бактерии, вторая – кислотообразующие, третья - метанобразующие.

В качестве сырья для производства биогаза могут использоваться как органические агропромышленные или бытовые отходы, так и растительное сырьё.

Наиболее распространёнными видами отходов АПК, используемыми для производства биогаза, являются:

  • навоз свиней и КРС, помёт птицы;
  • остатки с кормового стола комплексов КРС;
  • ботва овощных культур;
  • некондиционный урожай злаковых и овощных культур, сахарной свёклы, кукурузы;
  • жом и меласса;
  • мучка, дробина, мелкое зерно, зародыши;
  • дробина пивная, солодовые ростки, белковый отстой;
  • отходы крахмало-паточного производства;
  • выжимки фруктовые и овощные;
  • сыворотка;
  • и пр.

Источник сырья

Вид сырья

Количество сырья в год, м3 (тн.)

Количество биогаза, м3

1 дойная корова Бесподстилочный жидкий навоз
1 свинья на откорме Бесподстилочный жидкий навоз
1 бычок на откорме Подстилочный твёрдый навоз
1 лошадь Подстилочный твёрдый навоз
100 кур Сухой помёт
1 га пашни Свежий силос кукурузы
1 га пашни Сахарная свёкла
1 га пашни Свежий силос из зерновых культур
1 га пашни Свежий силос из травы

Количество субстратов (видов отходов), используемых для производства биогаза в пределах одной биогазовой установки (БГУ), может варьироваться от одного до десяти и более.

Биогазовые проекты в агропромышленном секторе могут быть созданы по одному из следующих вариантов:

  • производство биогаза из отходов отдельного предприятия (например, навоза животноводческой фермы, жома сахарного завода, барды спиртового завода);
  • производство биогаза на базе отходов разных предприятий, с привязкой проекта к отдельному предприятию либо отдельно расположенной централизованной БГУ;
  • производство биогаза с преимущественным использованием энергетических растений на отдельно расположенных БГУ.

Наиболее распространённым способом энергетического использования биогаза является сжигание в газопоршневых двигателях в составе мини-ТЭЦ, с производством электроэнергии и тепла.

Существуют различные варианты технологических схем биогазовых станций — в зависимости от типов и количества видов применяемых субстратов. Использование предварительной подготовки, в ряде случаев, позволяет добиться увеличения скорости и степени распада сырья в биореакторах, а, следовательно, увеличения общего выхода биогаза. В случае применения нескольких субстратов, отличающихся свойствами, например, жидких и твёрдых отходов, их накопление, предварительная подготовка (разделение на фракции, измельчение, подогрев, гомогенизация, биохимическая или биологическая обработка, и пр.) проводится отдельно, после чего они либо смешиваются перед подачей в биореакторы, либо подаются раздельными потоками.

Основными структурными элементами схемы типичной биогазовой установки являются:

  • система приёма и предварительной подготовки субстратов;
  • система транспортировки субстратов в пределах установки;
  • биореакторы (ферментеры) с системой перемешивания;
  • система обогрева биореакторов;
  • система отвода и очистки биогаза от примесей сероводорода и влаги;
  • накопительные ёмкости сброженной массы и биогаза;
  • система программного контроля и автоматизации технологических процессов.

Технологические схемы БГУ бывают различными в зависимости от вида и числа перерабатываемых субстратов, от вида и качества конечных целевых продуктов, от того или иного используемого «ноу-хау» компании поставщика технологического решения, и ряда других факторов. Наиболее распространёнными на сегодняшний день являются схемы с одноступенчатым сбраживанием нескольких видов субстратов, одним из которых обычно является навоз.

С развитием биогазовых технологий применяемые технические решения усложняются в сторону двухступенчатых схем, что в ряде случаев обосновано технологической необходимостью эффективной переработки отдельных видов субстратов и повышением общей эффективности использования рабочего объема биореакторов.

Особенностью производства биогаза является то, что он может вырабатываться метановыми бактериями только из абсолютно сухих органических веществ. Поэтому задачей первого этапа производства, является создание смеси субстрата, который имеет повышенное содержание органических веществ, и в то же время может перекачиваться насосами. Это субстрат с содержанием сухих веществ 10-12%. Решение достигается путём выделения излишней влаги с помощью шнековых сепараторов.

Жидкий навоз поступает из производственных помещений в резервуар, гомогенизируется с помощью погружной мешалки, и погружным насосом подаётся в цех разделения на шнековые сепараторы. Жидкая фракция накапливается в отдельном резервуаре. Твёрдая фракция загружается в устройство подачи твёрдого сырья.

В соответствии с графиком загрузки субстрата в ферментёр, по разработанной программе периодически включается насос, подающий жидкую фракцию в ферментёр и одновременно включается загрузчик твёрдого сырья. В качестве варианта, жидкая фракция может подаваться в загрузчик твёрдого сырья, имеющего функцию перемешивания, и затем уже готовая смесь подаётся в ферментёр по разработанной программе загрузки.. Включения бывают непродолжительными. Это сделано, чтобы не допустить излишнего поступления органического субстрата в ферментёр, поскольку это может нарушить баланс веществ и вызовет дестабилизацию процесса в ферментёре. Одновременно включаются также насосы, перекачивающие дигестат из ферментёра в дображиватель и из дображивателя в накопитель дигестата (лагуну), чтобы не допустить переполнения ферментёра и дображивателя.

Находящиеся в ферментёре и дображивателе массы дигестата, перемешиваются для обеспечения равномерного распределения бактерий по всему объёму ёмкостей. Для перемешивания используются тихоходные мешалки специальной конструкции.

В процессе нахождения субстрата в ферментёре, бактериями выделяется до 80% всего биогаза, вырабатываемого БГУ. В дображивателе выделяется оставшаяся часть биогаза.

Важную роль в обеспечении стабильного количества выделяемого биогаза играет температура жидкости внутри ферментёра и дображивателя. Как правило, процесс протекает в мезофильном режиме с температурой 41-43ᴼС. Поддержание стабильной температуры достигается применением специальных трубчатых нагревателей внутри ферментёров и дображивателей, а также надёжной теплоизоляцией стен и трубопроводов. Биогаз, выходящий из дигестата, имеет повышенное содержание серы. Очистка биогаза от серы производится с помощью специальных бактерий, заселяющих поверхность утеплителя, уложенного на деревянный балочный свод внутри ферментёров и дображивателей.

Накопление биогаза осуществляется в газгольдере, который образуется между поверхностью дигестата и эластичным высокопрочным материалом, покрывающим ферментёр и дображиватель сверху. Материал имеет способность сильно растягиваться (без уменьшения прочности), что накоплении биогаза значительно увеличивает ёмкость газгольдера. Для предохранения переполнения газгольдера и разрыва материала, имеется предохранительный клапан.

Далее биогаз поступает в когенерационную установку. Когенерационная установка (КГУ) является блоком, в котором осуществляется выработка электрической энергии генераторами, привод которых осуществляют газопоршневые двигатели, работающие на биогазе. Когенераторы работающие на биогазе, имеют конструктивные отличия от обычных газогенераторных двигателей, поскольку биогаз является сильно обеднённым топливом. Вырабатываемая генераторами электрическая энергия, обеспечивает питание электрооборудования самой БГУ, а все сверх этого отпускается близлежащим потребителям. Энергия жидкости, идущей на охлаждение когенераторов и является вырабатываемой тепловой энергией за минусом потерь в бойлерных устройствах. Вырабатываемая тепловая энергия, частично идёт на обогрев ферментёров и дображивателей, а оставшаяся часть – также направляется в близ лежащим потребителям. поступает в

Можно установить дополнительное оборудование для очистки биогаза до уровня природного газа, однако это дорогостоящее оборудование и его применяют, только если целью БГУ является не производство тепловой и электрической энергии, а производство топлива для газопоршневых двигателей. Апробированными и наиболее часто применяемыми технологиями очистки биогаза являются водная абсорбция, адсорбция на носителе под давлением, химическое осаждение и мембранное разделение.

Энергетическая эффективность работы БГУ во многом зависит как от выбранной технологии, материалов и конструкции основных сооружений, так и от климатических условий в районе их расположения. Среднее потребление тепловой энергии на подогрев биореакторов в умеренном климатическом поясе равно 15-30% от энергии, вырабатываемой когенераторами (брутто).

Общая энергетическая эффективность биогазового комплекса с ТЭЦ на биогазе составляет в среднем 75-80%. В ситуации, когда всё тепло, получаемое от когенерационной станции при производстве электроэнергии невозможно потребить (распространённая ситуация из-за отсутствия внешних потребителей тепла), оно отводится в атмосферу. В таком случае, энергетическая эффективность биогазовой ТЭС составляет лишь 35% от общей энергии биогаза.

Основные показатели работы биогазовых установок могут существенно различаться, что во многом определяется применяемыми субстратами, принятым технологическим регламентом, эксплуатационной практикой, выполняемыми задачами каждой отдельной установки.

Процесс переработки навоза составляет не более 40 дней. Получаемый в результате переработки дигестат, не имеет запаха и является прекрасным органическим удобрением, в котором достигнута наибольшая степень минерализации питательных веществ, усваиваемых растениями.

Дигестат, как правило, разделяется на жидкую и твёрдую фракции с помощью шнековых сепараторов. Жидкую фракцию направляют в лагуны, где накапливают до периода внесения в почву. Твёрдая фракция также используется в качестве удобрения. Если применить к твёрдой фракции дополнительную сушку, грануляцию и упаковку, то она будет пригодна для длительного хранения и транспортировки на большие расстояния.

Производство и энергетическое использования биогаза имеет целый ряд обоснованных и подтверждённых мировой практикой преимуществ, а именно:

  1. Возобновляемый источник энергии (ВИЭ). Для производства биогаза используется возобновляемая биомасса.
  2. Широкий спектр используемого сырья для производства биогаза позволяет строить биогазовые установки фактически повсеместно в районах концентрации сельскохозяйственного производства и технологически связанных с ним отраслей промышленности.
  3. Универсальность способов энергетического использования биогаза как, для производства электрической и/или тепловой энергии по месту его образования, так и на любом объекте, подключённом к газотранспортной сети (в случае подачи очищенного биогаза в эту сеть), а также в качестве моторного топлива для автомобилей.
  4. Стабильность производства электроэнергии из биогаза в течение года позволяет покрывать пиковые нагрузки в сети, в том числе и в случае использования нестабильных ВИЭ, например, солнечных и ветровых электростанций.
  5. Создание рабочих мест за счёт формирования рыночной цепочки от поставщиков биомассы до эксплуатирующего персонала энергетических объектов.
  6. Снижение негативного воздействия на окружающую среду за счёт переработки и обезвреживания отходов путём контролированного сбраживания в биогазовых реакторах. Биогазовые технологии – один из основных и наиболее рациональных путей обезвреживания органических отходов. Проекты по производству биогаза позволяют сокращать выбросы парниковых газов в атмосферу.
  7. Агротехнический эффект от применения сброженной в биогазовых реакторах массы на сельскохозяйственных полях проявляется в улучшении структуры почв, регенерации и повышении их плодородия за счёт внесения питательных веществ органического происхождения. Развитие рынка органических удобрений, в том числе из переработанной в биогазовых реакторах массы, в перспективе будет способствовать развитию рынка экологически чистой продукции сельского хозяйства и повышению его конкурентоспособности.

Ориентировочные удельные инвестиционные затраты

БГУ 75 кВтэл. ~ 9.000 €/кВтэл.

БГУ 150 кВтэл. ~ 6.500 €/кВтэл.

БГУ 250 кВтэл. ~ 6.000 €/кВтэл.

БГУ bis 500 кВтэл. ~ 4.500 €/кВтэл.

БГУ 1 МВтэл. ~ 3.500 €/кВтэл.

Выработанная электрическая и тепловая энергия могут обеспечить не только потребности комплекса, но и прилегающей инфраструктуры. Причём сырьё для БГУ бесплатное, что обеспечивает высокую экономическую эффективность после завершения периода окупаемости (4-7 лет). Себестоимость вырабатываемой на БГУ энергии со временем не растёт, а напротив – уменьшается.