В чем выражается взаимодействие генов. Взаимодействие аллельных и неаллельных генов. Явление плейотропии. Неаллельные гены и их взаимодействие

С накоплением научного опыта появлялись противоречия третьему закону Менделя о независимом наследовании. Потомство делилось по фенотипу в соотношении 15:1 или 9:7, а не 9:16 по Менделю. Это свидетельствует об определённых взаимоотношениях неаллельных генов.

Механизм

Неаллельные гены располагаются в разных участках хромосом и кодируют разные виды белков. Гены непосредственно не влияют друг на друга, поэтому взаимодействие происходит в цитоплазме на уровне белков, которые кодируются определёнными генами.

Рис. 1. Неаллельные гены.

Механизм взаимодействия может протекать по одному из трёх сценариев:

  • одновременное действие двух ферментов, которые кодируют два неаллельных гена;
  • один неаллельный ген образует белок, который влияет на работу другого неаллельного гена (подавляет или активирует);
  • два белка, закодированные двумя неаллельными генами, действуют на один процесс, усиливая или восстанавливая один и тот же признак.

Один ген может отвечать за несколько фенотипических признаков или несколько генов могут обуславливать один признак.

Виды

Существует несколько видов взаимодействия неаллельных генов, главные из которых подробно описаны в таблице.

Рис. 2. Комплементарность.

Вид

Описание

Пример

Признак, обусловленный двумя разными генами, проявляется только при сочетании двух доминантных аллелей. Такие гены называются комплементарными. Признак не формируется при отсутствии одного гена. Расщепление фенотипических признаков в F2 происходит в соотношении 9:7, 9:6:1, 9:3:4

Скрещивание душистого горошка с белыми цветками. В F1 все потомки имеют пурпурные цветки, т.к. сочетание доминантных генов А и В кодируют антоциан, придающий пурпурную окраску. По отдельности гены не образуют пурпур. В F2 происходит расщепление - 9 пурпурных (АВ), 7 белых (3 - Abb, 3 - aaB, 1 - aabb)

Одна пара генов подавляет другую, не давая проявиться фенотипическому признаку. Подавляющий ген называется эпистатичным (ген-супрессор или ингибитор), подавляемый - гипостатичным. Ингибитор обозначается буквой I, i. Эпистаз может быть доминантным - подавление доминантным геном (I>B, b) и рецессивным - подавление рецессивным геном (i>B,b). При доминировании происходит расщепление генов в соотношении 7:6:3, 12:3:1, 13:3, при рецессивном проявлении - 9:3:4, 9:7, 13:3

Окраска овсяного зерна: А - чёрный цвет, В - серый цвет. В F1 все зёрна будут чёрного цвета, если ген А эпистатичен (AaBB или IiBB). В F2 произойдёт расщепление по цвету зерна - 12 чёрных, 3 серых и 1 белое. У 12 растений обязательно присутствует I-ген, у 3 он будет в рецессивном состоянии - i. Одному растению достанутся гены iibb (отсутствие чёрной и серой окраски), поэтому он будет белым

Полимерия

Количественные или мерные признаки, которые нельзя чётко разделить по фенотипу (рост, количество молока, жирность скота), определяются совокупностью генов. Выделяют кумулятивный и некумулятивный виды. В первом случае проявление признака зависит от суммы действий генов (чем больше доминантных генов, тем ярче признак). Во втором случае признак проявляется при доминантном гене, количество генов на проявление фенотипа не влияет. При кумулятивном виде в F2 наблюдается расщепление в соотношении 1:4:6:4:1, при некумулятивном - 15:1. Обозначают полимерные гены одной буквой (А, а, В, b и т.д.), а аллели - цифрой. Например, А1а1А2а2

Цвет кожи человека зависит от действия четырёх генов: А1А1А2А2 - чёрный цвет, а1а1а2а2 - белый, А1А1А2а2, А1а1А2А2, А1а1А2а2, А1А1а2а2, а1а1А2А2, А1а1а2а2, а1а1А2а2 - промежуточные значения от тёмного (почти чёрный) до светлого (почти белый) оттенка

Рис. 3. Эпистаз.

Множественное действие генов называется плейотропией. Действие одного гена, как правило, обусловлено взаимодействием с другими генами. Таким эффектом обладает большинство генов, поэтому генотип представляет собой систему взаимодействующих генов.

ТОП-4 статьи которые читают вместе с этой

Что мы узнали?

Узнали кратко о типах взаимодействия неаллельных генов. Существует три типа взаимодействия - комплементарность, эпистаз, полимерия. Для комплементарного проявления признака необходимо наличие двух доминантных генов. Для эпистаза характерно подавление одним геном действие второго гена. Полимерия - взаимодействие совокупности генов. Взаимодействие множества генов называется плейотропией.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 90.

Теперь обратимся к проблеме взаимодействия неаллельных генов. Если развитие признака контролируется более чем одной парой генов, то это означает, что он находится под полигенным контролем. Установлено несколько основных типов взаимодействия генов: комплементарность, эпистаз, полимерия и плейотропия.

Первый случай неаллельного взаимодействия был описан в качестве примера отклонения от законов Менделя английскими учеными У. Бетсоном и Р. Пеннетом в 1904 г. при изучении наследования формы гребня у кур. Различные породы кур характеризуются разной формой гребня. Виандотты имеют низкий, правильный, покрытый сосочками гребень, известный под названием “розовидного”. Брамы и некоторые бойцовые куры обладают узким и высоким гребнем с тремя продольными возвышениями — “гороховидным”. Леггорны имеют простой или листовидный гребень, состоящий из одной вертикальной пластинки. Гибридологический анализ показал, что простой гребень ведет себя как полностью рецессивный признак по отношению к розовидному и гороховидному. Расщепление в F 2 соответствует формуле 3: 1. При скрещивании же между собой рас с розовидным и гороховидным гребнем у гибридов первого поколения развивается совершенно новая форма гребня, напоминающая половинку ядра грецкого ореха, в связи с чем гребень был назван “ореховидным”. При анализе второго поколения было установлено, что соотношение разных форм гребня в F 2 соответствует формуле 9: 3: 3: 1, что указывало на дигибридный характер скрещивания. Была разработана схема скрещивания, объясняющая механизм наследования этого признака.

В определении формы гребня у кур принимают участие два неаллельных гена. Доминантный ген R контролирует развитие розовидного гребня, а доминантный ген P — гороховидного. Комбинация рецессивных аллелей этих генов rrpp вызывает развитие простого гребня. Ореховидный гребень развивается при наличии в генотипе обоих доминантных генов.

Наследование формы гребня у кур можно отнести к комплементарному взаимодействию неаллельных генов. Комплементарными, или дополнительными, считаются гены, которые при совместном действии в генотипе в гомо- или гетерозиготном состоянии обусловливают развитие нового признака. Действие же каждого из генов в отдельности воспроизводит признак одного из родителей.

Схема, иллюстрирующая взаимодействие неаллельных генов,
определяющих форму гребня у кур

Наследование генов, определяющих форму гребня у кур, полностью укладывается в схему дигибридного скрещивания, так как они ведут себя при распределении независимо. Отличие от обычного дигибридного скрещивания проявляется только на уровне фенотипа и сводится к следующему:

  1. Гибриды F 1 не похожи ни на одного из родителей и обладают новым признаком;
  2. В F 2 появляются два новых фенотипических класса, которые являются результатом взаимодействия либо доминантных (ореховидный гребень), либо рецессивных (простой гребень) аллелей двух независимых генов.

Механизм комплементарного взаимодействия подробно изучен на примере наследования окраски глаз у дрозофилы. Красная окраска глаз у мух дикого типа определяется одновременным синтезом двух пигментов — бурого и ярко-красного, каждый из которых контролируется доминантным геном. Мутации, затрагивающие структуру этих генов, блокируют синтез либо того, либо другого пигмента. Так, рецессивная мутация brown (ген находится во 2-й хромосоме) блокирует синтез ярко-красного пигмента, в связи с чем у гомозигот по этой мутации бурые глаза. Рецессивная мутация scarlet (ген располагается в 3-й хромосоме) нарушает синтез бурого пигмента, и поэтому гомозиготы stst имеют ярко-красные глаза. При одновременном присутствии в генотипе обоих мутантных генов в гомозиготном состоянии не вырабатываются оба пигмента и глаза у мух белые.

В описанных примерах комплементарного взаимодействия неаллельных генов формула расщепления по фенотипу в F 2 соответствует 9: 3: 3: 1. Такое расщепление наблюдается в том случае, если взаимодействующие гены по отдельности имеют неодинаковое фенотипическое проявление и оно не совпадает с фенотипом гомозиготного рецессива. Если это условие не соблюдается, в F 2 имеют место иные соотношения фенотипов.

Например, при скрещивании двух разновидностей фигурной тыквы со сферической формой плода гибриды первого поколения обладают новым признаком — плоскими или дисковидными плодами. При скрещивании гибридов между собой в F 2 наблюдается расщепление в соотношении 9 дисковидных: 6 сферических: 1 удлиненная.

Анализ схемы показывает, что в определении формы плода принимают участие два неаллельных гена с одинаковым фенотипическим проявлением (сферическая форма). Взаимодействие доминантных аллелей этих генов дает дисковидную форму, взаимодействие рецессивных аллелей — удлиненную.

Еще один пример комплементарного взаимодействия дает наследование окраски шерсти у мышей. Дикая серая окраска определяется взаимодействием двух доминантных генов. Ген А отвечает за присутствие пигмента, а ген В — за его неравномерное распределение. Если в генотипе присутствует только ген А (А-bb ), то мыши равномерно окрашены в черный цвет. Если присутствует только ген В (ааВ- ), то пигмент не вырабатывается и мыши оказываются неокрашенными, так же как и гомозиготный рецессив ааbb . Такое действие генов приводит к тому, что в F 2 расщепление по фенотипу соответствует формуле 9: 3: 4.


F 2

AB Ab aB ab
AB AABB
сер.
AABb
сер.
AaBB
сер.
AaBb
сер.
Ab AABb
сер.
AAbb
черн.
AaBb
сер.
Aabb
черн.
aB AaBB
сер.
AaBb
сер.
aaBB
бел.
aaBb
бел.
ab AaBb
сер.
Aabb
черн.
aaBb
бел.

aabb
бел.

F 2: 9 сер. : 3 черн. : 4 бел.

Комплементарное взаимодействие описано также при наследовании окраски цветов у душистого горошка. Большая часть сортов этого растения имеет пурпурные цветы с фиолетовыми крыльями, которые характерны для дикой сицилийской расы, но есть также сорта с белой окраской. Скрещивая растения с пурпурной окраской цветов с растениями с белыми цветами Бетсон и Пеннет установили, что пурпурная окраска цветов полностью доминирует над белой, и в F 2 наблюдается соотношение 3: 1. Но в одном случае от скрещивания двух белых растений получилось потомство, состоящее только из растений с окрашенными цветами. При самоопылении растений F 1 было получено потомство, состоящее из двух фенотипических классов: с окрашенными и неокрашенными цветами в соотношении 9/16: 7/16.

Полученные результаты объясняются комплементарным взаимодействием двух пар неаллельных генов, доминантные аллели которых (С и Р ) в отдельности не способны обеспечить развитие пурпурной окраски, так же как и их рецессивные аллели (ссрр ). Окраска проявляется только при наличии в генотипе обоих доминантных генов, взаимодействие которых обеспечивает синтез пигмента.


пурп.
F 2

CP Cp cP cp
CP CCPP
пурп.
CCPp
пурп.
CcPP
пурп.
CcPp
пурп.
Cp CCPp
пурп.
CCpp
бел.
CcPp
пурп.
Ccpp
бел.
cP CcPP
пурп.
CcPp
пурп.
ccPP
бел.
ccPp
бел.
cp CcPp
пурп.
Ccpp
бел.
ccPp
бел.
F 2: 9 пурп. : 7 бел.

В приведенном примере формула расщепления в F 2 — 9: 7 обусловлена отсутствием у доминантных аллелей обоих генов собственного фенотипического проявления. Однако такой же результат получается и в том случае, если взаимодействующие доминантные гены имеют одинаковое фенотипическое проявление. Например, при скрещивании двух сортов кукурузы с фиолетовой окраской зерновок в F 1 все гибриды имеют желтые зерновки, а в F 2 наблюдается расщепление 9/16 желт. : 7/16 фиол.

Эпистаз — другой тип неаллельного взаимодействия, при котором происходит подавление действия одного гена другим неаллельным ему геном. Ген, который препятствует проявлению другого гена, называется эпистатичным, или супрессором, а тот, чье действие подавляется, гипостатичным. В качестве эпистатичного гена может выступать как доминантный, так и рецессивный ген (соответственно доминантный и рецессивный эпистаз).

Примером доминантного эпистаза служит наследование окраски шерсти у лошадей и окраски плодов у тыквы. Схема наследования этих двух признаков абсолютно одинаковая.


F 2

CB Cb cB cb
CB CCBB
сер.
CCBB
сер.
CcBB
сер.
CcBb
сер.
Cb CCBb
сер.
CCbb
сер.
CcBb
сер.
Ccbb
сер.
cB CcBB
сер.
CcBb
сер.
ccBB
черн.
ccBb
черн.
cb CcBb
сер.
Ccbb
сер.
ccBb
черн.
ccbb
рыж.
F 2: 12 сер. : 3 черн. : 1 рыж.

Из схемы видно, что доминантный ген серой окраски С является эпистатичным по отношению к доминантному гену В , который обусловливает черную окраску. В присутствии гена С ген В своего действия не проявляет, и поэтому гибриды F 1 несут признак, определяемый эпистатичным геном. В F 2 класс с обоими доминантными генами сливается по фенотипу (серая окраска) с классом, у которого представлен только эпистатичный ген (12/16). Черная окраска проявляется у 3/16 гибридных потомков, в генотипе которых отсутствует эпистатичный ген. В случае гомозиготного рецессива отсутствие гена-супрессора позволяет проявиться рецессивному гену с, который вызывает развитие рыжей окраски.

Доминантный эпистаз описан также при наследовании окраски пера у кур. Белый цвет оперенья у кур породы леггорнов доминирует над окрашенным черных, рябых и других цветных пород. Однако белая окраска других пород (например, плимутроков) рецессивна по отношению к цветному оперению. Скрещивания между особями с доминантной белой окраской и особями с рецессивной белой окраской в F 1 дают белое потомство. В F 2 наблюдается расщепление в соотношении 13: 3.

Анализ схемы показывает, что в определении окраски пера у кур принимают участие две пары неаллельных генов. Доминантный ген одной пары (I ) является эпистатичным по отношению к доминантному гену другой пары, вызывающему развитие окраски (C ). В связи с этим окрашенное оперение имеют только те особи, в генотипе которых присутствует ген С , но отсутствует эпистатичный ген I . У рецессивных гомозигот ссii отсутствует эпистатичный ген, но у них нет гена, который обеспечивает выработку пигмента (C ), поэтому они имеют белую окраску.

В качестве примера рецессивного эпистаза можно рассмотреть ситуацию с геном альбинизма у животных (см. выше схему наследования окраски шерсти у мышей). Присутствие в генотипе двух аллелей гена альбинизма (аа ) не дает возможности проявиться доминантному гену окраски (B ) — генотипы ааВ- .

Полимерный тип взаимодействия был впервые установлен Г. Нильсеном-Эле при изучении наследования окраски зерна у пшеницы. При скрещивании краснозерного сорта пшеницы с белозерным в первом поколении гибриды были окрашенными, но окраска была розовой. Во втором поколении только 1/16 часть потомства имела красную окраску зерна и 1/16 — белую, у остальных окраска была промежуточной с разной степенью выраженности признака (от бледно-розовой до темно-розовой). Анализ расщепления в F 2 показал, что в определении окраски зерна участвуют две пары неаллельных генов, действие которых суммируется. Степень выраженности красной окраски зависит от количества доминантных генов в генотипе.

Полимерные гены принято обозначать одинаковыми буквами с добавлением индексов, в соответствии с числом неаллельных генов.

Действие доминантных генов в данном скрещивании является аддитивным, так как добавление любого из них усиливает развитие признака.


F 2

A 1 A 2 A 1 a 2 a 1 A 2 a 1 a 2
A 1 A 2 A 1 A 1 A 2 A 2
красн.
A 1 A 1 A 2 Aa 2
ярко-розов.
A 1 a 1 A 2 A 2
ярко-розов.
A 1 a 1 A 2 a 2
розов.
A 1 a 2 A 1 A 1 A 2 a 2
ярко-розов.
A 1 A 1 a 2 a 2
розов.
A 1 a 1 A 2 a 2
розов.
A 1 a 1 a 2 a 2
бледно-розов.
a 1 A 2 A 1 a 1 A 2 A 2
ярко-розов.
A 1 a 1 A 2 a 2
розов.
a 1 a 1 A 2 A 2
розов.
a 1 a 1 A 2 a 2
бледно-розов.
a 1 a 2 A 1 a 1 A 2 a 2
розов.
A 1 a 1 a 2 a 2
бледно-розов.
a 1 a 1 A 2 a 2
бледно-розов.

a 1 a 1 a 2 a 2
бел.

F 2: 15 окраш. : 1 бел.

Описанный тип полимерии, при котором степень развития признака зависит от дозы доминантного гена, называется кумулятивным. Такой характер наследования обычен для количественных признаков, к которым следует отнести и окраску, т.к. ее интенсивность обусловлена количеством вырабатываемого пигмента. Если не учитывать степень выраженности окраски, то соотношение окрашенных и неокрашенных растений в F 2 соответствует формуле 15: 1.

Однако в некоторых случаях полимерия не сопровождается кумулятивным эффектом. В качестве примера можно привести наследование формы семян у пастушьей сумки. Скрещивание двух рас, одна из которых имеет треугольные плоды, а другая яйцевидные дает в первом поколении гибриды с треугольной формой плода, а во втором поколении наблюдается расщепление по этим двум признакам в соотношении 15 треуг. : 1 яйцев.

Данный случай наследования отличается от предыдущего только на фенотипическом уровне: отсутствие кумулятивного эффекта при увеличении дозы доминантных генов обусловливает одинаковую выраженность признака (треугольная форма плода) независимо от их количества в генотипе.

К взаимодействию неаллельных генов относят также явление плейотропии — множественного действия гена, влияния его на развитие нескольких признаков. Плейотропное действие генов является результатом серьезного нарушения обмена веществ, обусловленного мутантной структурой данного гена.

Так, например, ирландские коровы породы декстер отличаются от близкой по происхождению породы керри укороченными ногами и головой, но одновременно лучшими мясными качествами и способностью к откорму. При скрещивании коров и быков породы декстер 25% телят имеют признаки породы керри, 50% сходны с породой декстер, а в остальных 25% случаев наблюдаются выкидыши уродливых бульдогообразных телят. Генетический анализ позволил установить, что причиной гибели части потомства является переход в гомозиготное состояние доминантной мутации, вызывающей недоразвитие гипофиза. В гетерозиготе этот ген приводит к появлению доминантных признаков коротконогости, короткоголовости и повышенной способности к отложению жира. В гомозиготе этот ген имеет летальный эффект, т.е. в отношении гибели потомства он ведет себя как рецессивный ген.

Летальный эффект при переходе в гомозиготное состояние характерен для многих плейотропных мутаций. Так, у лисиц доминантные гены, контролирующие платиновую и беломордую окраски меха, не оказывающие летального действия в гетерозиготе, вызывают гибель гомозиготных зародышей на ранней стадии развития. Аналогичная ситуация имеет место при наследовании серой окраски шерсти у овец породы ширази и недоразвития чешуи у зеркального карпа. Летальный эффект мутаций приводит к тому, что животные этих пород могут быть только гетерозиготными и при внутрипородных скрещиваниях дают расщепление в соотношении 2 мутанта: 1 норма.


F 1
F 1: 2 плат. : 1 черн.

Однако большинство летальных генов рецессивны, и гетерозиготные по ним особи имеют нормальный фенотип. О наличии у родителей таких генов можно судить по появлению в потомстве гомозиготных по ним уродов, абортусов и мертворожденных. Чаще всего подобное наблюдается в близкородственных скрещиваниях, где родители обладают сходными генотипами, и шансы перехода вредных мутаций в гомозиготное состояние достаточно высоки.

Плейотропные гены с летальным эффектом есть у дрозофилы. Так, доминантные гены Curly — загнутые вверх крылья, Star — звездчатые глаза, Notch — зазубренный край крыла и ряд других в гомозиготном состоянии вызывают гибель мух на ранних стадиях развития.

Известная рецессивная мутация white , впервые обнаруженная и изученная Т. Морганом, также имеет плейотропный эффект. В гомозиготном состоянии этот ген блокирует синтез глазных пигментов (белые глаза), снижает жизнеспособность и плодовитость мух и видоизменяет форму семенников у самцов.

У человека примером плейотропии служит болезнь Марфана (синдром паучьих пальцев, или арахнодактилия), которая вызывается доминантным геном, вызывающим усиленный рост пальцев. Одновременно он определяет аномалии хрусталика глаза и порок сердца. Болезнь протекает на фоне повышения интеллекта, в связи с чем ее называют болезнью великих людей. Ею страдали А. Линкольн, Н. Паганини.

Плейотропный эффект гена, по всей видимости, лежит в основе коррелятивной изменчивости, при которой изменение одного признака влечет за собой изменение других.

К взаимодействию неаллельных генов следует отнести также влияние генов-модификаторов, которые ослабляют или усиливают функцию основного структурного гена, контролирующего развитие признака. У дрозофилы известны гены-модификаторы, модифицирующие процесс жилкования крыльев. Известно не менее трех генов-модификаторов, влияющих на количество красного пигмента в волосе крупного рогатого скота, в результате чего окраска шерсти у разных пород колеблется от вишневой до палевой. У человека гены-модификаторы изменяют окраску глаз, усиливая или ослабляя ее интенсивность. Их действием объясняется разная окраска глаз у одного человека.

Существование явления взаимодействия генов привело к появлению таких понятий, как “генотипическая среда” и “генный баланс”. Под генотипической средой подразумевается то окружение, в которое попадает вновь возникающая мутация, т.е. весь комплекс генов, имеющихся в данном генотипе. Понятие “генный баланс” касается соотношения и взаимодействия между собой генов, влияющих на развитие признака. Обычно гены обозначают названием признака, возникающего при мутации. На самом же деле проявление этого признака часто является результатом нарушения функции гена под влиянием других генов (супрессоров, модификаторов и др.). Чем сложнее генетический контроль признака, чем больше генов участвуют в его развитии, тем выше наследственная изменчивость, так как мутация любого гена нарушает генный баланс и приводит к изменению признака. Следовательно, для нормального развития особи необходимо не только присутствие генов в генотипе, но и осуществление всего комплекса межаллельных и неаллельных взаимодействий.

Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга. Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа) и развитие каждого организма есть результат воздействия всего генотипа. Современные представления о взаимодействии генов представлены на Рис. 1.

Рис. 1. Схема взаимодействия генов ()

Аллельные гены - гены, определяющие развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом.

При полном доминировании доминантный ген полностью подавляет проявление рецессивного гена.

Неполное доминирование носит промежуточный характер. При этой форме взаимодействия генов все гомозиготы и гетерозиготы сильно отличаются друг от друга по фенотипу.

Кодоминирование - явление, при котором у гетерозигот проявляются оба родительских признака, то есть доминантный ген в полной мере не подавляет действие рецессивного признака. Примером может служить окрас шерсти коров шортгорнской породы, доминантная окраска - красная, рецессивная - белая, а гетерозигот имеет чалую окраску - часть волосков красного и часть волосков белого цветов (Рис. 2).

Рис. 2. Окрас шерсти коров шортгорнской породы ()

Это пример взаимодействия двух генов.

Известны и другие формы взаимодействия, когда вступают во взаимодействие три и более гена - такой тип взаимодействия носит название множественный аллелизм . За проявление таких признаков отвечают несколько генов, два из которых могут находиться в соответствующих локусах хромосом. Наследование групп крови у человека - пример множественного аллелизма. Группа крови у человека контролируется аутосомным геном, его локус обозначается I, три его аллели обозначаются А, В, 0. А и В - кодоминантны, О - рецессивен по отношению к обоим. Зная, что из трех аллелей в генотипе может быть только две, мы можем предположить, что сочетания могут быть соответствующими четырем группам крови (Рис. 3).

Рис. 3. Группы крови человека ()

Для закрепления материала решите следующую задачу.

Определите, какие группы крови могут быть у ребенка, родившегося от брака между мужчиной, имеющим первую группу крови - I(0) и женщины, имеющей четвертую группу крови - IV(AB).

Неаллельные гены - это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены могут взаимодействовать между собой. Во всех случаях взаимодействия генов менделевские закономерности строго соблюдаются, при этом либо один ген обуславливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Взаимодействие неаллельных генов проявляется в четырех основных формах: эпистаз, комплементарность, полимерия и плейотропия.

Комплементарность - тип взаимодействия генов, при котором признак может проявляться в случае нахождения двух или более генов в генотипе. Так, в образовании хлорофилла у ячменя принимают участие два фермента, если они находятся в генотипе вместе - развивается зеленая окраска хлорофилл, если находится только один ген - растение будет иметь желтую окраску. В случае отсутствия обоих генов растение будет иметь белый окрас и будет нежизнеспособно.

Эпистаз - взаимодействие генов, при котором один неаллельный ген подавляет проявления другого неаллельного гена. Примером служит окраска оперения у кур белых леггорнов, которая контролируется двумя группами ген:

доминантный ген - А, отвечает за белый окрас;

рецессивный ген - а, за цветную окраску;

доминантный ген - В, отвечает за черный окрас;

рецессивный ген - в, за коричневый окрас.

При этом белая окраска подавляет проявление черной (Рис. 4).

Рис. 4. Пример эпистаза белых леггорнов ()

При скрещивании дух гетерозигот, белой курицы и белого петуха, мы видим в решетке Пеннета результаты скрещивания: расщепление по фенотипу в соотношении

12 белых цыплят: 3 черных цыпленка: 1 коричневый цыпленок.

Полимерия - явление, при котором развитие признаков контролируется несколькими неаллельными генами, располагающимися в разных хромосомах.

Чем больше доминантных аллелей данного гена, тем больше выраженность данного признака. Примером полимерии является наследование цвета кожи у человека. За окраску цвета кожи у человека отвечает две пары генов:

если все четыре аллели этих генов будут доминантны, то проявится негроидный тип окраски кожи;

если один их генов будет рецессивный - окраска кожи будет темного мулата;

если две аллели будут рецессивными - окраска будет соответствовать среднему мулату; если будет оставаться только одна доминантная аллель - окраска будет светлого мулата; если рецессивны все четыре аллели - окраска будет соответствовать европеоидному типу кожи (Рис. 5).

Рис. 5. Полимерия, наследование цвета кожи человеком ()

Для закрепления материала решите задачу.

Сын белой женщины и чернокожего мужчины женился на белокожей женщине. Может ли сын, рожденный от такого брака, оказаться темнее своего отца?

Плейотропия - взаимодействие, при котором один ген контролирует развитие нескольких признаков, то есть один ген отвечает за формирование фермента, который влияет не только на свою реакцию, но и оказывает влияние на вторичные реакции биосинтеза.

Примером может являться синдром Марфана (Рис. 6), который вызывается мутантным геном, приводящим к нарушению развития соединительной ткани.

Рис. 6. Синдром Марфана ()

Такое нарушение приводит к тому, что у человека формируются вывих хрусталика глаза, пороки клапана сердца, длинные и тонкие пальцы, пороки развития сосудов и частые вывихи суставов.

Сегодня мы узнали, что генотип - это не простая совокупность генов, а система сложного взаимодействия между ними. Формирование признака есть результат совместного действия нескольких генов.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.
  1. Volna.org ().
  2. Bannikov.narod.ru ().
  3. Studopedia.ru ().

Домашнее задание

  1. Дать определение аллельным генам, назвать их формы взаимодействия.
  2. Дать определение неаллельным генам, назвать их формы взаимодействия.
  3. Решить задачи, предложенные к теме.

Передача признаков из поколения в поколение обусловлена взаимодействием между собой различных генов. Что такое ген, и какие же есть виды взаимодействия между ними?

Что такое ген?

Под геном в настоящее время, подразумевают единицу передачи наследственной информации. Гены находятся в ДНК и образуют ее структурные участки. Каждый ген отвечает за синтез определенной белковой молекулы, которая и обуславливает проявление того или иного признака у человека.

Каждый ген имеет несколько подвидов или аллелей, которые и обуславливают разнообразие признаков (например, карий цвет глаз обусловлен доминантной аллелью гена, в то время как голубой цвет является рецессивным признаком). Аллели расположены в одинаковых участках и передача той или иной хромосомы обуславливает проявление того или иного признака.

Все гены взаимодействуют между собой. Существует несколько видов их взаимодействия - аллельное и неаллельное. Соответственно, выделяют взаимодействие аллельных и неаллельных генов. Чем же они отличаются между собой и как проявляются?

История открытия

До того как были открыты типы взаимодействия неаллельных генов, было принято считать, что возможно только (если есть доминантный ген, то признак проявится; если же его нет, то и признака не будет). Преобладало учение об аллельном взаимодействии, которое долгое время являлось основным догматом генетики. Доминирование тщательно исследовалось, и были открыты такие его типы, как полное и неполное доминирование, кодоминирование и сверхдоминирование.

Все данные принципы подчинялись первому который гласил о единообразии гибридов первого поколения.

При дальнейшем наблюдении и исследовании было замечено, что не все признаки подстраивались под теорию доминирования. При более глубоком изучении было доказано, что не только одинаковые гены влияют на проявление признака или группы свойств. Таким образом и были открыты формы взаимодействия неаллельных генов.

Реакции между генами

Как было сказано, долгое время преобладало учение о доминантном наследовании. В данном случае имело место аллельное взаимодействие, при котором признак проявлялся только в гетерозиготном состоянии. После того как были открыты различные формы взаимодействия неаллельных генов, ученые получили возможность объяснить доселе необъяснимые типы наследования и получить ответы на многие вопросы.

Было выяснено, что генное регулирование напрямую зависело от ферментов. Данные ферменты позволяли генам вступать в реакции по-разному. При этом взаимодействие аллельных и неаллельных генов протекало по одним и тем же принципам и схемам. Это позволило сделать вывод о том, что наследование не зависит от условий, в которых гены взаимодействуют, а причина атипичной передачи признаков кроется в самих генах.

Неаллельное взаимодействие является уникальным, что позволяет получать новые комбинации признаков, обуславливающие новую степень выживания и развития организмов.

Неаллельные гены

Неаллельными называют те гены, что локализуются в различных участках негомологичных хромосом. Функция синтеза у них одна, однако кодируют они образование различных белков, обуславливающих разные признаки. Такие гены, реагируя между собой, могут обуславливать развитие признаков в нескольких комбинациях:

  • Один признак будет обусловлен взаимодействием нескольких, совершенно разных по строению генов.
  • Несколько признаков будут зависеть от одного гена.

Реакции между данными генами протекают несколько сложнее, чем при аллельном взаимодействии. Однако каждый из данных видов реакций обладает собственными чертами и особенностями.

Какие же есть типы взаимодействия неаллельных генов?

  • Эпистаз.
  • Полимерия.
  • Комплементарность.
  • Действие модификаторных генов.
  • Плейотропное взаимодействие.

Каждый из этих типов взаимодействия имеет свои уникальные свойства и проявляется по-своему.

Следует остановиться поподробнее на каждом из них.

Эпистаз

Данное взаимодействие неаллельных генов - эпистаз - наблюдается в том случае, когда один ген подавляет активность другого (подавляющий ген носит название эпистатичного, а подавляемый - гипостатичного гена).

Реакция между данными генами может быть доминантной и рецессивной. Доминантный эпистаз наблюдается в случае, когда эпистатический ген (обычно он обозначается буквой I, если не имеет внешнего, фенотипического проявления) подавляет гипостатический ген (его обычно обозначают В или b). Рецессивный эпистаз наблюдается тогда, когда рецессивная аллель эпистатического гена угнетает проявление любой из аллелей гипостатическогот гена.

Расщепление по фенотипическому признаку, при каждом из видов этих взаимодействий, также отличается. При доминантном эпистазе чаще наблюдается следующая картина: во втором поколении по фенотипам разделение будет следующим - 13:3, 7:6:3 или 12:3:1. Все зависит от того, какие гены сойдутся.

При рециссивном эпистазе разделение такое: 9:3:4, 9:7, 13:3.

Комплементарность

Взаимодействие неаллельных генов, при котором при объединении доминантных аллелей нескольких признаков образуется новый, доселе не встречавшийся фенотип, и называется комплементарностью.

Например, наиболее часто этот тип реакции между генами встречается у растений (особенно у тыкв).

Если в генотипе растения имеется доминантная аллель А или В, то овощ получает сферическую форму. Если же генотип рециссивный, то форма плода обычно удлиненная.

При наличии в генотипе одновременно двух доминантных аллелей (А и В) тыква приобретает дисковидную форму. Если же и дальше проводить скрещивание (т.е. продолжать это взаимодействие неаллельных генов с тыквами чистой линии), то во втором поколении можно получить 9 особей с дисковидной формой, 6 - со сферической и одну тыкву удлиненной формы.

Подобное скрещивание позволяет получать новые, гибридные формы растений с уникальными свойствами.

У людей данный тип взаимодействия обуславливает нормальное развитие слуха (один ген - развитие улитки, другой - слухового нерва), а при наличии только одного доминантного признака проявляется глухота.

Полимерия

Часто в основе проявления признака лежит не наличие доминантной или рецессивной аллели гена, а их количество. Взаимодействие неаллельных генов - полимерия - является примером подобного проявления.

Полимерное действие генов может протекать с накопительным либо без него. При кумуляции степень проявления признака зависит от общего генного взаимодействия (чем больше генов, тем сильнее признак выражен). Потомство при подобном эффекте разделяется следующим образом - 1:4:6:4:1 (степень выраженности признака уменьшается, т.е у одной особи признак максимально выражен, у других наблюдается его угасание вплоть до полного исчезновения).

Если кумулятивного действия не наблюдается, то проявление признака зависит от доминантных аллелей. Если есть хотя бы одна такая аллель, признак будет иметь место. При подобном эффекте расщепление в потомстве протекает в соотношении 15:1.

Действие генов-модификаторов

Взаимодействие неаллельных генов, контролируемое действием модификаторов, наблюдается сравнительно редко. Пример такого взаимодействия следующий:


Подобное взаимодействие неаллельных генов у человека проявляется довольно редко.

Плейотропия

При данном типе взаимодействия один ген регулирует проявление или влияет на степень выраженности другого гена.

У животных плейотропия проявлялась следующим образом:

  • У мышей примером плейотропности является карликовость. Было замечено что при скрещивании фенотипически нормальных мышей в первом поколении все мышата оказались карликовыми. Был сделан вывод, что карликовость обуславливается рецессивным геном. Рецессивные гомозиготы переставали расти, наблюдалась недоразвитость их внутренних органов и желез. Данный ген карликовости влиял на развитие гипофиза у мышей, что и приводило к снижению синтеза гормонов и вызывало все последствия.
  • Платиновая окраска у лисиц. Плейотропия в данном случае проявлялась летальным геном, который при образовании доминантной гомозиготы вызывал гибель эмбрионов.
  • У людей плейотропное взаимодействие показано на примере фенилкетонурии, а также

Роль неаллельного взаимодействия

В эволюционном плане все вышеуказанные виды взаимодействия неаллельных генов играют немаловажную роль. Новые генные комбинации обуславливают появление новых признаков и свойств живых организмов. В некоторых случаях, эти признаки способствуют выживанию организма, в других - наоборот, обуславливают смерть тех особей, что будут значительно выделяться среди своего вида.

Неаллельное взаимодействие генов широко используется в селекционной генетике. Некоторые виды живых организмов сохраняются благодаря подобной генной рекомбинации. Другие виды приобретают свойства, которые высоко ценятся в современном мире (например, выведение новой породы животных, обладающих большей выносливостью и физической силой, чем ее родительские особи).

Ведутся работы по поводу использования данных типов наследования у людей с целью исключения негативных признаков из и создания нового, бездефектного генотипа.

Отклонение от законов Менделя вызывают различные ви­ды взаимодействия генов (за исключением полного домини­рования), обусловленного геномным уровнем организации наследственного материала.

Различают взаимодействия аллельных и неаллельных генов.

Взаимодействие генов одной аллели называется внутриаллельным. Выделяют следующие его виды: полное доминиро­вание, неполное доминирование, сверхдоминирование, кодоминирование и аллельное исключение.

Взаимодействие генов разных аллелей называется межаллельным. Различают следующие его виды: комплементарность, эпистаз, полимерию и "эффект положения".

При комплементарности присутствие в одном ге­нотипе двух доминантных (рецессивных) генов из разных аллельных пар приводит к появлению нового варианта призна­ка. Различают три разновидности комплементарного взаимо­действия генов.

I. Два доминантных неаллельных гена по отдельности не имеют фенотипического проявления, а дополняя друг друга, обусловливают новый вариант признака.

Развитие слуха у человека. Для нормального слуха в генотипе человека должны присутство­вать доминантные гены из разных аллельных пар - D и Е. Ген D отвечает за нормальное развитие улитки, а ген Е - за нор­мальное развитие слухового нерва (DdEe). У рецессивных гомозигот dd будет недоразвита улитка, а при генотипе ее - слуховой нерв. Люди с генотипами D-ee , ddE- и ddee будут глухими.

У млекопитающих и человека для защиты от вирусов выра­батывается специфический белок интерферон . Его синтез в организме человека обусловлен комплементарным взаимо­действием двух неаллельных генов, локализованных в разных (второй и пятой ) хромосомах.

Гемоглобин человека содержит 4 полипептидные цепи, каждая из которых кодируется отдельным независимым ге­ном. Следовательно, в синтезе гемоглобина участвуют 4 ком­плементарных гена.

II. Один из доминантных комплементарных генов имеет фенотипическое проявление, а второй не имеет; одновремен­ное их присутствие в генотипе обусловливает новый вариант признака. Так у мышей наследуется окраска шерсти агути (в основании и на конце волос - черный пигмент, а в средней части - желтое кольцо). Ген А детерминирует синтез черного пигмента, его аллель а не дает информации для синтеза пиг­мента. Ген В распределяет пигмент вдоль волоса неравномер­но, а его аллель b - равномерно:

Расщепление - в соотношении 9:3:4.

III. Каждый из комплементарных генов имеет собственное фенотипическое проявление; одновременное их присутствие в генотипе обусловливает развитие нового варианта признака. Так наследуется форма гребня у кур:

Расщепление - в соотношении 9:3:3:1.

При эпистазе доминантный (рецессивный) ген из од­ной аллельной пары подавляет действие доминантного (ре­цессивного) гена из другой аллельной пары. Это явление про­тивоположно комплементарности. Подавляющий ген назы­вается супрессором (ингибитором ) . Различают доминантный и рецессивный эпистаз. Примером доминантного эпистаза может служить полидактилилия . Иногда встречается у «совершенно здоровых» родителей. Предполагается, что действие данного аллеля у родителей подавлялось другими генеми.

Примером рецессивного эпистаза является "бомбейский фено­мен". У женщины, получившей от матери аллель I В, фенотипиче-ски определялась 1(0) группа крови. При детальном исследова­нии было установлено, что действие гена I В (синтез в эритроци­тах антигена В) было подавлено редким рецессивным геном, который в гомозиготном состоянии оказал эпистатическое дей­ствие. В проявлении некоторых наследственных болезней обме­на веществ (ферментопатий) основную роль играет эпистати­ческое взаимодействие генов, когда наличие или отсутствие продуктов реализации одного гена препятствует образованию активных ферментов, кодируемых другим геном.

При полимерии гены из разных аллельных пар влияют на степень проявления одного и того же признака. Полимер­ные гены принято обозначать одной буквой латинского ал фавита с цифровыми индексами, например A 1 A 1 A 2 а 3 а 3 и т.д. Признаки, детерминируемые полимерными генами, называются полигенными (мультифакториальными). Таким образом у животных и человека наследуются многие количественные и некоторые качественные признаки: рост, масса тела, величи­на артериального давления, цвет кожи и др. Степень проявле­ния этих признаков зависит от количества доминантных ге­нов в генотипе (чем их больше, тем сильнее выражен признак) и в значительной мере от влияния условий среды. У человека может наблюдаться предрасположенность к различным забо­леваниям: гипертонической болезни, ожирению, сахарному диабету, шизофрении и др. Данные признаки при благопри­ятных условиях среды могут и не проявиться или быть слабо­выраженными. Это отличает полигенно-наследуемые признаки от моногенных. Изменяя условия среды и проводя про­филактические мероприятия, можно значительно снизить ча­стоту и степень выраженности некоторых мультифакториальных заболеваний. Суммирование "доз" полимерных генов (ад­дитивное действие ) и влияние среды обеспечивают существо­вание непрерывных рядов количественных изменений. Пиг­ментация кожи у человека определяется пятью или шестью полимерными генами. У коренных жителей Африки преобла­дают доминантные аллели, у представителей европеоидной расы - рецессивные. Мулаты являются гетерозиготами и име­ют промежуточную пигментацию. У родителей-мулатов рож­даются как белые, так и чернокожие дети. Минимальное ко­личество полимерных генов, при котором проявляется при­знак, называется пороговым эффектом.

Под "эффектом положения" понимают взаимное влияние генов разных аллелей, занимающих близлежащие локусы одной хромосомы. Оно проявляется в изменении их функциональной активности. Резус-принадлежность челове­ка определяется тремя генами, расположенными в коротком плече первой хромосомы на близком расстоянии друг от дру­га (тесно сцепленными). Каждый из них имеет доминантную и рецессивную аллели (С , D, Е и с, d, e ). Организмы с набором генов CDE/cDe и CDe/cDE генетически идентичны (у них об­щий баланс генов одинаковый). Однако у лиц с первой ком­бинацией генов образуется много антигена Е и мало антигена С , а у лиц со второй комбинацией аллелей - наоборот, мало антигена Е и много антигена С . Вероятно, близкое соседство аллели Е с аллелью С (первый случай) снижает функциональ­ную активность последней.