Юрьев А.А. "Пулевая спортивная стрельба". Основы внешней баллистики, вращение пули и деривация Образование траектории полета пули

Баллистика делится на внутреннюю (поведение снаряда внутри оружия), внешнюю (поведение снаряда на траектории) и преградную (действие снаряда по цели). В данной теме будут рассмотрены основы внутренней и внешней баллистики. Из преградной баллистики будет рассмотрена раневая баллистика (действие пули на тело клиента). Существующий также раздел судебной баллистики рассматривается в курсе криминалистики и в данном пособии освещен не будет.

Внутренняя баллистика

Внутренняя баллистика зависит от типа используемого пороха и типа ствола.

Условно стволы можно разделить на длинные и короткие.

Длинные стволы (длина боле 250 мм) служат для увеличения начальной скорости пули и ее настильности на траектории. Повышается (по сравнению с короткими стволами) точность. С другой стороны, с длинным стволом всегда более громоздко, чем короткоствольное.

Короткие стволы не придают пуле той скорости и настильности, чем длинные. Пуля имеет большее рассеивание. Но короткоствольное оружие удобно в носке, особенно скрытой, что наиболее целесообразно для оружия самообороны и полицейского оружия. С другой стороны, стволы можно условно разделить на нарезные и гладкие.

Нарезные стволы придают пуле большую скорость и устойчивость на траектории. Такие стволы повсеместно используются для пулевой стрельбы. Для стрельбы пулевыми охотничьими патронами из гладкоствольного оружия часто применяются различные нарезные насадки.

Гладкие стволы . Такие стволы способствуют увеличению рассеивания поражающих элементов при стрельбе. Традиционно используются для стрельбы дробью (картечью), а также для стрельбы специальными охотничьими патронами на небольшие дистанции.

Различают четыре периода выстрела (рис. 13).

Предварительный период (П) длится от начала горения порохового заряда до полного врезания пули в нарезы. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования и достигает 250-500 кг/см 2 . Принимают, что горение порохового заряда на этом этапе происходит в постоянном объеме.

Первый период (1) длится от начала движения пули до полного сгорания порохового заряда. В начале периода, когда скорость движения пули по каналу ствола еще невелика, объем газов растет быстрее, чем запульное пространство. Давление газов достигает своего пика (2000-3000 кг/см 2). Это давление называется максимальным давлением. Затем вследствие быстрого увеличения скорости движения пули и резкого увеличения запульного пространства давление несколько падает и к концу первого периода составляет примерно 2/3 от максимального давления. Скорость движения же постоянно растёт и достигает к концу этого периода примерно 3/4 начальной скорости.
Второй период (2) длится от момента полного сгорания порохового заряда до вылета пули из ствола. С началом этого периода приток пороховых газов прекращается, но сильно сжатые и нагретые газы расширяются и, оказывая давление на дно пули, увеличивают ее скорость. Спад давления в этом периоде происходит достаточно быстро и у дульного среза - дульное давление - составляет 300-1000 кг/см 2 . У некоторых образцов оружия (например, Макарова, да и большинство образцов короткоствольного оружия) второй период отсутствует, поскольку к моменту вылета пули из ствола пороховой заряд до конца не сгорает.

Третий период (3) длится от момента вылета пули из ствола до момента прекращения действия на нее пороховых газов. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают воздействовать на пулю, придавая ей дополнительную скорость. Наибольшей скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола (например, при стрельбе из пистолета расстояние около 3 м). Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха. Далее пуля летит уже по инерции. Это к вопросу о том, почему пуля, выпущенная из пистолета ТТ, не пробивает броню 2-го класса при выстреле в упор и пробивает ее на удалении 3-5 м.

Как уже упоминалось, для снаряжения патронов используются дымный и бездымный порох. Каждый изних имеет свои особенности:

Дымный порох . Этот тип пороха сгорает очень быстро. Его горение похоже на взрыв. Он используется для мгновенного скачка давления в канале ствола. Такой порох обычно используется для гладких стволов, так как трение снаряда о стенки ствола в гладком стволе не столь велико (по сравнению с нарезным стволом) и время нахождения пули в канале ствола меньше. Поэтому в момент вылета пули из ствола достигается большее давление. При применении дымного пороха в нарезном стволе первый период выстрела получается достаточно коротким, за счет чего давление на дно пули уменьшается весьма значительно. Необходимо также отметить, что давление газов сгоревшего дымного пороха примерно в 3-5 раз меньше, нежели у бездымного. На кривой давления газов очень резкий пик максимального давления и достаточно резкий спад давления в первом периоде.

Бездымный порох. Такой порох сгорает медленнее, чем дымный, и поэтому используется для постепенного увеличения давления в канале ствола. Ввиду этого для нарезного оружия стандартно используется бездымный порох. Ввиду вкручивания в нарезы время на полет пули по стволу увеличивается и к моменту вылета пули пороховой заряд полностью сгорает. За счет этого на пулю воздействует полное количество газов, при этом второй период подбирается достаточно небольшим. На кривой давления газов пик максимального давления несколько сглаженный, с пологим спадом давления в первом периоде. Кроме того, полезно обратить внимание на некоторые числовые методы оценки внутрибаллистических решений.

1. Коэффициент могущества (kМ). Показывает энергию, которая приходится.на один условный кубический мм пули. Используется для сравнения пуль однотипных патронов (например, пистолетных). Измеряется в Джоулях на миллиметр в кубе.

KМ = E0/d 3 , где E0 - дульная энергия, Дж, d - пули,мм. Для сравнения: коэффициент могущества для патрона 9х18 ПМ равен 0,35 Дж/мм 3 ; для патрона 7,62х25 ТТ - 1,04 Дж/мм 3 ; дляпатрона.45АСР - 0,31 Дж/мм 3 . 2. Коэффициент использования металла (kme). Показывает энергию выстрела, которая приходится на один грамм оружия. Используется для сравнения пуль патронов под один образец или для сравнения относительной энергии выстрела для различных патронов. Измеряется в Джоулях на грамм. Часто коэффициент использования металла принимают как упрощенный вариант расчета отдачи оружия. kme=E0/m, где Е0 - дульная энергия, Дж, m - масса оружия, г. Для сравнения: коэффициент использования металла для пистолета ПМ, автомата и винтовки соответственно равны 0,37, 0,66 и 0,76 Дж/г.

Внешняя баллистика

Для начала необходимо представить полную траекторию полета пули (рис. 14).
В пояснение к рисунку необходимо отметить, что линия вылета пули (линия бросания) будет иная, нежели направление ствола (линия возвышения). Это происходит из-за возникновения при выстреле колебаний ствола, которые влияют на траекторию полета пули, а также из-за отдачи оружия при выстреле. Естественно, что угол вылета (12) будет крайне мал; более того, чем лучше выделка ствола и расчет внутрибаллистических характеристик оружия, тем угол вылета будет меньше.
Примерно первые две трети восходящей линии траектории можно считать прямой. Ввиду этого выделяют три дистанции ведения огня (рис. 15). Таким образом, влияние сторонних условий на траекторию описывается простым квадратным уравнением, а в графике представляет собой параболу. Кроме сторонних условий на отклонение пули от траектории также влияют и некоторые конструктивные особенности пули и патрона. Ниже будет рассмотрен комплекс событий; отклоняющих пулю от первоначальной траектории. Баллистические таблицы этой темы содержат данные по баллистике пули патрона 7,62x54R 7H1 при стрельбе из винтовки СВД. Вообще, влияние сторонних условий на полет пули можно показать следующей диаграммой (рис. 16).


Рассеивание

Нужно еще раз заметить, что благодаря нарезному стволу пуля приобретает вращение вокруг своей продольной оси, что придает большую настильность (прямолинейность) полету пули. Поэтому дистанция кинжального огня несколько увеличивается по сравнению с пулей, выпущенной из гладкого ствола. Но постепенно к дистанции навесного огня из-за уже упомянутых сторонних условий ось вращения несколько смещается от центральной оси пули, поэтому в поперечном разрезе получается круг разлета пули - среднее отклонение пули от первоначальной траектории. Учитывая такое поведение пули, ее возможную траекторию можно представить в виде одноплоскостного гиперболоида (рис. 17). Смещение пули от основной директрисы за счет смещения оси ее вращения называется рассеиванием. Пуля с полной вероятностью оказывается в круге рассеивания, диаметр (по
перечник) которого определяется для каждой конкретной дистанции. Но конкретная точка попадания пули внутри этого круга неизвестна.

В табл. 3 приведены, радиусы рассеивания для стрельбы на различные дистанции.

Таблица 3

Рассеивание

Дальность огня (м)
  • Диаметр рассеивания (см)
  • Учитывая размер стандартной головной мишени 50х30 см, а грудной - 50х50 см, можно отметить, что максимальная дистанция гарантированного попадания составляет 600 м. На большей дистанции рассеивание не позволяет гарантировать точность выстрела.
  • Деривация

  • За счет сложных физических процессов вращающаяся пуля в полете несколько отклоняется от плоскости стрельбы. Причем в случае правосторонних нарезов (пуля вращается по часовой стрелке, если смотреть сзади) пуля отклоняется вправо, в случае левосторонних - влево.
    В табл. 4 показаны величины деривационных отклонений при стрельбе на различные дальности.
  • Таблица 4
  • Деривация
    • Дальность огня (м)
    • Деривация (см)
    • 1000
    • 1200
    • Учесть при стрельбе деривационное отклонение проще, чем рассеивание. Но, учитывая обе эти величины, необходимо отметить, что центр рассеивания несколько сместится на величину деривационного смещения пули.
    • Смещение пули ветром

    • Среди всех сторонних условий, влияющих на полет пули (влажность, давление и т. д.), необходимо выделить наиболее серьезный фактор - влияние ветра. Ветер достаточно серьезно сносит пулю, особенно в конце восходящей ветви траектории и далее.
      Смещение пули боковым ветром (под углом 90 0 к траектории) средней силы (6-8 м/с) показано в табл. 5.
    • Таблица 5
    • Смещение пули ветром
      • Дальность огня (м)
      • Смещение (см)
      • Для выяснения смещения пули сильным ветром (12-16 м/с) необходимо удвоить значения таблицы, для слабого ветра (3-4 м/с) табличные значения делят пополам. Для ветра, дующего под углом 45° к траектории, табличные значения также делятся пополам.
      • Время полета пули

      • Для решения простейших баллистических задач необходимо отметить зависимость времени полета пули от дальности стрельбы. Не учитывая этого фактора, достаточно проблематично будет попасть даже в медленно движущуюся мишень.
        Время полета пули до цели представлено в табл. 6.
        Таблица 6

        Время полета пули до цели

          • Дальность огня (м)
          • Время полета (с)
          • 0,15
          • 0,28
          • 0,42
          • 0,60
          • 0,80
          • 1,02
          • 1,26

          Решение баллистических задач

        • Для этого полезно изготовить график зависимости смещения (рассеивания, времени полета пули) от дальности стрельбы. Такой график позволит легко вычислять промежуточные значения (например, на 350 м), а также позволит предположить затабличные значения функции.
          На рис. 18 представлена простейшая баллистическая задача.
        • Стрельба ведется на дистанцию 600 м, ветер под углом 45° к траектории дует сзади-слева.

          Вопрос: диаметр круга рассеивания и смещение его центра от цели; время полета до цели.

        • Решение: Диаметр круга рассеивания 48 см (см. табл. 3). Деривационное смещение центра - 12 см вправо (см. табл. 4). Смещение пули ветром - 115 см (110*2/2 + 5% (за счет направления ветра по направлению деривационного смещения)) (см. табл. 5). Время полета пули - 1,07 с (время полета + 5% за счет направления ветра по направлению полета пули)(см.табл. 6).
        • Ответ; пуля пролетит 600 м за 1,07 с, диаметр круга рассеивания будет равен 48 см, причем его центр сместится вправо на 127 см. Естественно, данные ответа достаточно приблизительны, но их расхождение с реальными данными не более 10%.
        • Преградная и раневая баллистика

        • Преградная баллистика

        • Воздействие пули на преграды (как, впрочем, и все остальное) достаточно удобно определить некоторыми математическими формулами.
        1. Пробиваемость преград (П). Пробиваемость определяет, насколько вероятно пробитие той или иной преграды. При этом полная вероятность берется за
        1. Используется обычно для определения вероятности пробивания на различных дис
      • танциях разных классов пассивной бронезащиты.
        Пробиваемость - величина безразмерная.
      • П= Еn / Епр,
      • где En - энергия пули в данной точке траектории, в Дж; Епр - энергия, необходимая для пробития преграды, в Дж.
      • Учитывая стандартные Епр для бронежилетов (БЖ) (500 Дж для защиты от пистолетных патронов, 1000 Дж - от промежуточных и 3000 Дж - от винтовочных) и достаточную энергию для поражения человека (max 50 Дж), легко рассчитать вероятность поражения соответствующих БЖ пулей того или иного патрона. Так, вероятность пробития стандартного пистолетного БЖ пулей патрона 9х18 ПМ будет равна 0,56, а пулей патрона 7,62х25 ТТ - 1,01. Вероятность пробития стандартного автоматного БЖ пулей патрона 7,62х39 АКМ будет равна 1,32, а пулей патрона 5,45х39 АК-74 - 0,87. Приведенные числовые данные рассчитаны для дистанции 10 м для пистолетных патронов и 25 м - для промежуточных. 2. Коэффициент, удара (ky). Коэффициент удара показывает энергию пули, которая приходится на квадратный миллиметр ее максимального сечения. Коэффициент удара используется для сравнения патронов одного или различных классов. Измеряется он в Дж на квадратный миллиметр. ky=En/Sп, где Еn - энергия пули на данной точке траектории, в Дж, Sn - площадь максимального поперечного сечения пули, вмм 2 . Таким образом, коэффициенты удара для пуль патронов 9х18 ПМ, 7,62х25 ТТ и.40 Auto на дистанции 25 м будут равны соответственно 1,2; 4,3 и 3,18 Дж/мм 2 . Для сравнения: на этой же дистанции коэффициенту удара пуль патронов 7,62х39 АКМ и 7,62x54R СВД соответственно равны 21,8 и 36,2 Дж/мм 2 .

        Раневая баллистика

        Как же ведет себя пуля, попадая в тело? Выяснение этого вопроса является важнейшей характеристикой для выбора оружия и боеприпаса для конкретной операции. Разделяются два вида воздействия пули на цель: останавливающее и проникающее, в принципе,эти два понятия имеют обратную зависимость. Останавливающее воздействие (0В). Естественно, что максимально надежно противник останавливается, когда пуля попадает в определенное место на теле человека (голова, позвоночник, почки), но некоторые типы боеприпасов имеют большое 0В и при попадании во второстепенные цели. В общем случае 0В прямо пропорционально калибру пули, ее массе и скорости в момент встречи с целью. Также 0В увеличивается при использовании свинцовых и экспансивных пуль. Нужно помнить, что увеличение 0В сокращает длину раневого канала (но увеличивает ее поперечник) и снижает действие пули по защищенной бронеодеждой цели. Один из вариантов математического расчета ОВ предложен в 1935 году американцем Ю. Хатчером: 0В = 0,178*m*V*S*k, где m - масса пули, г; V- скорость пули в момент встречи с целью, м/с; S - поперечная площадь пули, см 2 ; k - коэффициент формы пули (от 0,9 цельнооболочечных до 1,25 для экспансивных пуль). По таким расчетам, на дистанции 15 м пули патронов 7,62х25 ТТ, 9х18 ПМ и.45 имеют ОБ соответственно 171, 250 в 640. Для сравнения: ОБ пули патрона 7,62х39 (АКМ) = 470, а пули 7,62х54 (ОВД) = 650. Проникающее воздействие (ПВ). ПВ можно определить как возможность пули проникнуть на максимальную глубину в цель. Проникающая способность выше (при прочих равных условиях) у пуль малого калибра и слабо деформирующихся в теле (стальных, цельнооболочечных). Высокое проникающее воздействие улучшает действие пули по защищенным бронеодеждой целям. На рис. 19 показано действие стандартной оболочечной пули ПМ со стальным сердечником. При попадании пули в тело образуются раневой канал и раневая полость. Раневой канал - канал, пробитый непосредственно пулей. Раневая полость - полость повреждений волокон и сосудов, вызванных натяжением и разрывом их пулей. Огнестрельные ранения подразделяются на сквозные, слепые, секущие.

        Сквозные ранения

        Сквозное ранение возникает при прохождении пули насквозь через тело. При этом наблюдается наличие входного и выходного отверстий. Входное отверстие небольшое, меньше калибра пули. При прямом попадании края раны ровные, а при попадании через плотную одежду под углом - с небольшим надрывом. Часто входное отверстие достаточно быстро затягивается. Следы кровотечения отсутствуют (кроме поражения крупных сосудов или при положении раны внизу). Выходное отверстие большое, может превышать калибр пули на порядки. Края раны рваные, неровные, разошедшиеся в стороны. Наблюдается быстро развивающаяся опухоль. Зачастую наблюдается сильное кровотечение. При несмертельных ранениях быстро развивается нагноение. При смертельных ранениях кожа вокруг раны быстро синеет. Сквозные ранения характерны для пуль с высоким проникающим воздействием (преимущественно для автоматных и винтовочных). При прохождении пули через мягкие ткани внутреннее ранение осевое, с небольшим повреждением соседних органов. При ранениях пулей патрона 5,45х39 (АК-74) стальной сердечник пули в теле может выйти из оболочки. В результате возникают два раневых канала и, соответственно, два выходных отверстия (от оболочки и сердечника). Такие ранения чаще все го возникают при попадании через плотную одежду (бушлат). Зачастую раневой канал от пули слепой. При попадании пули в скелет обычно возникает слепое ранение, но при большой мощности боеприпаса вероятно и сквозное. В этом случае наблюдаются большие внутренние повреждения от осколков и частей скелета с увеличением раневого канала к выходному отверстию. При этом раневой канал может «ломаться» за счет рикошета пули от скелета. Сквозные ранения в голову характеризуются растрескиванием или разломом костей черепа, часто неосевым раневым каналом. Череп растрескивается даже при попадании свинцовых безоболочечных пуль калибра 5,6 мм, не говоря уже о более мощных боеприпасах. В большинстве случаев такие ранения смертельны. При сквозных ранениях в голову часто наблюдается сильное кровотечение (длительное вытекание крови из трупа), разумеется, при положении раны сбоку или внизу. Входное отверстие довольно ровное, а выходное - неровное, с множеством растрескиваний. Смертельная рана достаточно быстро синеет и опухает. В случае растрескивания возможны нарушения кожного покрова головы. На ощупь череп легко проминается, чувствуются осколки. При ранениях достаточно сильными боеприпасами (пули патронов 7,62х39, 7,62х54) и ранениях экспансивными пулями возможно очень широкое выходное отверстие с долгим вытеканием крови и мозгового вещества.

        Слепые ранения

        Такие ранения возникают при попадании пуль менее мощных (пистолетных) боеприпасов, использовании экспансивных пуль, прохождении пули через скелет, ранение пулей на излете. При таких ранениях входное отверстие также достаточно небольшое и ровное. Слепые ранения обычно характеризуются множественными внутренними повреждениями. При ранении экспансивными пулями раневой канал очень широкий, с большой раневой полостью. Слепые ранения зачастую не осевые. Это наблюдается при попадании более слабыми боеприпасами в скелет - пуля уходит в сторону от входного отверстия плюс повреждения от осколков скелета, оболочки. При попадании таких пуль в череп последний сильно растрескивается. Образуется большое входное отверстие в кости, и сильно поражаются внутричерепные органы.

        Секущие ранения

        Секущие ранения наблюдаются при попадании пули в тело под острым углом с нарушением только кожного покрова и внешних частей мышц. В большинстве своем ранения неопасные. Характеризуются разрывом кожи; края раны неровные, рваные, часто сильно расходятся. Иногда наблюдается достаточно сильное кровотечение, особенно при разрыве крупных подкожных сосудов.

Выстрел представляет собой сложный комплекс физических и химических явлений. Событие выстрела можно условно разделить на две стадии - движение снаряда в канале ствола орудия и комплекс явлений, происходящих после вылета снаряда из ствола.

Выстрелом называется выбрасывание пули из канала ствола под действием пороховых газов, образующихся при сгорании порохового заряда. От удара бойка по капсюлю патрона возникает пламя, воспламеняющее пороховой заряд. При этом образуется большое количество сильно нагретых газов, которые создают высокое давление, действующее во все стороны с одинаковой силой. При давлении газов 250–500 кг/см 2 пуля сдвигается с места и врезается в нарезы канала ствола, получая вращательное движение. Порох продолжает гореть, следовательно, количество газов увеличивается. Затем вследствие быстрого повышения скорости движения пули объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать. Однако скорость пули в канале ствола продолжает расти, так как газы, хотя и в меньшей степени, но по-прежнему давят на нее. Пуля продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Весь процесс выстрела происходит за очень короткий промежуток времени (0,001–0,06 с). Далее полет пули в воздухе продолжается по инерции и в значительной степени зависит от ее начальной скорости.

Начальной скоростью пули называется скорость, с которой пуля покидает канал ствола. Величина начальной скорости пули зависит от длины ствола, массы пули, массы порохового заряда и других факторов. Возрастание начальной скорости увеличиваете дальность полета пули, ее пробивное и убойное действие, уменьшает влияние внешних условий на ее полет. Движение оружия назад во время выстрела называется отдачей. Давление пороховых газов в канале ствола действует во все стороны с одинаковой силой. Давление газов на дно пули заставляет ее двигаться вперед, а давление на дно гильзы передается на затвор и вызывает движение оружия назад. При отдаче образуется пара сил, под действием которой дульная часть оружия отклоняется кверху. Сила отдачи действует вдоль оси канала ствола, а упор приклада в плечо и центр тяжести оружия расположены ниже направления этой силы, поэтому при стрельбе дульная часть оружия отклоняется кверху.

Отдача стрелкового оружия ощущается в виде толчка в плечо, руку или в грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у автомата Калашникова невелика и воспринимается стреляющим безболезненно. Правильное и однообразное удержание оружия уменьшает влияние отдачи и повышает результативность стрельбы. Наличие дульных тормозов-компенсаторов ил компенсаторов у оружия улучшает результаты стрельбы очередями и уменьшает отдачу.

В момент выстрела ствол оружия в зависимости от угла возвышения занимает определенное положение. Полет пули в воздухе начинается по прямой линии, представляющей продолжение оси канала ствола в момент вылета пули. Эта линия называется линией бросания . При полете в воздухе на пулю действуют две силы: сила тяжести и сила сопротивления воздуха. Сила тяжести все больше отклоняет пулю вниз от линии бросания, а сила сопротивления воздуха замедляет движение пули. Под действием этих двух сил пуля продолжает полет по кривой, расположенной ниже линии бросания. Форма траектории зависит от величины угла возвышения и начальной скорости пули, она влияет на величину дальности прямого выстрела, прикрытого, поражаемого и мертвого пространства. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности . Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35 °. Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными.

Прямым выстрелом называется выстрел, при котором траектория полета пули не поднимается над линией прицеливания выше цели на всем своем протяжении.

Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и настильнее траектория, тем больше дальность прямого выстрела и, следовательно, расстояние, на котором цель может быть поражена с одной установкой прицела. Практическое значение прямого выстрела заключается в том, что в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте будет выбираться по нижнему обрезу цели.

Пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством .

Прикрытое пространство тем больше, чем выше укрытие и настильнее траектория. Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (непоражаемым) пространством. Оно тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Периодизация выстрела

Выстрел происходит в очень короткий промежуток времени (0,001-0,06с.). При выстреле различают четыре последовательных периода:

  • предварительный;
  • первый, или основной;
  • второй;
  • третий, или период последних газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250 - 500 кг/см 2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки (например, у стрелкового оружия под патрон образца 1943 г. давление форсирования равно около 300 кг/см 2). Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины (например, у стрелкового оружия под патрон образца 1943г. - 2800 кг/см 2 , а под винтовочный патрон 2900 кг/см 2). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4 - 6 см пути. Затем вследствие быстрого скорости движение пули объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится до момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза дульное давление составляет у различных образцов оружия 300 - 900 кг/см 2 (например, у самозарядного карабина Симонова - 390 кг/см 2 , у станкового пулемета Горюнова - 570 кг/см 2). Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

2.3.4 Зависимость формы траектории от угла бросания. Элементы траектории

Угол, образуемый горизонтом оружия и продолжением оси канала ствола до выстрела, называется углом возвышения .

Однако правильнее говорить о зависимости горизонтальной дальности стрельбы, а следовательно, и формы траектории от угла бросания , который является алгебраической суммой угла возвышения и угла вылета (рис. 48).

Рис. 48 - Угол возвышения и угол бросания

Итак, между дальностью полета пули и углом бросания существует определенная зависимость.


Согласно законам механики, наибольшая горизонтальная дальность полета в безвоздушном пространстве достигается, когда угол бросания равен 45°. С увеличением угла от 0 до 45° дальность полета пули возрастает, а от 45 до 90° - уменьшается. Угол бросания, при котором горизонтальная дальность полета пули наибольшая, называется углом наибольшей дальности .

При полете пули в воздухе угол наибольшей дальности не достигает 45°. Величина его для современного стрелкового оружия колеблется в пределах 30-35°, в зависимости от веса и формы пули.

Траектории, образуемые при углах бросания меньше угла наибольшей дальности (0-35°), называются настильными . Траектории, образуемые при углах бросания больше угла наибольшей дальности (35-90°), называются навесными (рис. 49).


Рис. 49 - Настильные и навесные траектории

При изучении движения пули в воздухе применяют обозначения элементов траектории, указанные на рис. 50.


Рис. 50 - Траектория и ее элементы:
точка вылета - центр дульного среза ствола; она является началом траектории;
горизонт оружия - горизонтальная плоскость, проходящая через точку вылета. На чертежах и рисунках, изображающих траекторию сбоку, горизонт имеет вид горизонтальной линии;
линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия;
линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент выстрела. Касательная к траектории в точке вылета;
плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения;
угол возвышения - угол, составленный линией возвышения и горизонтом оружия;
угол бросания - угол, составленный линией бросания и горизонтом оружия;
угол вылета - угол, составленный линией возвышения и линией бросания;
точка падения - точка пересечения траектории с горизонтом оружия;
угол падения - угол, составленный касательной к траектории в точке падения и горизонтом оружия;
горизонтальная дальность - расстояние от точки вылета до точки падения;
вершина траектории - наивысшая точка траектории над горизонтом оружия. Вершина делит траекторию на две части - ветви траектории;
восходящая ветвь траектории - часть траектории от точки вылета до вершины;
нисходящая ветвь траектории - часть траектории от вершины до точки падения;
высота траектории - расстояние от вершины траектории до горизонта оружия.

Поскольку при спортивной стрельбе дистанции для каждого вида оружия остаются в основном неизменными, многие стрелки вообще не задумываются, под каким углом возвышения или бросания нужно стрелять. В практике значительно удобнее оказалось угол бросания заменить другим, очень схожим с ним, - углом прицеливания (рис. 51). Поэтому, несколько отступая от изложения вопросов внешней баллистики, мы даем элементы наводки оружия (рис. 52).


Рис. 51 - Линия прицеливания и угол прицеливания


Рис. 52 - Элементы наводки оружия в цель:
линия прицеливания - прямая, проходящая от глаза стрелка через прорези прицела и вершину мушки в точку прицеливания;
точка прицеливания - точка пересечения линии прицеливания с целью или плоскостью цели (при выносе точки прицеливания);
угол прицеливания - угол, составленный линией прицеливания и линией возвышения;
угол места цели - угол, составленный линией прицеливания и горизонтом оружия;
угол возвышения - алгебраическая сумма углов прицеливания и угла места цели.

Стрелку не мешает знать и степень отлогости траекторий пуль, применяемых в спортивной стрельбе. Поэтому мы приводим графики, характеризующие превышение траектории при стрельбе из различных винтовок, пистолетов и револьверов (рис. 53-57).


Рис. 53 - Превышение траектории над линией прицеливания при стрельбе 7,6-мм тяжелой пулей из служебной винтовки


Рис. 54 - Превышение траектории пули над линией прицеливания при стрельбе из малокалиберной винтовки (при V 0 =300 м/сек)


Рис. 55 - Превышение траектории пули над линией прицеливания при стрельбе из малокалиберного пистолета (при V 0 =210 м/сек)


Рис. 56 - Превышение траектории пули над линией прицеливания при стрельбе:
а - из перествольного револьвера (при V 0 =260 м/сек); б - из пистолета ПМ (при V 0 =315 м/сек).


Рис. 57 - Превышение траектории пули над линией прицеливания при стрельбе из винтовки 5,6-мм спортивно-охотничьим патроном (при V 0 =880 м/сек)

2.3.5 Зависимость формы траектории от величины начальной скорости пули, ее формы и поперечной нагрузки

Сохраняя свои основные свойства и элементы, траектории пуль могут резко отличаться одна от другой по своей форме: быть длиннее и короче, иметь различную отлогость и кривизну. Эти многообразные изменения зависят от ряда факторов.

Влияние начальной скорости . Если под одним и тем же углом бросания выпустить с различными начальными скоростями две одинаковые пули, то траектория пули, обладающей большей начальной скоростью, окажется выше траектории пули, имевшей меньшую начальную скорость (рис. 58).


Рис. 58 - Зависимость высоты траектории и дальности полета пули от начальной скорости

Пуле, летящей с меньшей начальной скоростью, потребуется больше времени, чтобы долететь до мишени, поэтому под действием силы тяжести она успеет и значительно больше опуститься вниз. Очевидно также, что с увеличением скорости увеличится и дальность ее лёта.

Влияние формы пули . Стремление увеличить дальность и меткость стрельбы требовало придать пуле такую форму, которая позволила бы ей как можно дольше сохранять скорость и устойчивость в полете.

Сгущение частиц воздуха перед головной частью пули и зона разреженного пространства позади нее являются основными факторами силы сопротивления воздуха. Головная волна, резко увеличивающая торможение пули, возникает при ее скорости, равной скорости звука или превышающей ее (свыше 340 м/сек).

Если скорость пули меньше скорости звука, то она летит у самого гребня звуковой волны, не испытывая чрезмерно большого сопротивления воздуха. Если же она больше скорости звука, пуля обгоняет все звуковые волны, образующиеся перед ее головной частью. В этом случае возникает головная баллистическая волна, которая значительно сильнее тормозит полет пули, отчего она быстро теряет скорость.

Если взглянуть на очертания головной волны и завихрения воздуха, которые возникают при движении различных по форме пуль (рис. 59), то видно, что давление на головную часть пули тем меньше, чем острее ее форма. Зона разреженного пространства сзади пули тем меньше, чем больше скошена хвостовая ее часть; в этом случае сзади летящей пули будет также меньше завихрений.


Рис. 59 - Характер очертаний головной волны, возникающей при движении различных по форме пуль

И теория, и практика подтвердили, что наиболее удобообтекаема та форма пули, которая очерчена по так называемой кривой наименьшего сопротивления - сигаровидная. Опыты показывают, что коэффициент сопротивления воздуха в зависимости только от формы головной части пули может изменяться в полтора-два раза.

Различной скорости полета соответствует своя, наиболее выгодная, форма пули.

При стрельбе на небольшие расстояния пулями, имеющими небольшую начальную скорость, их форма незначительно влияет на форму траектории. Поэтому револьверные, пистолетные и малокалиберные патроны снаряжаются тупоконечными пулями: это удобнее для перезарядки оружия, а также способствует сохранению ее от повреждений (особенно безоболочечных - к малокалиберному оружию).

Учитывая зависимость точности стрельбы от формы пули, стрелку необходимо оберегать пулю от деформации, следить, чтобы на ее поверхности не появились царапины, забоины, вмятины и т.п.

Влияние поперечной нагрузки . Чем тяжелее пуля, тем большей кинетической энергией она обладает, следовательно, тем меньше влияет на ее полет сила сопротивления воздуха. Однако способность пули сохранять свою скорость зависит не просто от ее веса, а от отношения веса к площади, встречающей сопротивление воздуха. Отношение веса пули к площади ее наибольшего поперечного сечения называется поперечной нагрузкой (рис. 60).


Рис. 60 - Площадь поперечного сечения пуль:
а - к 7,62-мм винтовке; б - к 6,5-мм винтовке; в - к 9-мм пистолету; г - к 5,6-мм винтовке для стрельбы по мишени "Бегущий олень"; д - к 5,6-мм винтовке бокового огня (длинный патрон).

Поперечная нагрузка тем больше, чем больше вес пули и меньше калибр. Следовательно, при одинаковом калибре поперечная нагрузка больше у пули более длинной. Пуля с большей поперечной нагрузкой имеет и большую дальность полета, и более отлогую траекторию (рис. 61).


Рис. 61 - Влияние поперечной нагрузки пули на дальность ее полета

Однако есть и определенный предел увеличения этой нагрузки. Прежде всего, с увеличением ее (при том же калибре) возрастает общий вес пули, а значит, и отдача оружия. Кроме того, увеличение поперечной нагрузки за счет чрезмерного удлинения пули вызовет значительное опрокидывающее действие головной ее части назад силой сопротивления воздуха. Из этого и исходят, устанавливая наиболее выгодные габариты современных пуль. Так, поперечная нагрузка тяжелой пули (вес 11,75 г) для служебной винтовки равна 26 г/см 2 , малокалиберной пули (вес 2,6 г) - 10,4 г/см 2 .

Насколько велико влияние поперечной нагрузки пули на ее полет, видно из следующих данных: у тяжелой пули, имеющей начальную скорость порядка 770 м/сек, наибольшая дальность полета 5100 м, у легкой пули при начальной скорости 865 м/сек - всего 3400 м.

2.3.6 Зависимость траектории от метеорологических условий

Непрерывно меняющиеся во время стрельбы метеорологические условия могут оказывать существенное влияние на полет пули. Однако определенные знания и практический опыт помогают в значительной мере ослабить их вредное влияние на меткость стрельбы.

Поскольку дистанции спортивной стрельбы относительно невелики и пуля пролетает их за очень незначительное время, некоторые атмосферные факторы, например плотность воздуха, не окажут существенного влияния на ее полет. Поэтому в спортивной стрельбе приходится учитывать главным образом влияние ветра и в известной степени температуру воздуха.

Влияние ветра . Встречный и попутный ветры незначительно влияют на точность стрельбы, поэтому стрелки обычно пренебрегают их действием. Так, при стрельбе на дистанцию 600 м сильный (10 м/сек) встречный или попутный ветер изменяет СТП по высоте всего лишь на 4 см.

Боковой же ветер значительно отклоняет пулю в сторону, причем даже при стрельбе на близкие расстояния.

Ветер характеризуется силой (скоростью) и направлением.

Сила ветра определяется его скоростью в метрах в секунду. В стрелковой практике различают ветер: слабый - 2 м/сек, умеренный - 4-5 м/сек и сильный - 8-10 м/сек.

Силу и направление ветра стрелки практически определяют по раазличным местным признакам: с помощью флага, по движению дыма, колебанию травы, кустов и деревьев и т.д. (рис. 62).


Рис. 62 - Определение силы ветра по флагу и по дыму

В зависимости от силы и направления ветра следует либо производить боковую поправку прицела, либо выносить точку, прицеливая в сторону, противоположную его направлению (с учетом отклонения пуль под действием ветра - в основном при стрельбе по фигурным целям). В табл. 8 и 9 даны величины отклонений пуль под влиянием бокового ветра.

Отклонение пуль под влиянием бокового ветра при стрельбе из винтовок калибра 7,62 мм

Таблица 8

Дальность стрельбы, м Отклонение тяжелой пули (11,8 г), см
слабый ветер (2 м/сек) умеренный ветер (4 м/сек) сильный ветер (8 м/сек)
100 1 2 4
200 4 8 18
300 10 20 41
400 20 40 84
500 34 68 140
600 48 100 200
700 70 140 280
800 96 180 360
900 120 230 480
1000 150 300 590

Отклонение пуль под влиянием бокового ветра при стрельбе из малокалиберной винтовки

Как видно из этих таблиц, при стрельбе на малые расстояния отклонение пуль почти пропорционально силе (скорости) ветра. Из табл. 8 также видно, что при стрельбе из служебной и произвольной винтовок на 300 м боковой ветер, имеющий скорость 1 м/сек, сносит пулю в сторону на один габарит мишени №3 (5 см). Этими упрощенными данными и следует пользоваться в практике при определении величины поправок на ветер.

Косой ветер (под углом к плоскости стрельбы 45, 135, 225 и 315°) в два раза меньше отклоняет пулю, чем боковой.

Однако во время стрельбы производить поправку на ветер, так сказать, "формально" руководствуясь исключительно данными таблиц, конечно, нельзя. Эти данные должны служить только исходным материалом и помогать стрелку ориентироваться в сложных условиях стрельбы при ветре.

Практически редко бывает, чтобы на таком сравнительно малом участке местности, как стрельбище, ветер все время имел одно направление, а тем более одинаковую силу. Обычно он дует порывами. Поэтому стрелку необходимо умение приурочивать выстрел к моменту, когда сила и направление ветра станут приблизительно теми же, что и при предыдущих выстрелах.

На стрельбище обычно вывешивают флаги, чтобы спортсмен мог определять силу и направление ветра. Нужно научиться правильно руководствоваться показаниями флагов. Не следует целиком полагаться на показания флагов, если они высоко укреплены над линией мишеней и линией огня. Нельзя также ориентироваться по флагам, установленным у опушки леса, крутых обрывов, оврагов и ложбин, так как скорость ветра в разных слоях атмосферы, а также у неровностей местности, препятствий различна. В качестве примера на рис. 63 даны ориентировочные данные о скорости ветра летом на равнине на различной высоте от земли. Понятно, что показания флагов, установленных на высоком пулеприемном валу или на высокой мачте, не будут соответствовать истинной силе ветра, которая действует непосредственно на пулю. Нужно руководствоваться показаниями флагов, бумажных ленточек и т.д., установленных на том же уровне, на котором находится оружие во время стрельбы.


Рис. 63 - Ориентировочные данные о скорости ветра летом на различной высоте на равнине

Нужно также иметь в виду, что ветер, огибая неровности местности, препятствия, может создавать завихрения. Если флажки устанавливают по всей дистанции стрельбы, они нередко показывают совершенно различное, даже противоположное направление ветра. Поэтому нужно стараться определить главное направление и силу ветра по всей трассе стрельбы, внимательно наблюдая за отдельными местными ориентирами на участке местности, лежащем между стрелком и целью.

Естественно, чтобы делать точные поправки на ветер, необходим определенный опыт. А опыт не приходит сам собой. Стрелок должен постоянно внимательно наблюдать и тщательно изучать влияние ветра вообще и на данном стрельбище в частности, систематически записывать условия, при которых ведется стрельба. Со временем у него вырабатывается подсознательное чувство, появляется опыт, которые позволяют быстро ориентироваться в метеорологической обстановке и делать нужные поправки, обеспечивающие меткую стрельбу в сложных условиях.

Влияние температуры воздуха . Чем ниже температура воздуха, тем больше его плотность. Пуля, летящая в более плотном взодухе, на своем пути встречает большое количество его частиц, поэтому и быстрее теряет начальную скорость. Следовательно, в холодную погоду, при низкой температуре дальность стрельбы уменьшается и СТП понижается (табл. 10).

Перемещение средней точки попадания при стрельбе из винтовки калибра 7,62 мм под влиянием изменения температуры воздуха и порохового наряда на каждые 10°

Таблица 10

Дальность стрельбы, м Перемещение СТП по высоте, см
легкая пуля (9,6 г) тяжелая пуля (11,8 г)
100 - -
200 1 1
300 2 2
400 4 4
500 7 7
600 12 12
700 21 19
800 35 28
900 54 41
1000 80 59

Температура влияет и на процесс горения порохового заряда в стволе оружия. Как известно, с повышением температуры скорость горения порохового заряда увеличивается, так как уменьшается расход тепла, необходимый для нагревания и воспламенения пороховых зерен. Следовательно, чем ниже температура воздуха, тем медленнее идет процесс нарастания давления газов. В результате уменьшается и начальная скорость пули.

Установлено, что изменение температуры воздуха на 1° изменяет начальную скорость на 1 м/сек. Значительные температурные колебания между летом и зимой приводят к измениям начальной скорости в пределах 50-60 м/сек.

Учитывая это, для пристрелки оружия, составления соответствующих таблиц и т.д. принимают определенную "нормальную" температуру - +15°.

Учитывая зависимость между температурой порохового заряда и начальной скоростью пули, необходимо иметь в виду следующее.

При длительной стрельбе большими сериями, когда ствол винтовки сильно разогревается, не следует допускать, чтобы очередной патрон долго находился в патроннике: сравнительно высокая температура нагревшегося ствола, передаваясь через патронную гильзу пороховому заряду, повлечет за собой ускорение воспламенения пороха, что в конечном счете может привести к изменению СТП и "отрывам" вверх (в зависимости от продолжительности пребывания патрона в патроннике).

Поэтому если стрелок устал и ему необходим некоторый отдых перед очередным выстрелом, то во время такого перерыва в стрельбе патрон не должен находиться в патроннике; его следует извлекать либо вообще заменять другим патроном из пачки, то есть ненагретым.


2.3.7 Рассеивание пуль

Даже при самых благоприятных условиях стрельбы каждая из выпущенных пуль описывает свою траекторию, несколько отличающуюся от траекторий других пуль. Это явление называется естественным рассеиванием .

При значительном количестве выстрелов траектории в своей совокупности образуют сноп траекторий , который при встрече с мишенью дает ряд пробоин, более или менее удаленных друг от друга. Площадь, которую они занимают, называется площадью рассеивания (рис.64).


Рис. 64 - Сноп траекторий, средняя траектория, площадь рассеивания

Все пробоины располагаются на площади рассеивания вокруг некоторой точки, называемой центром рассеивания или средней точкой попадания (СТП ). Траектория, находящаяся в середине снопа и проходящая через среднюю точку попадания, называется средней траекторией . При внесении поправок в установку прицела в процессе стрельбы всегда подразумевается именно эта средняя траектория.

Для разных образцов оружия и патронов существуют определенные нормы рассеивания пуль, а также нормы рассеивания пуль по заводским техническим условиям и допускам при выпуске определенных образцов оружия и партий патронов.

При большом количестве выстрелов рассеивание пуль подчиняется определенному закону рассеивания, сущность которого заключается в следующем:

— пробоины располагаются на площади рассеивания неравномерно, наиболее густо группируясь вокруг СТП;

— пробоины располагаются относительно СТП симметрично, так как вероятность отклонения пули в любую сторону от СТП одинакова;

— площадь рассеивания всегда ограничена некоторым пределом и имеет форму эллипса (овала), вытянутого на вертикальной плоскости по высоте.

В силу этого закона в целом пробоины располагаются на площади рассеивания закономерно, в связи с чем в симметричных полосах равной ширины, одинаково удаленных от осей рассеивания, заключается одинаковое и определенное количество пробоин, хотя площади рассеивания могут иметь различные размеры (в зависимости от образца оружия и патронов). Мерой рассеивания служат: срединное отклонение, сердцевинная полоса и радиус круга, вмещающего лучшую половину пробоин (Р 50) или все попадания (Р 100). Следует подчеркнуть, что закон рассеивания полностью проявляет себя при большом количестве выстрелов. При спортивной стрельбе сравнительно небольшими сериями площадь рассеивания приближается к форме круга, поэтому и мерой рассеивания служит величина радиуса круга, вмещающего 100% пробоин (Р 100) или лучшую половину пробоин (Р 50) (рис. 65). Радиус круга, вмещающего все пробоины, примерно в 2,5 раза больше радиуса круга, вмещающего лучшую их половину. При заводских испытаниях патронов, когда отстрел ведется небольшими сериями (обычно 20) выстрелов, мерой рассеивания служит еще и круг, включающий в себя все пробоины - П 100 (поперечник, включающий все пробоины, см. рис. 16).


Рис. 65 - Большой и малый радиусы кругов, вмещающих 100 и 50% попаданий

Итак, естественное рассеивание пуль - объективный процесс, действующий независимо от воли и желания стрелка. Отчасти это так, и требовать от оружия и патронов того, чтобы все пули попадали в одну точку, - бессмысленно.

Вместе с тем стрелок должен помнить, что естественное рассеивание пуль отнюдь не является неизбежной нормой, раз и навсегда установленной для данного образца оружия и определенных условий стрельбы. Искусство меткой стрельбы и состоит в том, чтобы знать причины естественного рассеивания пуль и уменьшить их влияние. Практика убедительно доказала, насколько важны для уменьшения рассеивания правильная отладка оружия и подбор патронов, техническая подготовленность стрелка и опыт стрельбы в неблагоприятных метеорологических условиях.

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете. Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты). Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны. Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться. Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.
Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называютсянастильными . Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными . При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными . При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории. Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Для изучения траектории пули приняты следующие определения:

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории. Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета. Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия. Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения. Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения). Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули. Угол бросания Угол вылета - угол, заключенный между линией возвышения и линией бросания. Точка падения - точка пересечения траектории с горизонтом оружия. Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия. Полная горизонтальная дальность - расстояние от точки вылета до точки падения. Окончательная скорость - скорость пули (гранаты) в точке падения. Полное время полета - время движения пули (гранаты) от точки вылета до точки падения. Вершина траектории - наивысшая точка траектории над горизонтом оружия. Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия. Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории. Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие. Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания. Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания. Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия. Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания. Линия цели - прямая, соединяющая точку вылета с целью. Наклонная дальность - расстояние от точки вылета до цели по линии цели. Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды). Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

2.6 Прямой выстрел- выстрел, при котором вершина траектории полета пули не превышает высоты цели.

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Порядок неполной разборки АК-74:

Отсоединяем магазин, снимаем с предохранителя и передергиваем затворную раму, производим контрольный спуск, правой рукой нажимаем на упор пружины и снимаем крышку коробки, отсоединяем раму с поршнем, извлекаем из затворной рамы затвор, отсоединяем газовую трубку, отсоединяем дульный тормоз-компенсатор, извлекаем шомпл.

2.7 Пространство за укрытием,не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством

Часть прикрытого пространства на котором цель не может быть поражена при данной траектории называется мертвым пространством (тем больше, чем больше высота укрытия)

Часть прикрытого пространства на котором цель может быть поражена называется поражаемым пространством

Дерива́ция (от лат.derivatio - отведение, отклонение) в военном деле - отклонение траектории полёта пули или артиллерийского снаряда (это касается только нарезного оружия или специальных боеприпасов гладкоствольного оружия) под воздействием вращения, придаваемого нарезами ствола, наклонными соплами или наклонными стабилизаторами самого боеприпаса, то есть вследствиегироскопического эффекта и эффекта Магнуса. Явление деривации при движении продолговатых снарядов было впервые описано в трудах российского военного инженера генерала Н. В. Маиевского.

3.1 Какие уставы входят в состав ову вс рф,

Устав внутренней службы вооруженных сил рф

Дисциплинарный устав вооруженных сил рф

Устав горнизонной, комендатской и караульной служб вс рф

Строевой устав вс рф

3.2 Воинская дисциплина есть строгое и точное соблюдение всеми военнослужащими порядка и правил, установленных законами Российской Федерации, общевоинскими уставами Вооруженных Сил Российской Федерации (далее - общевоинские уставы) и приказами командиров (начальников).

2. Воинская дисциплина основывается на осознании каждым военнослужащим воинского долга и личной ответственности за защиту Российской Федерации. Она строится на правовой основе, уважении чести и достоинства военнослужащих.

Основным методом воспитания у военнослужащих дисциплинированности является убеждение. Однако это не исключает возможности применения мер принуждения к тем, кто недобросовестно относится к выполнению своего воинского долга.

3. Воинская дисциплина обязывает каждого военнослужащего:

быть верным Военной присяге (обязательству), строго соблюдать Конституцию Российской Федерации, законы Российской Федерации и требования общевоинских уставов;

выполнять свой воинский долг умело и мужественно, добросовестно изучать военное дело, беречь государственное и военное имущество;

беспрекословно выполнять поставленные задачи в любых условиях, в том числе с риском для жизни, стойко переносить трудности военной службы;

быть бдительным, строго хранить государственную тайну;

поддерживать определенные общевоинскими уставами правила взаимоотношений между военнослужащими, крепить войсковое товарищество;

оказывать уважение командирам (начальникам) и друг другу, соблюдать правила воинского приветствия и воинской вежливости;

вести себя с достоинством в общественных местах, не допускать самому и удерживать других от недостойных поступков, содействовать защите чести и достоинства граждан;

соблюдать нормы международного гуманитарного права в соответствии с Конституцией Российской Федерации.

4. Воинская дисциплина достигается:

воспитанием у военнослужащих морально-психологических, боевых качеств и сознательного повиновения командирам (начальникам);

знанием и соблюдением военнослужащими законов Российской Федерации, других нормативных правовых актов Российской Федерации, требований общевоинских уставов и норм международного гуманитарного права;

личной ответственностью каждого военнослужащего за исполнение обязанностей военной службы;

поддержанием в воинской части (подразделении) внутреннего порядка всеми военнослужащими;

четкой организацией боевой подготовки и полным охватом ею личного состава;

повседневной требовательностью командиров (начальников) к подчиненным и контролем за их исполнительностью, уважением личного достоинства военнослужащих и постоянной заботой о них, умелым сочетанием и правильным применением мер убеждения, принуждения и общественного воздействия коллектива;

созданием в воинской части (подразделении) необходимых условий военной службы, быта и системы мер по ограничению опасных факторов военной службы.

5. За состояние воинской дисциплины в воинской части (подразделении) отвечают командир и заместитель командира по воспитательной работе, которые должны постоянно поддерживать воинскую дисциплину, требовать от подчиненных ее соблюдения, поощрять достойных, строго, но справедливо взыскивать с нерадивых.

Воинская дисциплина должна соблюдаться в подразделении, является необходимым условием жизнедеятельности армии.

Эффективность работы по укреплению воинской дисциплины в вс, во много зависит от деятельности офицера руководителя, а состояние правопорядка и дисциплины среди подчиненных главный критерий оценки повседневной деятельности командиров.

28 % от числа погибших, идет числом самоубийц.

Выдержанность, и привычка к строгому порядку.

Дисциплина это Учение, наука.

Характерными чертами воинской дисциплины являются:

    Единоначалие

    Строгая регламентация всех сторон жизни и деятельности военнослужащих

    Обязательность и безусловная исполнительность

    Четкая субординация

    Неотвратимость и строгость мер принуждения к нарушителям воинской дисциплины.

Для формирования коллектива существенными факторами являются:

    Высокая исполнительность

    Здоровое общественное мнение(учитывать мнение коллектива)

    Чувство ответсвенности

    Общий оптимистический настрой коллектива

    Готовность к преодолению трудностей

Анализ состояния воинской дисциплины:

    Требования к офицеру: должен логически мыслить, правильно строить рассуждения, рассуждать, делать выводы.

    Владеть нормами формальной логики

Этапы аналит работы по изучению состояния воинской дисциплины:

    Составление плана

    Сбор сведений

    Обработка данных

    Выявление причин нарушения воинских дисциплин

3.3 Внутренний порядок и чем он достигается. Мероприятия пожарной безопасности в В.Ч. и подразделениях

Внутренний порядок - это строгое соблюдение определенных воинскими уставами правил размещения, повседневной деятельности, быта военнослужащих в воинской части (подразделении) и несения службы суточным нарядом.

Внутренний порядок достигается:

    глубоким пониманием, сознательным и точным выполнением всеми военнослужащими обязанностей, определенных законами и воинскими уставами;

    целенаправленной воспитательной работой, сочетанием высокой требовательности командиров (начальников) с постоянной заботой о подчиненных и сохранением их здоровья;

    четкой организацией боевой подготовки;

    образцовым несением боевого дежурства и службы суточным нарядом;

    точным выполнением распорядки дня и регламента служебного времени;

    выполнением правил эксплуатации (использования) вооружения, военной техники и других материальных средств; созданием в местах расположения военнослужащих условий для их повседневной деятельности, жизни и быта, отвечающих требованиям воинских уставов;

    соблюдением требований пожарной безопасности, а также принятием мер по охране окружающей среды в районе деятельности воинской части.

Мероприятия по пожарной безопасности:

    Территория воинской части должна постоянно очищаться от мусора и сухой травы.

    военное имущество должно быть оборудовано молниезащитными устройствами и другими инженерными системами, обеспечивающими её пожаро - и взрывобезопасность в соответствии с требованиями действующих норм и правил.

    Подъезды к источникам пожарного водоснабжения, к зданиям и все проезды по территории должны быть всегда свободными для движения пожарных машин. Так же проходы в пределах части и подразделения должны быть незагроможденными.

Запрещено разводить огонь и держать открытый огонь ближе чем в 50м от в.ч. Пользоваться неисправным оборудованием и использовать легко воспламеняемые средства. У телефонных аппаратов должны быть надписи с указанием номера телефона ближайшей пожарной команды, а на территории воинской части для подачи сигнала пожарной тревоги должны быть средства звуковой сигнализации. Эти и прочие нормы пожарной безопасности должны ежедневно проверяться дежурным.

Приказ - распоряжение командира начальника обращенный к подчиненным и требующий обязательного выполнения определенных действий,соблюдения правил или устанавливающие какой либо порядок его отдачи.Письменно усно или по техн ср связи одному либо группе военнослужащих.Обсуждение приказа не допустимо.Неисполнение приказа отданного в установленном порядке является преступлением против военной службы.

Приказание - форма доведения ком начальником задач до подчиненных по частным вопросам.Отдается письменно или устно.В письменной форме издается начальником штаба,является распорядительным документом и отдается от имение командира части

Отдавая приказа ком не должен злоупотреблять должностными полномочиями.Не отдавать приказа не имеющей отношения к ведению военной службы.

Приказ формулируется ясно четко кратко.Отдаются в порядке подчиненности.

Выполнен беспрекословно точно и в срок.

Военнослужащий отвечает "есть".

Единоначалие

Заключается в наделении командира (начальника) всей полнотой распорядительной власти по отношению к подчиненным и возложении на него персональной ответственности за все стороны жизни и деятельности воинской части, подразделения и каждого военнослужащего.

определяет построение армии как централизованного военного организма, единство обучения и воспитания личного состава, организованность и дисциплину и в конечном счете высокую боеготовность войск. Необходимо отметить, что оно наилучшим образом обеспечивает единство воли и действий всего личного состава, строгую централизацию, максимальную гибкость и оперативность руководства войсками. Единоначалие позволяет командиру действовать смело, решительно, проявлять широкую инициативу, возлагая на командира персональную ответственность за все стороны жизнедеятельности войск, способствует развитию у офицеров необходимых командирских качеств. Оно создает условия для высокой организованности, строгой воинской дисциплины и твердого порядка.

Пуля, получив при вылете из канала ствола определенную начальную скорость, стремиться по инерции сохранить величину и направление этой скорости.

Если бы полет пули совершался в безвоздушном пространстве, и на нее не действовала сила тяжести, пуля двигалась бы прямолинейно, равномерно и бесконечно. Однако на пулю, летящую в воздушной среде, действуют силы, которые изменяют скорость ее полета и направление движения. Этими силами являются сила тяжести и сила сопротивления воздуха (рис. 4).

Рис. 4. Силы, действующие на пулю во время ее полета

Вследствие совместного действия этих сил пуля теряет скорость и изменяет направление своего движения, перемещаясь в воздухе по кривой линии, проходящей ниже направления оси канала ствола.

Линия, которую описывает в пространстве движущаяся пуля (ее центр тяжести), называется траекторией .

Обычно баллистика рассматривает траекторию над горизонтом оружия - воображаемой бесконечной горизонтальной плоскостью, проходящей через точку вылета (рис. 5).

Рис. 5. Горизонт оружия

Движение пули, а следовательно, и форма траектории зависят от многих условий. Поэтому, чтобы уяснить себе, как образуется в пространстве траектория пули, необходимо рассмотреть прежде всего, как действуют на пулю в отдельности сила тяжести и сила сопротивления воздушной среды.

Действие силы тяжести. Представим себе, что на пулю после вылета ее из канала ствола не действует никакая сила. В этом случае, как говорилось выше, пуля двигалась бы по инерции бесконечно, равномерно и прямолинейно по направлению оси канала ствола; за каждую секунду она пролетела бы одинаковые расстояния с постоянной скоростью, равной начальной. В этом случае, если бы ствол оружия был направлен прямо в цель, пуля, следуя в направлении оси канала ствола, попала бы в нее (рис. 6).

Рис. 6. Движение пули по инерции (если бы не было силы тяжести и сопротивления воздуха)

Допустим теперь, что на пулю действует только одна сила тяжести. Тогда пуля начнет падать вертикально вниз, как и всякое свободно падающее тело.

Если предположить, что на пулю при ее полете по инерции в безвоздушном пространстве действует сила тяжести, то под действием этой силы пуля опустится ниже от продолжения оси канала ствола - в первую секунду - на 4,9 м, во вторую - на 19,6 м и т.д. В этом случае, если навести ствол оружия в цель, пуля никогда в нее не попадет, так как, подвергаясь действию силы тяжести, она пролетит под целью (рис.7).

Рис. 7. Движение пули (если бы на нее действовала сила тяжести,

но не действовало сопротивление воздуха)

Вполне очевидно, что для того, чтобы пуля пролетела определенное расстояние и попала в цель, необходимо направить ствол оружия куда-то выше цели. Для этого нужно, чтобы ось канала ствола и плоскость горизонта оружия составляли некоторый угол, который называется углом возвышения (рис. 8).

Как видно из рис. 8, траектория пули в безвоздушном пространстве, на которую действует сила тяжести, представляет собой правильную кривую, которая называется параболой . Самая высокая точка траектории над горизонтом оружия называется ее вершиной . Часть кривой от точки вылета до вершины называется восходящей ветвью . Такая траектория пули характерна тем, что восходящая и нисходящая ветви совершенно одинаковы, а угол бросания и падения равны между собой.

Рис. 8. Угол возвышения (траектория пули в безвоздушном пространстве)

Действие силы сопротивления воздушной среды. На первый взгляд кажется маловероятным, чтобы воздух, обладающий такой малой плотностью, мог оказывать существенное сопротивление движению пули и этим значительно уменьшать ее скорость.

Однако опытами установлено, что сила сопротивления воздуха, действующего на пулю, выпущенную из винтовки образца 1891/30 гг., представляет собой большую величину - 3,5 кг.

Учитывая, что пуля весит всего лишь несколько граммов, становиться вполне очевидным большое тормозящее действие, которое оказывает воздух на летящую пулю.

Во время полета пуля расходует значительную часть своей энергии на то, чтобы раздвинуть частицы воздуха, мешающие ее полету.

Как показывает фотоснимок пули, летящей со сверхзвуковой скоростью (свыше 340 м/с), перед ее головной частью образуется уплотнение воздуха (рис. 9). От этого уплотнения расходится во все стороны головная баллистическая волна. Частицы воздуха, скользя по поверхности пули и срываясь с ее боковых стенок, образуют позади пули зону разреженного пространства. Стремясь заполнить образовавшуюся пустоту позади пули, частицы воздуха создают завихрения, в результате чего за дном пули тянется хвостовая волна.

Уплотнение воздуха впереди головной части пули тормозит ее полет; разряженная зона позади пули засасывает ее и этим еще больше усиливает торможение; стенки пули испытывают трение о частицы воздуха, что также замедляет ее полет. Равнодействующая этих трех сил и составляет силу сопротивления воздуха.

Рис. 9. Фотоснимок пули, летящей со сверхзвуковой скоростью

(свыше 340 м/сек.)

Огромное влияние, оказываемое сопротивлением воздуха на полет пули, также видно из следующего примера. Пуля, выпущенная из винтовки Мосина образца 1891/30 гг. или из снайперской винтовки Драгунова (СВД). В обычных условиях (при сопротивлении воздуха), имеет наибольшую горизонтальную дальность полета 3400 м, а при стрельбе в безвоздушном пространстве она могла бы пролететь 76 км.

Следовательно, под действием силы сопротивления воздуха траектория пули теряет форму правильной параболы, приобретая форму несимметричной кривой линии; вершина делит ее на две неравные части, из которых восходящая ветвь всегда длиннее и отложе нисходящей. При стрельбе на средние дистанции можно условно принимать отношение длины восходящей ветви траектории к нисходящей, как 3:2.

Вращение пули вокруг своей оси. Известно, что тело приобретает значительную устойчивость, если ему придать быстрое вращательное движение вокруг своей оси. Примером устойчивости вращающегося тела может служить игрушка “волчок”. Невращающийся “волчок” не будет стоять на своей заостренной ножке, но если “волчку” придать быстрое вращательное движение вокруг своей оси, он будет устойчиво стоять на ней (рис. 10).

Чтобы пуля приобрела способность бороться с опрокидывающим действием силы сопротивления воздуха, сохранила устойчивость при полете, ей придают быстрое вращательное движение вокруг своей продольной оси. Это быстрое вращательное движение пуля приобретает благодаря винтообразным нарезам в канале ствола оружия (рис. 11). Под действием давления пороховых газов пуля продвигается по каналу ствола вперед, одновременно вращаясь вокруг своей продольной оси. По вылете из ствола пуля по инерции сохраняет полученное сложное движение - поступательное и вращательное.

Не вдаваясь в подробности объяснения физических явлений, связанных с действием сил на тело, испытывающее сложное движение, необходимо все же сказать о том, что пуля при полете совершает правильные колебания и своей головной частью описывает вокруг траектории окружности (рис. 12). При этом продольная ось пули как бы “следит” за траекторией, описывая вокруг нее коническую поверхность (рис. 13).

Рис. 12. Коническое вращение головной части пули

Рис. 13. Полет вращающейся пули в воздухе

Если применить законы механики к летящей пуле, то станет очевидным, что чем больше скорость ее движения и чем пуля длиннее, тем сильнее воздух стремиться ее опрокинуть. Поэтому пулям патронов разного типа необходимо придавать различную скорость вращения. Так, легкая пуля, выпущенная из винтовки, имеет скорость вращения 3604 об./сек.

Однако вращательное движение пули, столь необходимое для придания ей устойчивости во время полета, имеет и свои отрицательные стороны.

На быстро вращающуюся пулю, как уже было сказано, оказывает непрерывное опрокидывающее действие сила сопротивления воздуха, в связи с чем головная часть пули описывает вокруг траектории окружность. В результате сложения этих двух вращательных движений возникает новое движение, отклоняющее ее головную часть в сторону от плоскости стрельбы1 (рис. 14). При этом одна боковая поверхность пули подвергается давлению частиц больше, чем другая. Такое неодинаковое давление воздуха на боковые поверхности пули и отклоняет ее в сторону от плоскости стрельбы. Боковое отклонение вращающейся пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 15).

Рис. 14. В результате двух вращательных движений пуля постепенно поворачивает головную часть вправо (в сторону вращения)

Рис. 15. Явление деривации

По мере удаления пули от дульного среза оружия величина деривационного отклонения ее быстро и прогрессивно возрастает.

При стрельбе на ближние и средние расстояния деривация не имеет большого практического значения для стрелка. Так, при дальности стрельбы на 300 м деривационное отклонение равно 2 см, а на 600 м - 12 см. Деривацию приходится учитывать только при особо точной стрельбе на дальние расстояния, внося соответствующие поправки в установку прицела, сообразуясь с таблицей деривационных отклонений пули для определенной дальности стрельбы.