Что такое мембрана кратко. Биологическая мембрана. Рассмотрим основные функции клеточной мембраны

Понятие используется в различных жизненных сферах и науках. Причем в каждой из них оно имеет разное значение. Но, так или иначе, использование данного термина связано со значением самого слова. В переводе с латыни «мембрана» - это перепонка.

Различные интерпретации понятия

В технике и инженерии данное понятие используют, когда говорят о тонкой пленке или пластинке, закрепленной по контуру, как в микрофонах или манометрах.

В биологии под мембраной подразумевают эластичную молекулярную структуру, имеющуюся в каждой клетке и выполняющую функцию защиты от воздействий окружающей среды. Она обеспечивает целостность клетки и участвует в обменных процессах с внешним миром.

Мембрана обратного осмоса

Одним из недавних изобретений является модуль обратного осмоса, который используется для очищения воды. Данная конструкция представляет собой трубу, имеющую дно и крышку. А внутри этой трубы как раз и располагается мембрана обратного осмоса, наличие которой обеспечивает получение сверхчистой воды, освобожденной от различных бактериологических загрязнений и биологических отложений. Механизм очистки жидкости основан на сведении к минимуму мертвых пространств, в которых и могут скапливаться бактерии.

Данные модули получили широкое применение в медицине, а если быть точнее, то они снабжают приборы для гемодиализа сверхчистой водой.

Мембраны гидроаккумуляторов и расширительных баков. Их замена

Гидроаккумуляторы и расширительные баки - это приборы, которые используют для того, чтобы компенсировать (объем) внутри нагревательных устройств.

Что такое мембрана в данном случае? Этот элемент является основной составляющей устройств подобного типа. Он влияет на показатели работоспособности и надежности всей системы. По форме мембрана может различаться. Она бывает диафрагменная, шаровая и баллонная. Если у бака большой объем, то в заднюю часть элемента вставляется металлический штуцер, в котором есть отверстие для стравливания воздуха. В зависимости от сферы использования прибора подбирается материал для изготовления мембраны. Например, в расширительных баках системы отопления главным критерием служит уровень термостойкости и долговечности. В случае с холодным водоснабжением при выборе материала мембраны руководствуются критерием динамической эластичности.

К сожалению, не существует материала, который можно было бы назвать универсальным. Поэтому его правильный выбор является одним из важнейших условий длительной эксплуатации прибора и его эффективной работы. Чаще всего пластины изготавливают из натуральной каучуковой, синтетической бутиловой или этиленпропиленовой резины.

Замена мембраны осуществляется путем отсоединения гидроаккумулятора или расширительного бака от системы. Сначала отсоединяются винты, которые скрепляют фланец и корпус. В некоторых приборах имеется еще крепление в зоне ниппеля. После его устранения мембрану можно легко извлечь. Путем совершения обратных действий нужно поставить новую мембрану.

Полимерные мембраны

Понятие «полимерная мембрана» применяется в нескольких случаях. Во-первых, его используют, говоря об одном из самых современных и продвинутых с точки зрения практичности кровельных материалов. Такой тип мембран производится путем применения метода экструдирования, обеспечивающего отсутствие пустот в составе готового материала. К достоинствам полимерного изделия можно отнести абсолютную водонепроницаемость, паропроницаемость, небольшой вес, прочность, низкий уровень горючести, экологическую безопасность.

Термин «полимерная мембрана» часто используется, когда речь заходит об уже упомянутых выше пластинах обратного осмоса, а также других видах оболочек, изготовленных из органических полимеров. Это микро- и ультрафильтрационные изделия, перепонки, используемые при нанофильтрации. Преимущество полимерных мембран в данном контексте заключается в высокой технологичности и больших возможностях управления свойствами и структурой материала. При этом используются небольшие химические и технологические вариации процесса изготовления.

Клеточная мембрана. Клетки - единицы всего живого

Давно известен факт, что основной структурной единицей живого организма является клетка. Она представляет собой дифференцированный участок цитоплазмы, который окружен клеточной мембраной. В процессе эволюции, по мере расширения пределов функциональности, она приобрела пластичность и тонкость, ведь важнейшие процессы в организме происходят именно в клетках.

Клеточная мембрана - это граница клетки, представляющая собой естественный барьер между ее внутренним содержимым и окружающей средой. Основной характерной особенностью оболочки является полупроницаемость, которая обеспечивает проникновение в клетку влаги и питательных веществ и выведение из нее продуктов распада. Клеточная мембрана - это основная структурная составляющая организации клетки.

Исторические факты, связанные с открытием и исследованием клеточной мембраны

В 1925 году Грендель и Гордер успешно поставили эксперимент по выявлению «теней» эритроцитов. Именно они в процессе опытов впервые обнаружили липидный бислой. Продолжатели их работы Даниэлли, Доусон, Робертсон, Николсон в разные годы трудились над созданием жидкостно-мозаичной модели структуры мембраны. Окончательно это удалось сделать Сингшеру в 1972 году.

Основные функции клеточной мембраны

  • Отделение внутреннего содержимого клетки от компоненты внешней среды.
  • Способствование поддержанию постоянства химического состава внутри клетки.
  • Регулирование сбалансированности обмена веществ.
  • Обеспечение взаимосвязи между клетками.
  • Сигнальная функция.
  • Защитная функция.

Плазменная оболочка

Что такое мембрана, которую называют плазменной оболочкой? Это наружная которая по своему строению является ультрамикроскопической пленкой толщиной 5-7 наномиллиметров. В ее состав входят белковые соединения, фосфолипиды, вода. Пленка, будучи весьма эластичной, хорошо впитывает влагу, а также имеет способность со стремительной скоростью восстанавливать свою целостность.

Для плазменной мембраны характерно универсальное строение. Ее пограничное положение обуславливает участие в процессе избирательной проницаемости при выведении из клетки продуктов распада. Взаимодействуя с соседними элементами и надежно защищая содержимое от повреждения, наружная мембрана является одним из самых главных компонентов строения клетки.

Тончайший слой, который иногда покрывает клеточную мембрану живых организмов, называют гликокаликсом. Он состоит из белков и полисахаридов. А в растительных клетках мембрану сверху защищает специальная стенка, которая также выполняет опорную функцию и поддерживает форму. Она в основном состоит из клетчатки - нерастворимого полисахарида.

Таким образом, можно сделать вывод, что основными функциями наружной клеточной мембраны являются восстановление, защита и взаимодействие с соседними клетками.

Особенности строения

Что такое мембрана? Это подвижная оболочка, ширина которой составляет 6-10 наномиллиметров. Основу ее строения составляет липидный бислой и белки. Углеводы также имеются в мембране, однако на их долю приходится лишь 10% от массы мембран. Но они в обязательном порядке содержатся в гликолипидах или гликопротеинах.

Если говорить о соотношении количества белков и липидов, то оно может сильно варьироваться. Все зависит от типа ткани. Например, в миелине содержится около 20% белка, а в митохондриях - около 80%. Состав мембраны напрямую влияет на ее плотность. Чем больше содержание белка, тем выше плотность оболочки.

Многообразие функций липидов

Каждый липид по своей природе является фосфолипидом, образующимся в результате взаимодействия глицерина и сфингозина. Вокруг липидного каркаса плотно располагаются белки мембраны, однако их слой не сплошной. Некоторые из них погружены в слой липидов, а другие как бы пронизывают его. Этим и обусловлено наличие участков, проницаемых для воды.

Очевидным является тот факт, что состав липидов в различных мембранах не случайный, но четкого объяснения данному феномену пока не найдено. В любой конкретной оболочке может содержаться до ста различных типов молекул липидов. Рассмотрим факторы, которые, возможно, влияют на определение липидного состава молекулы мембраны.

  • Во-первых, смесь липидов в обязательном порядке должна иметь способность к образованию стабильного бислоя, в котором могут функционировать белки.
  • Во-вторых, липиды должны способствовать стабилизации сильно деформированных мембран, установлению контакта между оболочками или связыванию определенных белков.
  • В-третьих, липиды - биорегуляторы.
  • В-четвертых, некоторые липиды являются активными участниками реакций биосинтеза.

Белки клеточной мембраны

Белки выполняют несколько функций. Одни играют роль ферментов, а другие -транспортируют разного рода вещества из окружающей среды внутрь клетки и обратно.

Строение и функции мембраны устроены таким образом, что насквозь пронизывают ее, обеспечивая тесную связь. А вот периферические белки связаны с мембраной не слишком тесно. Их функция состоит в том, чтобы поддерживать структуру оболочки, получать и преобразовывать сигналы из внешней среды, а также служить катализаторами различных реакций.

Состав мембраны представлен, прежде всего, бимолекулярным слоем. Его непрерывность обеспечивает барьерные и механические свойства клетки. В процессе жизнедеятельности может происходить нарушение структуры бислоя, которое приводит к образованию структурных дефектов сквозных гидрофильных пор. Вслед за этим могут нарушиться все функции клеточной мембраны.

Свойства оболочки

Особенности клеточной мембраны обусловлены ее текучестью, благодаря которой она не имеет жесткой структуры. Липиды, входящие в ее состав, могут свободно перемещаться. Можно наблюдать асимметрию клеточной мембраны. Это и является причиной различия составов белкового и липидного слоев.

Доказана полярность клеточной мембраны, то есть ее внешняя сторона имеет положительный заряд, а внутренняя - отрицательный. Также следует отметить, что оболочка имеет избирательную проницательность. Она пропускает внутрь, помимо воды, только определенные группы молекул и ионов растворенных веществ.

Особенности строения клеточной мембраны у растительных и животных организмов

Наружная мембрана и эндоплазматическая сеть клетки тесно соединены. Часто поверхность оболочки покрыта еще и различными выступами, складками, микроворсинками. клетки животных организмов снаружи покрыта гликопротеиновым слоем, выполняющим рецепторную и сигнальную функции. У растительных клеток снаружи этой оболочки находится еще одна, толстая и отчетливо различимая под микроскопом. Клетчатка, из которой она состоит, участвует в формировании опоры у происхождения, например, древесины.

У клеток животных тоже имеются внешние структуры, расположенные снаружи мембраны. Они выполняют исключительно защитную функцию. В качестве примера можно привести хитин, который содержится в покровной ткани насекомых.

Кроме клеточной, имеется внутриклеточная, или внутренняя мембрана. Она делит клетку на специализированные замкнутые отсеки, которые называются органеллами. В них постоянно должна поддерживаться определенная среда.

Исходя из вышесказанного, можно сделать вывод, что клеточная мембрана, характеристики которой доказывают ее важность в функционировании всего организма, имеет сложный состав и строение, зависящие от многих внутренних и внешних факторов. Повреждение этой пленки может привести к гибели клетки.

Таким образом, строение и функции мембраны зависят от сферы науки или области промышленности, в которых применяется данное понятие. В любом случае этот элемент представляет собой оболочку или перегородку, которая обладает гибкостью и закрепляется по краям.

Слово мембрана имеет ряд значений, однако в общем смысле данный термин означает тонкую гибкую перегородку, перепонку или пластинку, которая может выполнять различные функции. В этой статье расскажем, что такое мембрана с точки зрения биологии и техники.

Мембрана в биологии

Мембрана (или клеточная мембрана) - это эластичная молекулярная структура, роль которой заключается в защите клетки от окружающей среды. Клеточная мембрана обеспечивает ее целостность, а также отвечает за обменные процессы между средой и клеткой.

Мембрана клетки состоит из белков и липидов, имеет толщину порядка 7 нм. Каждый "кирпичик" мембраны отвечает за определенную функцию данного клеточного органа. Липиды в мембране представлены тремя видами - фосфолипиды, гликолипиды и холестерол.

Фосфолипиды и гликолипиды формируют гидрофобную и гидрофильную секции (гидрофобные участки направлены внутрь клетки, а гидрофильные — наружу), которые регулируют процесс обмена водой и подобных ей молекул между клеткой и окружающей средой. Холестерол придает мембране жесткость.

Белки, составляющие мембрану, могут выполнять многие функции, например, имеются белки-транспортеры, которые помогают необходимым веществам попасть в клетку.

Мембрана в технике

Предохранительная мембрана входит в состав мембранного предохранительного устройства, задача которого - обеспечить необходимый сброс парогазовой смеси при определенном давлении. Такие устройства применяются в качестве предохранителей технологического оборудования, трубопроводов и т.п.

При наличии опасных перегрузок мембрана разрывается, обеспечивая необходимую "разрядку", и сохраняет при этом целостность дорогостоящей и сложной технической системы.

Больше интересных понятий ищите в разделе .

Мембрана клетки

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell . - 5th ed. - New York: Garland Science, 2007. - ISBN 0-8153-3218-1 - учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт. . - 3-е издание, исправленное и дополненное. - Москва: издательство Московского университета, 2004. - ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - Москва: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. - Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. - Москва: Наука, 1994.

См. также

  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Wikimedia Foundation . 2010 .

  • Мембрана (портал)
  • Мембрана клеток

Смотреть что такое "Мембрана клетки" в других словарях:

    Клетки - получить на Академике рабочий купон на скидку Галерея Косметики или выгодно клетки купить с бесплатной доставкой на распродаже в Галерея Косметики

    Клетки Мюллера - Клетки Мюллера глиальные клетки сетчатки глаза позвоночных. Это вторые по частоте клетки сетчатки после нейронов. Некоторые авторы считают их специализированными фибриллярными астроцитами. Впервые описаны немецким анатомом Генрихом Мюллером … Википедия

    МЕМБРАНА - МЕМБРАНА, в биологии граничный слой внутри или вокруг живой КЛЕТКИ или ТКАНИ. Клеточные мембраны включают плазматическую мембрану, окружающую клетку, систему мембран внутри клетки (ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ) и двойную мембрану вокруг клеточного… … Научно-технический энциклопедический словарь

    мембрана биологическая - Сложная высокоорганизованная надмолекулярная структура, лежащая в основе пространственной и функциональной организации любой клетки, играющая ключевую роль в ее жизнедеятельности. [РХТУ им. Д.И. Менделеева, кафедра мембранной технологии] Тематики … Справочник технического переводчика

    Мембрана - * мембрана * membrane тонкая пограничная структура, расположенная на поверхности клеток и внутриклеточных частиц, а также канальцев и пузырьков в клеточном содержимом. Выполняет различные биологические функции обеспечивает проницаемость клетки… … Генетика. Энциклопедический словарь

    Мембрана наружная - внешний слой клеточной стенки (см.) грам бактерий. Основой М. н. являются липополисахаридный и липопротеидный слои, формирующие матрицу, в которой заключены специфические (матричные) белки. Молекулы 2 матричных белков (поринов) в соединении с… … Словарь микробиологии

    Мембрана Бруха - Слои сетчатки RPE пигментный эпителий сетчатки OS наружный сегмент фоторецепторов IS внутренний сегмент фоторецепторов ONL внешний ядерный слой OP … Википедия

    Мембрана (биология)

    Мембрана клеток - У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии гидрофобным «хвостам». На рисунке показаны… … Википедия

    мембрана - (лат. membrana кожица) 1) натянутая пленка, металлическая фольга или тонкая гибкая металлическая пластинка, воспринимающая давление (колебания) воздуха и преобразующая его в механическое перемещение (напр., в анероидах, микрофонах) либо… … Словарь иностранных слов русского языка

    Мембрана клеточная - (лат. мембрана кожица) биологическая «кожица», окружающая протоплазму живой клетки (см. Клетка). Участвует в регуляции обмена веществ между клеткой и окружающей её средой. У некоторых клеток клеточная мембрана единственная структура, служащая… … Концепции современного естествознания. Словарь основных терминов

Книги

  • Мембранные белки , Творческий коллектив шоу «Дышите глубже». К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными. Клеточная… Купить за 49 руб аудиокнига

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И ФУНКЦИЯ БИОЛОГИЧЕСКИХ МЕМБРАН

Биологические мембраны - это активный молекулярный комплекс с высокоизбирательными свойствами, обеспечивающий обмен веществ и энергии с окружающей средой. В мембранах находятся специфические молекулярные насосы и каналы, с помощью которых регулируются молекулярный и ионный состав внутриклеточной среды. Помимо внешней цитоплазматической мембраны (плазмолемма) в клетках эукариотов имеются еще и внутренние мембраны, ограничивающие различные внутриклеточные компартменты (отсеки), например митохондрии, лизосомы, хлоропласты и т. д. Мембраны регулируют также обмен информацией между клетками и средой (восприятие внешних стимулов) и т. д. Мембраны различаются как по функции, так и по структуре. Однако всем им присущи следующие основные свойства:

■ мембраны представляют собой плотную структуру толщиной в несколько молекул, 60-100 А, образующую сплошную перегородку между отдельными клетками и внутриклеточными отсеками;

■ мембраны главным образом состоят из липидов и белков. В мембранах имеются также углеводные компоненты, связанные с липидами и белками;

■ липиды мембран представлены относительно небольшими молекулами, несущими гидрофильные и гидрофобные группы. В водной среде эти молекулы спонтанно образуют замкнутые бимолекулярные слои, которые служат барьером для проникновения полярных соединений;

■ большинство функций мембран опосредуются специфическими белками, которые могут играть роль насосов, каналов, рецепторов, ферментов и т. д.

В состав мембран входят три основных типа липидов: фосфолипиды, гликолипиды и холестерин.

СТРОЕНИЕ МЕМБРАН

Фосфолипиды мембран. Среди липидных компонентов мембран главенствующая роль принадлежит фосфолипидам - веществам, производным либо трехатомного спирта глицерола (глицерофосфолипиды), либо более сложного спирта сфингозина (сфингофосфолипиды). Все основные глицерофосфолипиды являются производными фосфатидной кислоты, этерифицированной с гидроксильной группой спиртов, таких как серии (серинфосфатиды - кефалины), этаноламин, холин (холинфосфа-тиды), кардиолипин (дифосфатидилглицерол) и инозитол (фос-фатидилинозитол).

Из сфингофосфолипидов основным является сфингомиелин, основу которого составляет сфингозин - аминоспирт с длинной ненасыщенной углеводородной цепью. В состав сфингомиелина входит также азотистое основание холин.

Независимо от структурных разнообразий каждая молекула фосфолипида в водной среде - это амфипатическая молекула с полярной головкой и неполярной хвостовой частью. Полярная головка образуется за счет остатков спиртовых групп, азотистых оснований и фосфорной кислоты. Хвостовая же часть - за счет радикалов двух жирных кислот насыщенного и ненасыщенного ряда. Благодаря своим амфипатическим свойствам фосфолипиды в водной среде спонтанно формируют липидные бислои, где полярные головки фосфолипидов направлены в сторону растворимой части клетки с образованием водородных связей с диполями воды, а неполярные хвосты - внутрь бислоя, скрепляясь между собой за счет гидрофобных взаимодействий. Именно бислойная структура фосфолипидов определяет полупроницаемые свойства мембран.

В качестве примера можно привести фосфатидилэтаноламин и фосфатидилхолин. Оба они имеют в верхней части молекулы полярные головки NH4 (фосфатидилэтаноламин) и N+ (фосфатидилхолин), которые через остаток фосфорной кислоты и глицерина присоединены к двум остаткам жирных кислот, из которых одна насыщенная, другая - ненасыщенная (рис. 1).

В 1972 г. С. Дж. Сингер и Г. Никольсон сформулировали теорию строения мембран, согласно которой мембраны имеют жидкостно-мозаичную структуру. При обычной для клетки температуре мембранный бислой находится в жидком состоянии, что обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами в гидрофобных хвостах полярных фосфолипидов. Жирные кислоты с ненасыщенными связями характеризуются большей гибкостью (в отличие от насыщенных ЖК) и способностью создавать изгибы, что предотвращает плотную упаковку, затрудняет «замораживание» мембран и таким образом влияет на их текучесть ().

Упаковка углеводородов в бислое зависит от температуры. При низких температурах бислой находится в виде геля и упакован плотно, при высоких же температурах (температура тела) бислой фактически «расплавляется» и становится текучим, позволяя липидным молекулам двигаться вокруг своей оси, вращаться, меняться местами. Это, в свою очередь, способствует перемещению уже других компонентов в мембране, в частности белков.

Мембранные гликолипиды. Следующим важным компонентом мембран являются гликолипиды - липиды, содержащие углеводы. Гликолипиды животных клеток, подобно сфингомиелину, являются производными спирта сфингозина, связанного с ацильным радикалом. Отличие между этими липидами заключается в том, что в гликолипидах к сфингозиновому остатку присоединены один или несколько остатков сахара, а в сфингомиелине - фосфорилхолин.

Гликолипиды могут быть простые и сложные. Простейший гликолипид - цереброзид, содержащий только один остаток сахара (глюкозу или галактозу). В более сложных гликолипидах число сахарных остатков может достигать семи (ганглиозиды)

Гликолипиды в мембранах могут выполнять защитную, полупроводниковую, рецепторсвязывающую роль. Среди молекул, способных связываться с гликолипидами, встречаются также такие клеточные яды, как холера, токсин тетануса и др.

Другой представитель липидов в мембранах - это холестерин. Количество его в мембранах варьирует в зависимости от типа клеток. В плазматических мембранах в среднем на каждую молекулу фосфолипида приходится примерно 1 молекула холестерина. У других (например, бактерий) - холестерина нет вообще. У холестерина так же, как у фосфолипидов, имеются участки полярные и неполярные.

Внутри мембран холестерин внедряется между фосфолипидами и ориентируется в том же направлении, что и сами молекулы фосфолипидов. Таким образом, полярная головка холестерина оказывается в той же плоскости, что и полярные головки фосфолипидов (рис. 2).

В мембранах холестерин выполняет следующие функции:

■ фиксируют первые несколько ближайших углеводородных групп, входящих в состав фосфолипидных жирных кислот. Это делает липидный бислой более устойчивым к деформациям и ограничивает прохождение через них небольших водорастворимых молекул. В случае отсутствия холестерина (как, например, у бактерий) клетка нуждается в оболочке;

■ предотвращает кристаллизацию углеводородов и фазовые сдвиги в мембране.

Мембранные белки. В то время как мембранные липиды ответственны за создание барьера проницаемости, мембранные белки опосредуют отдельные функции мембран, т. е. транспорт веществ, передачу информации, энергии и т. д. Соотношение между липидами и белками у разных мембран может быть разным, например, миелин, изолятор нервных клеток, содержит только 18% белков и 76% липидов, а митохондриальная внутренняя мембрана, наоборот - содержит 76% белков и только 24% липидов. В зависимости от характера локализации в мембранах выделяют белки интегральные (трансмембранные), периферические и «заякоренные».

Интегральные белки пронизывают бислой мембраны насквозь и благодаря своим бифильным свойствам фиксируются в нем. Белки, пронизывающие мембрану только один раз, называют однократно пронизывающими белками, а несколько раз - многократно пронизывающими.

Периферические белки локализуются на поверхности мембран и скрепляются только за счет электростатических взаимодействий и водородных связей. Довольно часто периферические белки присоединяются к некоторым участкам интегральных белков (рис. 3).

Олигосахариды Гликопротеины Олигосахариды

Рис. 3. Белковый состав мембран

«Заякоренные» белки фиксируются в мембранах с помощью коротких хвостовых липофильных доменов, образованных либо за счет гидрофобных аминокислотных остатков (цитохром b 5 ), либо за счет ковалентно связанных ацильных радикалов (фермент щелочная фосфатаза).

Участки белков, которые обращены во внеклеточную среду, могут подвергаться гликозилированию.

Транспортные белки. Мембранным белкам принадлежит решающая роль в транспорте веществ через мембраны, и для выполнения этой роли наилучшим образом подходят интегральные белки, которые охватывают пространство как внутриклеточное, так и межклеточное.

Транспорт веществ через мембраны белки осуществляют различными способами; они могут выступать в качестве белковых насосов, каналов, транспортеров.

АТР - зависимые насосы, представляют собой АТРазы, которые способствуют движению через мембраны ионов или небольших молекул против их концентрационного градиента (или электрохимического потенциала) за счет энергии расщепления АТР. Такой вид транспорта известен как активный транспорт. С активным транспортом сопряжены определенные химические реакции, так, например, благодаря таким насосам в животных клетках обеспечивается поддержание низких концентраций Са2+ внутри клетки и высокое содержание ионов Nа+ в межклеточном пространстве, низкое значение рН в желудочном соке у человека и животных (моногастричных), внутри лизосом клеток, вакуолей растительных клеток.

Белковые каналы обеспечивают быстрое (до 108 молекул в секунду) перемещение одновременно молекул воды и других молекул и ионов по направлению снижения их концентрационного градиента (или электрохимического потенциала). Такие перемещения молекул обычно являются энергетически выгодными. Так, плазматические мембраны всех животных клеток содержат К+ - специфичные белковые каналы, которые открываются и закрываются в определенное время. Другие белковые каналы в это время закрыты и открываются только в ответ на воздействие специальных сигналов. Особенно большую роль играют такие каналы в нервных клетках.

Белки-транспортеры способствуют транспорту различных ионов и молекул через мембрану; однако, в отличие от канальных белков, белки-транспортеры связывают одну (или несколько) молекул субстрата одновременно, что приводит к изменению конформации белка и в результате к транспорту этих связанных молекул через мембрану. Такие транспортеры могут переносить в клетку около 102-104 молекул в секунду, что гораздо медленнее, чем движение по белковым каналам.

Обнаружены 3 типа белка-транспортера.

Юнипортеры осуществляют транспорт через мембрану животных клеток молекул одного типа в сторону уменьшения их концентрационного градиента, например, глюкозу, аминокислоты.

Антипортеры и симпортеры обеспечивают согласованный ко-транспорт одних молекул или ионов через мембрану против их концентрационного градиента с движением других молекул или ионов в процессе их перемещения в сторону уменьшения их концентрационного градиента.

АКТИВНЫЙ ТРАНСПОРТ ЧЕРЕЗ МЕМБРАНУ

Активный транспорт - это транспорт веществ через мембраны за счет потребления энергии расщепления АТР. Активным транспортом осуществляется транспорт некоторых ионов и небольших молекул против их концентрационного градиента.

Белки, участвующие в активном транспорте через мембраны (белковые насосы), условно подразделяют на 4 класса: суперсемейство белков АВС, белки класса Р., F ., и V. Белки класса Р., F . и V транспортируют только ионы, а АВС - небольшие молекулы и ионы.

Белки (насосы) Р. - класса состоят из 2 субъединиц - α и β; α - субъединица содержит АТР - связывающий участок и является каталитической, а β - субъединица - регуляторной. Большинство белков этого класса являются тетрамерами, составленными из 2 α, и 2 β - субъединиц. В процессе транспорта, по крайней мере, одна из α - субъединиц сначала подвергается фосфорилированию (поэтому и обозначается как «Р»), и именно через нее происходит транспорт ионов.

К белкам Р - класса относятся:

■ Nа+/К+- АТРаза - фермент, локализованный в плазматической мембране и регулирующий внутриклеточное содержание ионов Nа+ и К+ в клетках животных;

■ Са2+- АТРазы - насосы, перекачивающие ионы Са2+ из цитозоля в межклеточное пространство против их концентрационного градиента для поддержания низкого уровня кальция (10-2 М) в цитоплазме клеток животных, дрожжей и растений. Помимо плазматических Са2+-АТРаз клетки мышц содержат еще другую Са2+-АТРазу (мышечный Са2+-й насос), которая осуществляет перекачивание ионов кальция из цитозоля в саркоплазматический ретикулум (СР) - внутриклеточное хранилище кальция;

■ мембранные белки эпителиальных клеток желудка у млекопитающих, способствующие поступлению соляной кислоты в желудок;

■ Н+- насосы, транспортирующие протоны водорода из клетки взамен поступления ионов К+ внутрь клетки;

■ Н+- насосы, регулирующие мембранный электрический потенциал в клетках растений, грибов, бактерий. Эти насосы не содержат фосфопротеиновой части.

Ионные насосы класса F и V структурно похожи друг на друга, но гораздо сложнее, чем белки класса Р. Насосы F и V состоят из 3 трансмембранных белков и 5 различных полипептидов, которые ориентированы в цитозольную часть белка и формируют внутрицитозольный домен. Некоторые субъединицы трансмембранных белков, ориентированные во внешнюю часть биомембран, структурно аналогичны внутрицитозольным доменным полипептидам.

Насосы класса V в основном участвуют в поддержании низкого значения рН в вакуолях растений и лизосомах и других кислотных везикулах животных клеток за счет расходования энергии расщепления АТР и перекачивая протоны водорода через мембрану из цитозоля в межклеточное пространство против протонного электрохимического градиента. Насосы класса F найдены в плазматических мембранах бактерий, мембранах хлоропластов и митохондрий. В отличие от насосов класса V их функция в основном направлена на синтез АТР из А D Р и неорганического фосфата за счет движения протонов водорода из цитозольного межмембранного пространства в сторону уменьшения электрохимического градиента.

Последний класс АTР - зависимых транспортных белков - это суперсемейство АВС (АТР- binding cassette ). Этот класс включает до 100 различных транспортных белков, и обнаружены они в клетках всех организмов. Каждый АВС - белок специфичен по отношению к одному какому-то субстрату, или группе субстратов, похожих друг на друга, включая ионы, углеводы, пептиды, полисахариды и даже белки.

Все АВС - транспортные белки объединяет наличие у них 4 главных доменов - двух трансмембранных доменов (Т), образующих так называемые ворота для «прохождения» молекул через мембрану, и двух внутрицитозольных домена (А), участвующих в связывании АТР. Таких АТР - связывающих участков у АВС - белков могут быть один или два, и их часто называют АТРазами, хотя и не всегда они проявляют АТР - гидролизующие свойства. В отдельных случаях такие трансмембранные белки могут проявить АТР - синтезирующие свойства, что играет решающую роль при синтезе АТР в митохондриальных мембранах.