Циркуляция воздушных масс. Циркуляция атмосферы. воздушные потоки в атмосфере На направление и скорость ветров ещё влияют

Обусловлено следующими факторами:

Сила барического градиента (градиент давления);

Сила Кориолиса;

Геострофический ветер;

Градиентный ветер;

Сила трения.

Барический градиент приводит к тому, что ветер, возникающий благодаря движению воздуха по направлению барического градиента из области более высокого давления в область более низкого давления. Давление атмосферы составляет 1,033 кг/см², измеряется в мм рт.ст., мБ и в гПа.

Изменение давления происходит при перемещении воздуха вследствие его нагревания и охлаждения. Главная причина переноса воздушных масс – конвективные потоки – подъём тёплого воздуха и замещение его снизу холодным (вертикальный конвекционный поток). Встречая слой воздуха повышенной плотности, они растекаются, образуя горизонтальные конвекционные потоки.

Сила Кориолиса – отталкивающая сила. Возникает при вращении Земли. Под её действием ветер отклоняется в Северном полушарии – вправо, в Южном – влево, т.е. в Северном отклоняется к востоку. Ближе к полюсам отклоняющая сила возрастает.

Геострофический ветер .

В умеренных широтах сила градиента давления и сила Кориолиса уравновешиваются, при этом воздух не перемещается из области повышенного давления в область пониженного, а перетекает между ними параллельно изобарам.

Градиентный ветер - это круговое движение воздуха параллельно изобарам под воздействием центробежных и центростремительных сил.

Воздействие силы трения.

Трение воздуха о земную поверхность нарушает баланс между силой горизонтального барического градиента и силой Кориолиса, замедляет движение воздушных масс, изменяет их направление так, что поток воздуха движется не по изобарам, а пересекает их под углом.

С высотой действие трения ослабляется, отклонение ветра от градиента возрастает. Изменение скорости и направление ветра с высотой называется спиралью Экмана.

Средняя многолетняя спираль ветра у Земли составляет 9,4 м/с, она максимальна у Антарктиды (до 22 м/с), иногда порывы достигают 100 м/с.

С высотой скорость ветра увеличивается и достигает сотен м/с. Направление ветра зависит от распределения давления и отклоняющего действия вращения Земли. Зимой ветры направлены с материка на океан, летом – с океана на материк. Местные ветры называют бриз, фен, бора.

Конденсация это изменение совтояния вещества из газообразного в жидкое или твёрдое. Но что такое конденсация в мастабе планеты?

В каждый момент времени атмосферапланеты Земля содержит свыше 13 миллиардов тонн влаги. Эта цифра практически постоянна, так как потери за счет выпадения осадков, в конечном счете, непрерывно восполняются испарением.

Скорость кругооборота влаги в атмосфере

Скорость кругооборота влаги в атмосфере оценивается колоссальной цифрой - около 16 миллионов тонн в секунду или 505 миллиардов тонн в год. Если бы вдруг весь водяной пар в атмосфере сконденсировался и выпал в виде осадков, то эта вода могла бы покрыть всю поверхность земного шара слоем примерно 2,5 сантиметра, иными словами, атмосфера содержит количество влаги, эквивалентное всего лишь 2,5 сантиметрам дождя.

Сколько времени находится молекула пара в атмосфере?

Так как на Земле в среднем за год выпадает 92 сантиметра, то, следовательно, в атмосфере влага обновляется 36 раз, то есть 36 раз атмосфера насыщается влагой и освобождается от нее. Это значит, что молекула водяного пара пребывает в атмосфере в среднем 10 дней.

Путь молекулы воды


Однажды испарившись, молекула водяного пара дрейфует обычно сотни и тысячи километров, пока не сконденсируется и не выпадет с осадками на Землю. Вода, снега или града на возвышенностях Западной Европы, преодолевает примерно 3000 км от Северной Атлантики. Между превращением жидкой воды в пар и выпадением осадков на Землю совершается несколько физических процессов.

С теплой поверхности Атлантики молекулы воды попадают в теплый влажный воздух, который в дальнейшем поднимается над окружающим его более холодным (более плотным) и более сухим воздухом.

Если при этом будет наблюдаться сильное турбулентное перемешивание воздушных масс, то в атмосфере появится слой перемешивания и облака на границе двух воздушных масс. Около 5% их объема составляет влага. Насыщенный паром воздух всегда легче, во-первых, потому, что он нагрет и поступает с теплой поверхности, во-вторых, потому, что 1 кубический метр чистого пара примерно на 2/5 легче 1 кубический метр чистого сухого воздуха при той же температуре и давлении. Отсюда следует, что влажный воздух легче сухого, а теплый и влажный тем более. Как мы увидим позже, это очень важный факт для процессов изменения погоды.

Перемещение воздушных масс

Воздух может подниматься по двум причинам: либо потому, что становится легче в результате нагревания и увлажнения, либо потому, что на него действуют силы, заставляющие его подниматься над некоторыми препятствиями, например над массами более холодного и плотного воздуха или над холмами и горами.

Охлаждение

Поднимающийся воздух, попав в слои с меньшим атмосферным давлением, вынужден расширяться и при этом охлаждаться. Расширение требует затрат кинетической энергии, которая берется за счет тепловой и потенциальной энергии атмосферного воздуха, а этот процесс неизбежно ведет к понижению температуры. Скорость охлаждения поднимающейся порции воздуха часто меняется, если эта порция перемешивается с окружающим воздухом.

Сухоадиабатический градиент

Сухой воздух, в котором отсутствует конденсация или испарение, а также перемешивание, не получающий энергию в другой форме, охлаждается или нагревается на постоянную величину (на 1°С через каждые 100 метров) по мере подъема или опускания. Эту величину называют сухоадиабатическим градиентом. Но если поднимающаяся воздушная масса влажная и в ней происходит конденсация, то при этом выделяется скрытая теплота конденсации и температура насыщенного паром воздуха падает значительно медленнее.

Влажноадиабатический градиент

Эта величина изменения температуры называется влажно-адиабатическим градиентом. Она не постоянна, а изменяется с изменением величины высвобождающейся скрытой теплоты, другими словами, она зависит от количества конденсируемого пара. Количество же пара зависит от того, насколько сильно понижается температура воздуха. В нижних слоях атмосферы, где воздух теплый и влажность высокая, влажно-адиабатический градиент чуть больше половины сухоадиабатического градиента. Но влажно-адиабатический градиент постепенно растет с высотой и на очень большой высоте в тропосфере практически равен сухоадиабатическому градиенту.

Плавучесть движущегося воздуха определяется соотношением между его температурой и температурой окружающего воздуха. Как правило, в реальной атмосфере температура воздуха падает с высотой неравномерно (это изменение называется просто градиентом).

Если масса воздуха теплее и поэтому менее плотная, чем окружающий воздух (а влагосодержание постоянно), то она поднимается вверх так же, как детский мяч, погруженный в бак. И наоборот, когда движущийся воздух холоднее окружающего, то плотность его выше и он опускается. Если воздух имеет ту же самую температуру, что и соседние массы, то их плотность равна и масса остается неподвижной или движется только вместе с окружающим воздухом.

Таким образом, в атмосфере присутствуют два процесса, один из которых способствует развитию вертикального движения воздуха, а другой замедляет его.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Взаимодействие океана и атмосферы.

27. Циркуляция воздушных масс.

© Владимир Каланов,
"Знания-сила".

Перемещение воздушных масс в атмосфере определяется тепловым режимом и изменением давления воздуха. Совокупность основных воздушных течений над планетой называется общей циркуляцией атмосферы . Основные крупномасштабные атмосферные движения, слагающие общую циркуляцию атмосферы: воздушные течения, струйные течения, воздушные потоки в циклонах и антициклонах, пассаты и муссоны.

Движение воздуха относительно земной поверхности – ветер – появляется потому, что атмосферное давление в различных местах воздушной массы неодинаково. Принято считать, что ветер – это горизонтальное движение воздуха. На самом деле воздух движется обычно не параллельно поверхности Земли, а под небольшим углом, т.к. атмосферное давление меняется и в горизонтальном и в вертикальном направлениях. Направление ветра (северный, южный и т.д.) означает, откуда ветер дует. Под силой ветра подразумевается его скорость. Чем она выше, тем ветер сильней. Скорость ветра измеряют на метеорологических станциях на высоте 10 метров над Землёй, в метрах в секунду. На практике силу ветра оценивают в баллах. Каждый балл соответствует двум-трём метрам в секунду. При силе ветра в 9 баллов его уже считают штормовым, а при 12 баллах – ураганом. Распространённый термин «буря» означает любой очень сильный ветер, независимо от количества баллов. Скорость сильного ветра, например, при тропическом урагане, достигает огромных значений – до 115 м/с и более. Ветер возрастает в среднем с высотой. У поверхности Земли его скорость снижается трением. Зимой скорость ветра в целом выше, чем в летнее время. Наибольшие скорости ветра наблюдаются в умеренных и полярных широтах в тропосфере и нижней стратосфере.

Не совсем ясна закономерность изменения скорости ветра над материками на небольших высотах (100–200 м). здесь скорости ветра достигают самых больших значений после полудня, а самых малых – в ночное время. Это наблюдается лучше всего летом.

Очень сильные ветры, до штормовых, бывают днём в пустынях Центральной Азии, а ночью наступает полный штиль. Но уже на высоте 150–200 м наблюдается прямо противоположная картина: максимум скорости ночью и минимум днём. Такая же картина наблюдается и летом, и зимой в умеренных широтах.

Много неприятностей может принести порывистый ветер пилотам самолётов и вертолётов. Струи воздуха, движущиеся в различных направлениях, толчками, порывами, то ослабевая, то усиливаясь, создают большое препятствие для движения воздушных судов – появляется болтанка – опасное нарушение нормального полёта.

Ветры, дующие с горных хребтов выхоложенного материка в направлении тёплого моря, называются борой . Это – сильный, холодный, порывистый ветер, дующий обычно в холодное время года.

Многим известна бора в районе Новороссийска, на Черном море. Здесь созданы такие природные условия, что скорость боры может достигать 40 и даже 60 м/с, а температура воздуха понижается при этом до минус 20°С. Бора возникает чаще всего в период с сентября по март, в среднем 45 дней в году. Иногда последствия её были такими: замерзала гавань, лёд покрывал корабли, строения, набережную, с домов срывались крыши, опрокидывались вагоны, суда сбрасывались на берег. Бора наблюдается и в других районах России – на Байкале, на Новой Земле. Известна бора на Средиземном побережье Франции (там она называется мистраль) и в Мексиканском заливе.

Иногда в атмосфере возникают вертикальные вихри с быстрым спиралеобразным движением воздуха. Эти вихри называются смерчами (в Америке их называют торнадо). Смерчи бывают диаметром в несколько десятков метров, иногда до 100–150 м. измерить скорость воздуха внутри смерча чрезвычайно трудно. По характеру производимых смерчем разрушений оценочными величинами скорости вполне могут быть 50–100 м/с, а в особенно сильных вихрях – до 200–250 м/с с большой вертикальной составляющей скорости. Давление в центре поднимающегося вверх столба смерча падает на несколько десятков миллибар. Миллибары для определения давления обычно используют в синоптической практике (наряду с миллиметрами ртутного столба). Для перевода баров (миллибаров) в мм. ртутного столба существуют специальные таблицы. В системе СИ атмосферное давление измеряется в гектопаскалях. 1гПа=10 2 Па=1мб=10 -3 бар.

Смерчи существуют недолго – от нескольких минут до нескольких часов. Но и за это небольшое время они успевают натворить много бед. При подходе смерча (над сушей смерчи иногда называют тромбами) к зданиям разница между давлением внутри здания и в центре тромба приводит к тому, что здания как бы взрываются изнутри – разрушаются стены, вылетают стекла и рамы, срываются крыши, иногда не обходится и без человеческих жертв. Бывают случаи, когда людей, животных, а также различные предметы смерч поднимает в воздух и переносит на десятки, а то и сотни метров. В своём движении смерчи продвигаются на несколько десятков километров над морем и ещё больше – над сушей. Разрушительная сила смерчей над морем меньше, чем над сушей. В Европе тромбы редки, чаще они возникают в азиатской части России. Но особенно часты и разрушительны торнадо в США. О смерчах и торнадо читайте дополнительно на нашем сайте в разделе .

Атмосферное давление очень изменчиво. Оно зависит от высоты столба воздуха, его плотности и ускорения силы тяжести, которое изменяется в зависимости от географической широты и высоты над уровнем моря. Плотностью воздуха называется масса единицы его объёма. Плотность влажного и сухого воздуха заметно отличается только при высокой температуре и большой влажности. При понижении температуры плотность увеличивается, с высотой плотность воздуха уменьшается медленнее, чем давление. Плотность воздуха обычно непосредственно не измеряют, а вычисляют по уравнениям на основе измеренных величин температуры и давления. Косвенно плотность воздуха измеряют по торможению искусственных спутников Земли, а также из наблюдений за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами.

В Европе плотность воздуха у поверхности Земли равна 1,258 кг/м 3 , на высоте 5 км – 0,735, на высоте 20 км – 0,087, а на высоте 40 км – 0,004 кг/м 3 .

Чем короче столб воздуха, т.е. чем выше место, тем давление меньше. Но уменьшение плотности воздуха с высотой усложняет эту зависимость. Уравнение, выражающее закон изменения давления с высотой в покоящейся атмосфере, называется основным уравнением статики. Из него следует, что с увеличением высоты изменение давления отрицательное, и при подъёме на одну и ту же высоту падение давления тем больше, чем больше плотность воздуха и ускорение силы тяжести. Основная роль здесь принадлежит изменениям плотности воздуха. Из основного уравнения статики можно вычислить значение вертикального градиента давления, показывающего изменение давления при перемещении на единицу высоты, т.е. убывание давления на единицу расстояния по вертикали (мб/100 м). Градиент давления – это и есть сила, приводящая в движение воздух. Кроме силы градиента давления в атмосфере действуют силы инерции (сила Кориолиса и центробежная), а также сила трения. Все воздушные течения рассматриваются относительно Земли, которая вращается вокруг своей оси.

Пространственное распределение атмосферного давления называется барическим полем. Это система поверхностей равного давления, или изобарических поверхностей.

Вертикальный разрез изобарических поверхностей над циклоном (Н) и антициклоном (В).
Поверхности проведены через равные интервалы давления p.

Изобарические поверхности не могут быть параллельны друг другу и земной поверхности, т.к. температура и давление постоянно изменяются в горизонтальном направлении. Поэтому изобарические поверхности имеют разнообразный вид – от прогнутых вниз неглубоких «котловин» до выгнутых вверх растянутых «холмов».

При пересечении горизонтальной плоскостью изобарических поверхностей получаются кривые – изобары, т.е. линии, соединяющие пункты с одинаковыми значениями давления.

Карты изобар, которые строятся по результатам наблюдений в определённый момент времени, называются синоптическими картами. Карты изобар, составленные по средним многолетним данным за месяц, сезон, год, называются климатологическими.


Многолетние средние карты абсолютной топографии изобарической поверхности 500 мб за декабрь - февраль.
Высоты в геопотенциальных декаметрах.

На синоптических картах между изобарами принят интервал, равный 5 гектопаскалям (гПа).

На картах ограниченного района изобары могут обрываться, но на карте всего Земного шара каждая изобара, естественно, замкнута.

Но и на ограниченной карте часто бывают замкнутые изобары, ограничивающие участки низкого или высокого давления. Области с пониженным давлением в центре – это циклоны , а области с относительно повышенным давлением – это антициклоны .

Под циклоном понимают огромный вихрь в нижнем слое атмосферы, имеющий в центре пониженное атмосферное давление и восходящее движение воздушных масс. В циклоне давление возрастает от центра к периферии, а воздух движется против часовой стрелки в Северном полушарии и по часовой стрелке – в Южном полушарии. Восходящее движение воздуха приводит к образованию облачности и к осадкам. Из космоса циклоны выглядят в виде закручивающихся облачных спиралей в умеренных широтах.

Антициклон – это область высокого давления. Он возникает одновременно с развитием циклона и представляет собой вихрь с замкнутыми изобарами и самым высоким давлением в центре. Ветры в антициклоне дуют по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном. В антициклоне всегда существует нисходящее движение воздуха, что препятствует возникновению мощной облачности и продолжительных осадков.

Таким образом, крупномасштабная циркуляция атмосферы в умеренных широтах постоянно сводится к образованию, развитию, движению, а затем к затуханию и исчезновению циклонов и антициклонов. Циклоны, возникающие на фронте, разделяющем тёплую и холодную воздушные массы, движутся в сторону полюсов, т.е. переносят тёплый воздух в полярные широты. Наоборот, антициклоны, возникающие в тылу циклонов в холодной воздушной массе, движутся в субтропические широты, перенося туда холодный воздух.

Над европейской территорией России в год возникают в среднем 75 циклонов. Диаметр циклона достигает 1000 км и более. В Европе за год бывает в среднем 36 антициклонов, часть из которых имеет давление в центре более 1050 гПа. Среднее давление в Северном полушарии на уровне моря равно 1013,7 гПа, а в Южном полушарии – 1011,7 гПа.

В январе в северных частях Атлантики и Тихого океана наблюдаются области низкого давления, названные Исландской и Алеутской депрессиями . Депрессии , или барические минимумы , характеризуются минимальными значениями давления – в среднем около 995 гПа.

В такой же период года над Канадой и Азией возникают области высокого давления, названные Канадским и Сибирским антициклонами. Самое высокое давление (1075–1085 гПа) регистрируется в Якутии и Красноярском крае, а минимальное – в тайфунах над Тихим океаном (880–875 гПа).

Депрессии наблюдаются в районах, где часто возникают циклоны, которые по мере продвижения на восток и северо-восток постепенно заполняются и уступают место антициклонам. Азиатский и Канадский антициклоны возникают благодаря наличию на этих широтах обширных континентов Евразии и Северной Америки. В этих районах зимой антициклоны преобладают над циклонами.

Летом над этими материками схема барического поля и циркуляции коренным образом меняется, и зона образования циклонов в Северном полушарии смещается в более высокие широты.

В умеренных широтах Южного полушария циклоны, возникающие над однородной поверхностью океанов, двигаясь на юго-восток, встречают льды Антарктиды и здесь застаиваются, имея в своих центрах низкое давление воздуха. Зимой и летом Антарктида окружена поясом низкого давления (985–990 гПа).

В субтропических широтах циркуляция атмосферы различна над океанами и в районах соприкосновения материков и океанов. Над Атлантическим и Тихим океанами в субтропиках обоих полушарий имеются области высокого давления: это Азорский и Южноатлантический субтропические антициклоны (или барические минимумы) в Атлантике и Гавайский и Южнотихоокеанский субтропические антициклоны в Тихом океане.

Наибольшее количество солнечного тепла постоянно получает экваториальная область. Поэтому в экваториальных широтах (до 10° северной и южной широты вдоль экватора) в течение круглого года удерживается пониженное атмосферное давление, а в тропических широтах, в полосе 30–40° с. и ю.ш. – повышенное, вследствие чего образуются постоянные потоки воздуха, направленные от тропиков к экватору. Эти воздушные потоки называются пассатами . Пассатные ветры дуют в течение всего года, меняя лишь в незначительных пределах свою интенсивность. Это самые устойчивые ветры на Земном шаре. Сила горизонтального барического градиента направляет потоки воздуха из областей повышенного давления в область пониженного давления в меридиональном направлении, т.е. на юг и на север. Примечание: горизонтальный барический градиент – это разность давлений, приходящаяся на единицу расстояния по нормали к изобаре.

Но меридиональное направление пассатов изменяется под действием двух сил инерции – отклоняющей силы вращения Земли (силы Кориолиса) и центробежной силы, а также под действием силы трения воздуха о земную поверхность. Сила Кориолиса воздействует на каждое тело, движущееся вдоль меридиана. Пусть 1 кг воздуха в Северном полушарии расположен на широте µ и начинает двигаться со скоростью V вдоль меридиана на север. Этот килограмм воздуха, как и любое тело на Земле, имеет линейную скорость вращения U=ωr , где ω – угловая скорость вращения Земли, а r – расстояние до оси вращения. По закону инерции этот килограмм воздуха будет сохранять линейную скорость U , которую он имел на широте µ . Продвигаясь на север, он окажется на более высоких широтах, где радиус вращения меньше и линейная скорость вращения Земли меньше. Таким образом это тело опередит неподвижные тела, расположенные на том же меридиане, но в более высоких широтах.

Для наблюдателя это будет выглядеть как отклонение этого тела вправо под действием какой-то силы. Эта сила и есть сила Кориолиса. По этой же логике килограмм воздуха в Южном полушарии отклонится влево от направления движения. Горизонтальная составляющая силы Кориолиса, действующая на 1 кг воздуха, равна СК=2wVsinY. Она и отклоняет воздух, действуя под прямым углом к вектору скорости V. В Северном полушарии она отклоняет этот вектор вправо, а в Южном полушарии – влево. Из формулы следует, что сила Кориолиса не возникает, если тело покоится, т.е. она действует только тогда, когда воздух движется. В атмосфере Земли величины горизонтального барического градиента и силы Кориолиса имеют один порядок, поэтому иногда они почти уравновешивают друг друга. В таких случаях движение воздуха почти прямолинейно, и он движется не вдоль градиента давления, а вдоль изобары или близко к ней.

Воздушные течения в атмосфере обычно имеют вихревой характер, поэтому в таком движении на каждую единицу массы воздуха действует центробежная сила P=V/R , где V - скорость ветра, а R – радиус кривизны траектории движения. В атмосфере эта сила всегда меньше силы барического градиента и поэтому остаётся, так сказать, силой «местного значения».

Что касается силы трения, возникающей между движущимся воздухом и поверхностью Земли, то она в определённой мере замедляет скорость ветра. Происходит это так: нижние объёмы воздуха, снизившие свою горизонтальную скорость из-за неровностей земной поверхности, переносятся с нижних уровней вверх. Таким образом трение о земную поверхность передаётся вверх, постепенно ослабевая. Замедление скорости ветра заметно в так называемом планетарном пограничном слое , составляющем 1,0 – 1,5 км. выше 1,5 км влияние трения незначительно, поэтому более высокие слои воздуха называют свободной атмосферой .

В экваториальной зоне линейная скорость вращения Земли наибольшая, соответственно здесь и сила Кориолиса наибольшая. Поэтому в тропическом поясе Северного полушария пассаты дуют почти всегда с северо-востока, а в Южном полушарии – с юго-востока.

Низкое давление в экваториальной зоне наблюдается постоянно, зимой и летом. Полоса низкого давления, охватывающая по экватору весь Земной шар, называется экваториальной ложбиной .

Набрав силу над океанами обоих полушарий, два пассатных потока, двигаясь навстречу друг другу, устремляются к центру экваториальной ложбины. На линии низкого давления они сталкиваются, образуя так называемую внутритропическую зону конвергенции (конвергенция означает «сходимость»). В результате этой «сходимости» происходит восходящее движение воздуха и его отток выше пассатов к субтропикам. Этот процесс и создаёт условия для существования зоны конвергенции постоянно, в течение года. Иначе сходящиеся воздушные потоки пассатов быстро заполнили бы ложбину.

Восходящие движения влажного тропического воздуха приводят к образованию мощного слоя кучево-дождевых облаков протяженностью 100–200 км, из которых обрушиваются тропические ливни. Таким образом получается, что внутритропическая зона конвергенции становится местом, где дожди выливаются из пара, собранного пассатами над океанами.

Так упрощенно, схематично выглядит картина циркуляции атмосферы в экваториальной зоне Земли.

Ветры, изменяющие своё направление по сезонам, называют муссонами . Арабское слово «маусин», означающее «время года», дало название этим устойчивым воздушным течениям.

Муссоны, в отличие от струйных течений, возникают в определённых районах Земли, где дважды в год преобладающие ветры движутся в противоположных направлениях, образуя летний и зимний муссоны. Летний муссон – это поток воздуха с океана на материк, зимний – с материка на океан. Известны тропические и внетропические муссоны. В Северо-Восточной Индии и Африке зимние тропические муссоны складываются с пассатами, а летние юго-западные полностью разрушают пассаты. Самые мощные тропические муссоны наблюдаются в северной части Индийского океана и в Южной Азии. Внетропические муссоны зарождаются в возникающих над континентом мощных устойчивых областях повышенного давления в зимнее время и пониженного – в летнее время.

Типичными в этом отношении являются районы русского Дальнего Востока, Китая, Японии. Например, Владивосток, лежащий на широте Сочи из-за действия внетропического муссона зимой холоднее Архангельска, а летом здесь часто бывают туманы, осадки, с моря поступает влажный и прохладный воздух.

Многие тропические страны Южной Азии получают влагу, приносимую в виде проливных дождей летним тропическим муссоном.

Любые ветры являются результатом взаимодействия различных физических факторов, возникающих в атмосфере над определенными географическими районами. К местным ветрам относятся бризы . Они появляются вблизи береговой черты морей и океанов и имеют суточную смену направления: днём они дуют с моря на сушу, а ночью с суши на море. Объясняется это явление разницей температур над морем и сушей в разное время суток. Теплоёмкость суши и моря разная. Днём в тёплую погоду солнечные лучи нагревают сушу быстрее, чем море, и давление над сушей уменьшается. Воздух начинает двигаться в сторону меньшего давления – дует морской бриз . Вечером всё происходит наоборот. Суша и воздух над ней излучают тепло быстрее, чем море, давление становится выше, чем над морем, и воздушные массы устремляются в сторону моря – дует береговой бриз . Бризы особенно отчётливы при тихой солнечной погоде, когда им ничего не мешает, т.е. не накладываются другие потоки воздуха, которые легко заглушают бризы. Скорость бриза редко бывает выше 5 м/с, но в тропиках, где разность температур поверхностей моря и суши значительна, бризы дуют иногда со скоростью 10 м/с. В умеренных широтах бризы проникают в глубь территории на 25–30 км.

Бризы, собственно говоря, те же муссоны, только в меньшем масштабе – они имеют суточный цикл и изменение направления зависит от смены ночи и дня, муссоны же имеют годовой цикл и меняют направление в зависимости от времени года.

Океанские течения, встречая на своём пути берега материков, разделяются на две ветви, направленные вдоль побережий материков к северу и югу. В Атлантическом океане южная ветвь образует Бразильское течение, омывающее берега Южной Америки, а северная ветвь – тёплый Гольфстрим, переходящая в Североатлантическое течение, и под названием Нордкапского течения достигающая Кольского полуострова.

Тихом океане северная ветвь экваториального течения переходит в Куро-Сиво.

Ранее мы уже упоминали о сезонном тёплом течении у берегов Эквадора, Перу и Северного Чили. Оно возникает обычно в декабре (не каждый год) и вызывает резкое снижение улова рыбы у берегов этих стран из-за того, что в тёплой воде очень мало планктона – основного пищевого ресурса для рыбы. Резкое повышение температуры прибрежных вод вызывает развитие кучево-дождевых облаков, из которых проливаются сильные дожди.

Рыбаки иронически назвали это тёплое течение Эль-Ниньо, что означает «рождественский подарок» (от исп. el ninjo – младенец, мальчик). Но мы хотим подчеркнуть не эмоциональное восприятие чилийскими и перуанскими рыбаками этого явления, а его физическую причину. Дело в том, что повышение температуры воды у берегов Южной Америки вызывается не только тёплым течением. Изменения в общую обстановку в системе «океан-атмосфера» на огромных просторах Тихого океана вносит и атмосферный процесс, названный «Южным колебанием ». Этот процесс, взаимодействуя с течениями, определяет все физические явления, происходящие в тропиках. Всё это подтверждает, что циркуляция воздушных масс в атмосфере, особенно над поверхностью Мирового океана, представляет собой сложный, многомерный процесс. Но при всей сложности, подвижности и изменчивости воздушных течений всё же существуют определённые закономерности, в силу которых в тех или иных районах Земли из года в год повторяются основные крупномасштабные, а также местные процессы циркуляции атмосферы.

В заключение главы приведём некоторые примеры использования энергии ветра. Энергию ветра люди используют с незапамятных времён, с тех пор, как они научились ходить в море под парусом. Потом появились ветряные мельницы, а позднее – ветровые двигатели – источники электроэнергии. Ветер – вечный источник энергии, запасы которой неисчислимы. К сожалению, использование ветра в качестве источника электроэнергии представляет большую сложность из-за изменчивости его скорости и направления. Однако с помощью ветряных электродвигателей стало возможным достаточно эффективное использование энергии ветра. Лопасти ветряка заставляют его почти всегда «держать нос» по ветру. Когда ветер имеет достаточную силу, ток идёт непосредственно к потребителям: на освещение, к холодильным установкам, приборам различного назначения и на зарядку аккумуляторов. Когда ветер стихает, аккумуляторы отдают в сеть накопленную электроэнергию.

На научных станциях в Арктике и Антарктике электроэнергия ветровых двигателей даёт свет и тепло, обеспечивает работу радиостанций и других потребителей электроэнергии. Конечно, на каждой научной станции имеются дизель-генераторы, для которых нужно иметь постоянный запас топлива.

Самые первые мореплаватели использовали силу ветра стихийно, без учёта системы ветров и океанских течений. Они просто ничего не знали о существовании такой системы. Знания о ветрах и течениях накапливались столетиями и даже тысячелетиями.

Один из современников китайский мореплаватель Чжэн Хэ в течение 1405-1433 гг. возглавил несколько экспедиций, которые проходили так называемым Великим муссонным путём от устья реки Янцзы к Индии и восточным берегам Африки. Сохранились сведения о масштабах первой из этих экспедиций. Она состояла из 62 кораблей с 27800 участниками. Для плавания экспедиций китайцы использовали свои знания закономерностей муссонных ветров. Из Китая они уходили в море в конце ноября – начале декабря, когда дует северо-восточный зимний муссон. Попутный ветер помогал им достигать Индии и Восточной Африки. Возвращались они в Китай в мае – июне, когда устанавливался летний юго-западный муссон, который в Южно-Китайском море становился южным.

Возьмём пример из более близкого к нам времени. Речь пойдёт о путешествиях знаменитого норвежского учёного Тура Хейердала. С помощью ветра, а точнее, с помощью пассатов Хейердал смог доказать научную ценность двух своих гипотез. Первая гипотеза заключалась в том, что острова Полинезии в Тихом океане могли быть, по мнению Хейердала, заселены когда-то в прошлом выходцами из Южной Америки, которые пересекли значительную часть Тихого океана на своих примитивных плавсредствах. Эти плавсредства представляли собой плоты из бальсового дерева, которое примечательно тем, что после длительного пребывания в воде оно не меняет свою плотность, а потому не тонет.

Жители Перу пользовались такими плотами в течение тысячелетий, ещё до империи инков. Тур Хейердал в 1947 г. связал плот из больших бальсовых брёвен и назвал его «Кон-Тики», что означает Солнце-Тики – божество предков полинезийцев. Взяв «на борт» своего плота пятерых любителей приключений, он отправился в путь под парусом из Кальяо (Перу) в Полинезию. В начале плавания плот несло Перуанское течение и юго-восточный пассат, а затем за работу принялся восточный пассат Тихого океана, который почти три месяца без перерыва дул исправно на запад, и через 101 сутки Кон-Тики благополучно прибыл на один из островов архипелага Туамоту (ныне Французская Полинезия).

Вторая гипотеза Хейердала состояла в том, что он считал вполне возможным, что культура ольмеков, ацтеков, майя и других племён Центральной Америки была перенесена из Древнего Египта. Это было возможным, по мнению учёного, потому, что когда-то в древности люди плавали через Атлантический океан на папирусных лодках. Доказать состоятельность этой гипотезы Хейердалу помогли также пассаты.

Вместе с группой спутников-единомышленников он совершил два плавания на папирусных лодках «Ра-1» и «Ра-2». Первая лодка («Ра-1») развалилась, не дойдя до американского берега нескольких десятков километров. Экипаж подвергся серьёзной опасности, но всё обошлось благополучно. Лодку для второго плавания («Ра-2») вязали «специалисты высшего класса» – индейцы из Центральных Анд. Выйдя из порта Сафи (Марокко), папирусная лодка «Ра-2» через 56 суток пересекла Атлантический океан и достигла острова Барбадос (примерно в 300–350 км от побережья Венесуэлы), преодолев 6100 км пути. Сначала лодку подгонял северо-восточный пассат, а начиная с середины океана – восточный пассат.

Научность второй гипотезы Хейердала была доказана. Но было доказано и другое: несмотря на благополучный исход плавания, лодка, связанная из пучков папируса, камыша, тростника или другого водного растения, для плавания в океане не годится. Подобный «кораблестроительный материал» не должен использоваться, т.к. он быстро намокает и погружается в воду. Ну, а если найдутся ещё любители, одержимые желанием переплыть океан на каких-нибудь экзотических плавсредствах, то пусть они имеют в виду, что плот из бальсового дерева надёжнее, чем папирусная лодка, а также то, что такое путешествие всегда и в любом случае опасно .

© Владимир Каланов,
"Знания-сила"

Воздушные массы - большие объёмы воздуха в нижней части земной атмосферы - тропосфере, имеющие горизонтальные размеры во много сотен или несколько тысяч километров и вертикальные размеры в несколько километров, характеризующиеся примерной однородностью температуры и влагосодержания по горизонтали.

Виды: Арктический или антарктический воздух (АВ), Умеренный воздух (УВ), Тропический воздух (ТВ), Экваториальный воздух (ЭВ).

Воздух в вентиляционных слоях может перемещаться в виде ламинарного или турбулентного потока. Понятие «ламинарный» означает, что отдельные потоки воздуха параллельны друг другу и движутся в вентиляционном пространстве без завихрений. В случае турбулентного потока его частицы движутся не только параллельно, но и совершают поперечное движение. Это приводит к вихреобразованию по всему сечению вентиляционного канала.

Состояние воздушного потока в вентиляционном пространстве зависит от : Скорости потока воздуха, Температуры воздуха, Площади сечения вентиляционного канала, Формы и поверхности строительных элементов на границе вентиляционного канала.

В земной атмосфере наблюдаются воздушные движения самых различных масштабов – от десятков и сотен метров (местные ветры) до сотен и тысяч километров (циклоны, антициклоны, муссоны, пассаты, планетарные фронтальные зоны) .
Воздух непрерывно движется: он поднимается - восходящее движение, опускается - нисходящее движение. Движение воздуха в горизонтальном направлении называется ветром. Причиной возникновения ветра является неравномерное распределение давления воздуха на поверхность Земли, которое вызвано неравномерным распределением температуры. При этом воздушный поток движется от мест с большим давлением в сторону, где давление меньше.
При ветре воздух движется не равномерно, а толчками, порывами, особенно у поверхности Земли. Существует много причин, которые влияют на движение воздуха: трение воздушного потока о поверхность Земли, встреча с препятствиями и др. Кроме того, воздушные потоки под влиянием вращения Земли отклоняются в северном полушарии вправо, а в южном - влево.

Вторгаясь в районы с иными тепловыми свойствами поверхности, воздушные массы постепенно трансформируются. Например, морской умеренный воздух, поступая на сушу и продвигаясь в глубь материка, постепенно нагревается и иссушается, превращаясь в континентальный. Трансформация воздушных масс особенно характерна для умеренных широт, в которые время от времени вторгается теплый и сухой воздух из тропических широт и холодный и сухой - из приполярных

— важный фактор формирования климата. Она выражена перемещением различных типов воздушных масс.

Воздушные массы — это подвижные части тропосферы, отличающиеся друг от друга температурой и влажностью. Воздушные массы бывают морскими и континентальными.

Морские воздушные массы формируются над Мировым океаном. Они более влажные по сравнению с континентальными, образующимися над сушей.

В различных климатических поясах Земли формируются свои воздушные массы: экваториальные, тропические, умеренные, арктические и антарктические.

Перемещаясь, воздушные массы долго сохраняют свои свойства и поэтому определяют погоду тех мест, куда они приходят.

Арктические воздушные массы формируются над Северным Ледовитым океаном (зимой — и над севером материков Евразия и Северная Америка). Они отличаются низкой температурой, невысокой влажностью и повышенной прозрачностью воздуха. Вторжения арктических воздушных масс в умеренные широты вызывают резкое похолодание. При этом устанавливается преимущественно ясная и малооблачная погода. При продвижении в глубь материка на юг арктические воздушные массы трансформируются в сухой континентальный воздух умеренных широт.

Континентальные арктические воздушные массы формируются над ледяной Арктикой (в центральной и восточной ее частях) и над северным побережьем материков (зимой). Их особенностями являются очень низкие температуры воздуха и низкое содержание влаги. Вторжение континентальных арктических воздушных масс на материк приводит к сильному похолоданию при ясной погоде.

Морские арктические воздушные массы формируются в более теплых условиях: над свободной от льда акваторией с более высокой температурой воздуха и большим влагосодержанием — это европейская Арктика. Вторжения таких воздушных масс на материк зимой даже вызывают потепление.

Аналогом арктического воздуха Северного полушария в Южном полушарии являются антарктические воздушные массы. Их влияние распространяется в большей степени на прилегающие морские поверхности и редко на южную окраину материка Южная Америка.

Умеренный (полярный) воздух — это воздух умеренных широт. Умеренные воздушные массы проникают в полярные, а также субтропические и тропические широты.

Континентальные умеренные воздушные массы зимой обычно приносят ясную погоду с крепкими морозами, а летом — достаточно теплую, но облачную, нередко дождливую, с грозами.

Морские умеренные воздушные массы на материки переносятся западными ветрами. Их отличают высокая влажность и умеренные температуры. Зимой морские умеренные воздушные массы приносят пасмурную погоду, обильные осадки и оттепели, а летом — большую облачность, дожди и понижение температуры.

Тропические воздушные массы формируются в тропических и субтропических широтах, а летом — и в континентальных районах на юге умеренных широт. Тропический воздух проникает в умеренные и экваториальные широты. Высокая температура — общая черта тропического воздуха.

Континентальные тропические воздушные массы отличаются сухостью и запыленностью, а морские тропические воздушные массы — высокой влажностью.

Экваториальный воздух, возникающий в области Экваториальной депрессии, очень теплый и влажный. Летом в Северном полушарии экваториальный воздух, смещаясь на север, вовлекается в циркуляционную систему тропических муссонов.

Экваториальные воздушные массы формируются в экваториальной зоне. Их отличают высокие температуры и влажность в течение всего года, причем это касается воздушных масс, формирующихся как над сушей, гак и над океаном. Поэтому на морские и континентальные подтипы экваториальный воздух не подразделяется.

Вся система воздушных течений в атмосфере называется общей циркуляцией атмосферы.

Атмосферный фронт

Воздушные массы постоянно движутся, изменяют свои свойства (трансформируются), но между ними остаются довольно резкие границы — переходные зоны шириной в несколько десятков километров. Эти пограничные зоны называются атмосферными фронтами и характеризуются неустойчивым состоянием температуры, влажности воздуха, .

Пересечение такого фронта с земной поверхностью называется линией атмосферного фронта.

При прохождении атмосферного фронта через какую-либо местность над ней меняются воздушные массы и, как следствие, погода.

Для умеренных широт характерны фронтальные осадки. В зоне атмосферных фронтов возникают обширные облачные образования протяженностью в тысячи километров и выпадают осадки. Как они возникают? Атмосферный фронт можно рассматривать как границу двух воздушных масс, которая наклонена к земной поверхности под очень малым углом. Холодный воздух находится рядом с теплым и над ним в виде пологого клина. При этом теплый воздух поднимается вверх по клину холодного воздуха и охлаждается, приближаясь к состоянию насыщения. Возникают облака, из которых выпадают осадки.

Если фронт перемещается в сторону отступающего холодного воздуха, наступает потепление; такой фронт называется теплым. Холодный фронт, наоборот, надвигается на территорию, занятую теплым воздухом (рис. 1).

Рис. 1. Типы атмосферных фронтов: а — теплый фронт; б — холодный фронт