Формула расчета расстояния между двумя точками. Простейшие задачи аналитической геометрии на плоскости. Расстояние от точки до точки на плоскости, формула

Здесь будет калькулятор

Расстояние между двумя точками на прямой

Рассмотрим координатную прямую, на которой отмечены 2 точки: A A A и B B B . Чтобы найти расстояние между этими точками, нужно найти длину отрезка A B AB A B . Это делается при помощи следующей формулы:

Расстояние между двумя точками на прямой

A B = ∣ a − b ∣ AB=|a-b| A B = ∣ a − b ∣ ,

где a , b a, b a , b - координаты этих точек на прямой (координатной прямой).

Ввиду того, что в формуле присутствует модуль, при решении не принципиально, из какой координаты какую вычитать (так как берется абсолютная величина этой разности).

∣ a − b ∣ = ∣ b − a ∣ |a-b|=|b-a| ∣ a − b ∣ = ∣ b − a ∣

Разберем пример, чтобы лучше понять решение подобных задач.

Пример 1

На координатной прямой отмечены точка A A A , координата которой равна 9 9 9 и точка B B B с координатой − 1 -1 − 1 . Нужно найти расстояние между этими двумя точками.

Решение

Здесь a = 9 , b = − 1 a=9, b=-1 a = 9 , b = − 1

Пользуемся формулой и подставляем значения:

A B = ∣ a − b ∣ = ∣ 9 − (− 1) ∣ = ∣ 10 ∣ = 10 AB=|a-b|=|9-(-1)|=|10|=10 A B = ∣ a − b ∣ = ∣ 9 − (− 1 ) ∣ = ∣ 1 0 ∣ = 1 0

Ответ

Расстояние между двумя точками на плоскости

Рассмотрим две точки, заданные на плоскости. Из каждой отмеченной на плоскости точки нужно опустить по два перпендикуляра: На ось O X OX O X и на ось O Y OY O Y . Затем рассматривается треугольник A B C ABC A B C . Так как он является прямоугольным ( B C BC B C перпендикулярно A C AC A C ), то найти отрезок A B AB A B , он же является и расстоянием между точками, можно с помощью теоремы Пифагора. Имеем:

A B 2 = A C 2 + B C 2 AB^2=AC^2+BC^2 A B 2 = A C 2 + B C 2

Но, исходя из того, что длина A C AC A C равна x B − x A x_B-x_A x B x A , а длина B C BC B C равна y B − y A y_B-y_A y B y A , эту формулу можно переписать в следующем виде:

Расстояние между двумя точками на плоскости

A B = (x B − x A) 2 + (y B − y A) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2} A B = (x B x A ) 2 + (y B y A ) 2 ,

где x A , y A x_A, y_A x A , y A и x B , y B x_B, y_B x B , y B - координаты точек A A A и B B B соответственно.

Пример 2

Необходимо найти расстояние между точками C C C и F F F , если координаты первой (8 ; − 1) (8;-1) (8 ; − 1 ) , а второй - (4 ; 2) (4;2) (4 ; 2 ) .

Решение

X C = 8 x_C=8 x C = 8
y C = − 1 y_C=-1 y C = − 1
x F = 4 x_F=4 x F = 4
y F = 2 y_F=2 y F = 2

C F = (x F − x C) 2 + (y F − y C) 2 = (4 − 8) 2 + (2 − (− 1)) 2 = 16 + 9 = 25 = 5 CF=\sqrt{(x_F-x_C)^2+(y_F-y_C)^2}=\sqrt{(4-8)^2+(2-(-1))^2}=\sqrt{16+9}=\sqrt{25}=5 C F = (x F x C ) 2 + (y F y C ) 2 = (4 − 8 ) 2 + (2 − (− 1 ) ) 2 = 1 6 + 9 = 2 5 ​ = 5

Ответ

Расстояние между двумя точками в пространстве

Нахождение расстояния между двумя точками в этом случае происходит аналогично предыдущему за исключением того, что координаты точки в пространстве задаются тремя числами, соответственно, в формулу нужно добавить еще и координату оси аппликат. Формула примет такой вид:

Расстояние между двумя точками в пространстве

A B = (x B − x A) 2 + (y B − y A) 2 + (z B − z A) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2} A B = (x B x A ) 2 + (y B y A ) 2 + (z B z A ) 2

Пример 3

Найти длину отрезка F K FK

Решение

F = (− 1 ; − 1 ; 8) F=(-1;-1;8)

F K = (x K − x F) 2 + (y K − y F) 2 + (z K − z F) 2 = (− 3 − (− 1)) 2 + (6 − (− 1)) 2 + (0 − 8) 2 = 117 ≈ 10.8 FK=\sqrt{(x_K-x_F)^2+(y_K-y_F)^2+(z_K-z_F)^2}=\sqrt{(-3-(-1))^2+(6-(-1))^2+(0-8)^2}=\sqrt{117}\approx10.8

По условию задачи нам нужно округлить ответ до целого числа.

Теорема 1. Для любых двух точек иплоскости расстояниемежду ними выражается формулой:

Например, если даны точки и, то расстояние между ними:

2. Площадь треугольника.

Теорема 2. Для любых точек

, не лежащих на одной прямой, площадь треугольника выражается формулой:

Например, найдем площадь треугольника, образованного точками ,и.

Замечание. Если площадь треугольника равна нулю, это означает, что точки лежат на одной прямой.

3. Деление отрезка в заданном отношении.

Пусть на плоскости дан произвольный отрезок и пусть

–любая точка этого отрезка, отличная от точек концов. Число , определенное равенством, называетсяотношением, в котором точка делит отрезок.

Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению и данным координатам точек

и найти координаты точки.

Теорема 3. Если точка делит отрезок в отношении

, то координаты этой точки определяются формулами: (1.3), где– координаты точки,– координаты точки.

Следствие: Если – середина отрезка

, где и, то(1.4) (т.к.).

Например. Даны точки и. Найти координаты точки, которая в два раза ближе к, чем к

Решение: Искомая точка делит отрезок

в отношении так как, тогда,, получили

Полярные координаты

Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки , называемойполюсом , и исходящего из нее луча –полярной оси . Кроме того, задается единица масштаба для измерения длин отрезков.

Пусть задана полярная система координат и пусть – произвольная точка плоскости. Пусть – расстояние от точки

до точки ;– угол, на который нужно повернуть полярную ось для совмещения с лучом.

Полярными координатами точки называются числаи. При этом числосчитается первой координатой и называетсяполярным радиусом , число – второй координатой и называетсяполярным углом.

Обозначается . Полярный радиус может иметь любое неотрицательное значение:. Обычно считают, что полярный угол изменяется в следующих пределах:. Однако в ряде случаев приходится определять углы, отсчитываемые от полярной оси по часовой стрелке.

Связь между полярными координатами точки и ее прямоугольными координатами.

Будем считать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью.

Пусть – в прямоугольной системе координат и– в полярной системе координат. Определен– прямоугольный треугольник с. Тогда(1.5). Эти формулы выражают прямоугольные координаты через полярные.

С другой стороны, по теореме Пифагора и

(1.6) – эти формулы, выражают полярные координаты через прямоугольные.

Заметим, что формула определяет два значения полярного угла, так как. Из этих двух значений углавыбирают тот, при котором удовлетворяются равенства.

Например, найдем полярные координаты точки ..или, т.к.I четверти.

Пример 1: Найти точку, симметричную точке

Относительно биссектрисы первого координатного угла.

Решение:

Проведем через точку А прямую l 1 , перпендикулярную биссектрисе l первого координатного угла. Пусть . На прямой l 1 отложим отрезок СА 1 , равный отрезку АС. Прямоугольные треугольники АСО и А 1 СО равны между собой (по двум катетам). Отсюда следует, что |ОА | = |OA 1 |. Треугольники ADO и ОЕА 1 также равны между собой (по гипотенузе и острому углу). Заключаем, что |AD | = |ОЕ| = 4, |OD| = |EA 1 | = 2, т.е. точка имеет координаты х = 4, у = -2, т.е. А 1 (4;-2).

Отметим, что имеет место общее утверждение: точка A 1 , симметричная точке относительно биссектрисы первого и третьего координатных углов, имеет координаты , то есть.

Пример 2: Найти точку, в которой прямая, проходящая через точки и , пересечет ось Ох.

Решение:

Координаты искомой точки С есть (x ; 0). А так как точки А , В и С лежат на одной прямой, то должно выполняться условие (x 2 -x 1 )(y 3 -y 1 )-(x 3 -x 1 )(y 2 -y 1 ) = 0 (формула (1.2), площадь треугольника ABC равна нулю!), где – координаты точки А , – точкиВ , – точкиС . Получаем , т.е., , . Следовательно, точка С имеет координаты ,, т.е..

Пример 3: В полярной системе координат заданы точки ,. Найти:а) расстояние между точками и; б) площадь треугольника ОМ 1 М 2 – полюс).

Решение:

а) Воспользуемся формулами (1.1) и (1.5):

то есть, .

б) пользуясь формулой для площади треугольника со сторонами а и b и углом между ними (), находим площадь треугольника ОМ 1 М 2 . .

Математика

§2. Координаты точки на плоскости

3. Расстояние между двумя точками.

Мы с вами умеем теперь говорить о точках на языке чисел. Например, нам уже нет необходимости объяснять: возьмите точку, находящуюся на три единицы правее оси и на пять единиц ниже оси . Достаточно сказать просто: возьмите точку .

Мы говорили уже, что это создает определенные преимущества. Так, мы можем рисунок, составленный из точек, передать по телеграфу, сообщить его вычислительной машине, которая совсем не понимает чертежей, а числа понимает хорошо.

В предыдущем пункте мы задали при помощи соотношений между числами некоторые множества точек на плоскости. Теперь попробуем последовательно переводить на язык чисел другие геометрические понятия и факты.

Мы начнем с простой и обычной задачи.

Найти расстояние между двумя точками плоскости.

Решение:
Как всегда, мы считаем, что точки заданы своими координатами, и тогда наша задача состоит в том, чтобы найти правило, по которому можно вычислить расстояние между точками, зная их координаты. При выводе этого правила, конечно, разрешается прибегать к чертежу, но само правило не должно содержать никаких ссылок на чертеж, а должно только показывать, какие действия и в каком порядке надо совершать над данными числами - координатами точек, чтобы получить искомое число - расстояние между точками.

Быть может, некоторым из читателей этот подход к решению задачи покажется странным и надуманным. Чего проще, скажут они, точки заданы, пусть даже координатами. Нарисуйте эти точки, возьмите линейку и измерьте расстояние между ними.

Этот способ иногда не так уж плох. Однако представьте себе опять, что вы имеете дело с вычислительной машиной. В ней нет линейки, и она не рисует, но зато считать она умеет настолько быстро, что это для неё вообще не составляет никакой проблемы. Заметьте, что наша задача поставлена так, чтобы правило вычисления расстояния между двумя точками состояло из команд, которые может выполнить машина.

Поставленную задачу лучше сначала решить для частного случая, когда одна из данных точек лежит в начале координат. Начните с нескольких числовых примеров: найдите расстояние от начала координат точек ; и .

Указание. Воспользуйтесь теоремой Пифагора.

Теперь напишите общую формулу для вычисления расстояния точки от начала координат.

Расстояние точки от начала координат определяется по формуле:

Очевидно, правило, выражаемое этой формулой, удовлетворяет поставленным выше условиям. В частности, им можно пользоваться при вычислении на машинах, которые способны умножать числа, складывать их и извлекать квадратные корни.

Теперь решим общую задачу

Даны две точки плоскости и найти расстояние между ними.

Решение:
Обозначим через , , , проекции точек и на оси координат.

Точку пересечения прямых и обозначим буквой . Из прямоугольного треугольника по теореме Пифагора получаем:

Но длина отрезка равна длине отрезка . Точки и , лежат на оси и имеют соответственно координаты и . Согласно формуле, полученной в п. 3 параграфа 2, расстояние между ними равно .

Аналогично рассуждая, получим, что длина отрезка равна . Подставляя найденные значения и в формулу получаем.

Решение задач по математике у учащихся часто сопровождается многими трудностями. Помочь учащемуся справиться с этими трудности, а так же научить применять имеющиеся у него теоретические знания при решении конкретных задач по всем разделам курса предмета «Математика» – основное назначение нашего сайта.

Приступая к решению задач по теме , учащиеся должны уметь строить точку на плоскости по ее координатам, а так же находить координаты заданной точки.

Вычисление расстояния между взятыми на плоскости двумя точками А(х А; у А) и В(х В; у В), выполняется по формуле d = √((х А – х В) 2 + (у А – у В) 2) , где d – длина отрезка, который соединяет эти точки на плоскости.

Если один из концов отрезка совпадает с началом координат, а другой имеет координаты М(х М; у М), то формула для вычисления d примет вид ОМ = √(х М 2 + у М 2).

1. Вычисление расстояния между двумя точками по данным координатам этих точек

Пример 1 .

Найти длину отрезка, который соединяет на координатной плоскости точки А(2; -5) и В(-4; 3) (рис. 1).

Решение.

В условии задачи дано: х А = 2; х В = -4; у А = -5 и у В = 3. Найти d.

Применив формулу d = √((х А – х В) 2 + (у А – у В) 2), получим:

d = АВ = √((2 – (-4)) 2 + (-5 – 3) 2) = 10.

2. Вычисление координат точки, которая равноудалена от трех заданных точек

Пример 2.

Найти координаты точки О 1 , которая равноудалена от трех точек А(7; -1) и В(-2; 2) и С(-1; -5).

Решение.

Из формулировки условия задачи следует, что О 1 А = О 1 В = О 1 С. Пусть искомая точка О 1 имеет координаты (а; b). По формуле d = √((х А – х В) 2 + (у А – у В) 2) найдем:

О 1 А = √((а – 7) 2 + (b + 1) 2);

О 1 В = √((а + 2) 2 + (b – 2) 2);

О 1 С = √((а + 1) 2 + (b + 5) 2).

Составим систему из двух уравнений:

{√((а – 7) 2 + (b + 1) 2) = √((а + 2) 2 + (b – 2) 2),
{√((а – 7) 2 + (b + 1) 2) = √((а + 1) 2 + (b + 5) 2).

После возведения в квадрат левой и правой частей уравнений запишем:

{(а – 7) 2 + (b + 1) 2 = (а + 2) 2 + (b – 2) 2 ,
{(а – 7) 2 + (b + 1) 2 = (а + 1) 2 + (b + 5) 2 .

Упростив, запишем

{-3а + b + 7 = 0,
{-2а – b + 3 = 0.

Решив систему, получим: а = 2; b = -1.

Точка О 1 (2; -1) равноудалена от трех заданных в условии точек, которые не лежат на одной прямой. Эта точка – есть центр окружности, проходящей через три заданные точки (рис. 2) .

3. Вычисление абсциссы (ординаты) точки, которая лежит на оси абсцисс (ординат) и находится на заданном расстоянии от данной точки

Пример 3.

Расстояние от точки В(-5; 6) до точки А, лежащей на оси Ох равно 10. Найти точку А.

Решение.

Из формулировки условия задачи следует, что ордината точки А равна нулю и АВ = 10.

Обозначив абсциссу точки А через а, запишем А(а; 0).

АВ = √((а + 5) 2 + (0 – 6) 2) = √((а + 5) 2 + 36).

Получаем уравнение √((а + 5) 2 + 36) = 10. Упростив его, имеем

а 2 + 10а – 39 = 0.

Корни этого уравнения а 1 = -13; а 2 = 3.

Получаем две точки А 1 (-13; 0) и А 2 (3; 0).

Проверка:

А 1 В = √((-13 + 5) 2 + (0 – 6) 2) = 10.

А 2 В = √((3 + 5) 2 + (0 – 6) 2) = 10.

Обе полученные точки подходят по условию задачи (рис. 3).

4. Вычисление абсциссы (ординаты) точки, которая лежит на оси абсцисс (ординат) и находится на одинаковом расстоянии от двух заданных точек

Пример 4.

Найти на оси Оу точку, которая находится на одинаковом расстоянии от точек А(6; 12) и В(-8; 10).

Решение.

Пусть координаты нужной по условию задачи точки, лежащей на оси Оу, будут О 1 (0; b) (у точки, лежащей на оси Оу, абсцисса равна нулю). Из условия следует, что О 1 А = О 1 В.

По формуле d = √((х А – х В) 2 + (у А – у В) 2) находим:

О 1 А = √((0 – 6) 2 + (b – 12) 2) = √(36 + (b – 12) 2);

О 1 В = √((а + 8) 2 + (b – 10) 2) = √(64 + (b – 10) 2).

Имеем уравнение √(36 + (b – 12) 2) = √(64 + (b – 10) 2) или 36 + (b – 12) 2 = 64 + (b – 10) 2 .

После упрощения получим: b – 4 = 0, b = 4.

Необходимая по условию задачи точка О 1 (0; 4) (рис. 4).

5. Вычисление координат точки, которая находится на одинаковом расстоянии от осей координат и некоторой заданной точки

Пример 5.

Найти точку М, расположенную на координатной плоскости на одинаковом расстоянии от осей координат и от точки А(-2; 1).

Решение.

Необходимая точка М, как и точка А(-2; 1), располагается во втором координатном углу, так как она равноудалена от точек А, Р 1 и Р 2 (рис. 5) . Расстояния точки М от осей координат одинаковые, следовательно, ее координатами будут (-a; a), где а > 0.

Из условия задачи следует, что МА = МР 1 = МР 2 , МР 1 = а; МР 2 = |-a|,

т.е. |-a| = а.

По формуле d = √((х А – х В) 2 + (у А – у В) 2) находим:

МА = √((-а + 2) 2 + (а – 1) 2).

Составим уравнение:

√((-а + 2) 2 + (а – 1) 2) = а.

После возведения в квадрат и упрощения имеем: а 2 – 6а + 5 = 0. Решим уравнение, найдем а 1 = 1; а 2 = 5.

Получаем две точки М 1 (-1; 1) и М 2 (-5; 5), удовлетворяющие условию задачи.

6. Вычисление координат точки, которая находится на одинаковом заданном расстоянии от оси абсцисс (ординат) и от данной точки

Пример 6.

Найти точку М такую, что расстояние ее от оси ординат и от точки А(8; 6) будет равно 5.

Решение.

Из условия задачи следует, что МА = 5 и абсцисса точки М равна 5. Пусть ордината точки М равна b, тогда М(5; b) (рис. 6).

По формуле d = √((х А – х В) 2 + (у А – у В) 2) имеем:

МА = √((5 – 8) 2 + (b – 6) 2).

Составим уравнение:

√((5 – 8) 2 + (b – 6) 2) = 5. Упростив его, получим: b 2 – 12b + 20 = 0. Корни этого уравнения b 1 = 2; b 2 = 10. Следовательно, есть две точки, удовлетворяющие условию задачи: М 1 (5; 2) и М 2 (5; 10).

Известно, что многие учащиеся при самостоятельном решении задач нуждаются в постоянных консультациях по приемам и методам их решения. Зачастую, найти путь к решению задачи без помощи преподавателя учащемуся не под силу. Необходимые консультации по решению задач учащийся и может получить на нашем сайте.

Остались вопросы? Не знаете, как найти расстояние между двумя точками на плоскости?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Расчет расстояний между точками по их координатам на плоскости элементарен, на поверхности Земли — немного посложнее: мы рассмотрим измерение расстояния и начального азимута между точками без проекционных преобразований. Для начала разберемся в терминологии.

Введение

Длина дуги большого круга – кратчайшее расстояние между любыми двумя точками находящимися на поверхности сферы, измеренное вдоль линии соединяющей эти две точки (такая линия носит название ортодромии) и проходящей по поверхности сферы или другой поверхности вращения. Сферическая геометрия отличается от обычной Эвклидовой и уравнения расстояния также принимают другую форму. В Эвклидовой геометрии, кратчайшее расстояние между двумя точками – прямая линия. На сфере, прямых линий не бывает. Эти линии на сфере являются частью больших кругов – окружностей, центры которых совпадают с центром сферы. Начальный азимут - азимут, взяв который при начале движения из точки А, следуя по большому кругу на кратчайшее расстояние до точки B, конечной точкой будет точка B. При движении из точки A в точку B по линии большого круга азимут из текущего положения на конечную точку B постоянно меняется. Начальный азимут отличен от постоянного, следуя которому, азимут из текущей точки на конечную не меняется, но маршрут следования не является кратчайшим расстоянием между двумя точками.

Через любые две точки на поверхности сферы, если они не прямо противоположны друг другу (то есть не являются антиподами), можно провести уникальный большой круг. Две точки, разделяют большой круг на две дуги. Длина короткой дуги – кратчайшее расстояние между двумя точками. Между двумя точками-антиподами можно провести бесконечное количество больших кругов, но расстояние между ними будет одинаково на любом круге и равно половине окружности круга, или π*R, где R – радиус сферы.

На плоскости (в прямоугольной системе координат), большие круги и их фрагменты, как было упомянуто выше, представляют собой дуги во всех проекциях, кроме гномонической, где большие круги - прямые линии. На практике это означает, что самолеты и другой авиатранспорт всегда использует маршрут минимального расстояния между точками для экономии топлива, то есть полет осуществляется по расстоянию большого круга, на плоскости это выглядит как дуга.

Форма Земли может быть описана как сфера, поэтому уравнения для вычисления расстояний на большом круге важны для вычисления кратчайшего расстояния между точками на поверхности Земли и часто используются в навигации. Вычисление расстояния этим методом более эффективно и во многих случаях более точно, чем вычисление его для спроектированных координат (в прямоугольных системах координат), поскольку, во-первых, для этого не надо переводить географические координаты в прямоугольную систему координат (осуществлять проекционные преобразования) и, во-вторых, многие проекции, если неправильно выбраны, могу привести к значительным искажениям длин в силу особенностей проекционных искажений. Известно, что более точно описывает форму Земли не сфера, а эллипсоид, однако в данной статье рассматривается вычисление расстояний именно на сфере, для вычислений используется сфера радиусом 6372795 метров, что может привести к ошибке вычисления расстояний порядка 0.5%.

Формулы

Существует три способа расчета сферического расстояния большого круга. 1. Сферическая теорема косинусов В случае маленьких расстояний и небольшой разрядности вычисления (количество знаков после запятой), использование формулы может приводить к значительным ошибкам связанным с округлением. φ1, λ1; φ2, λ2 - широта и долгота двух точек в радианах Δλ - разница координат по долготе Δδ - угловая разница Δδ = arccos {sin φ1 sin φ2 + cos φ1 cos φ2 cos Δλ} Для перевода углового расстояния в метрическое, нужно угловую разницу умножить на радиус Земли (6372795 метров), единицы конечного расстояния будут равны единицам, в которых выражен радиус (в данном случае - метры). 2. Формула гаверсинусов Используется, чтобы избежать проблем с небольшими расстояниями. 3. Модификация для антиподов Предыдущая формула также подвержена проблеме точек-антиподов, чтобы ее решить используется следующая ее модификация.

Моя реализация на РНР

// Радиус земли define("EARTH_RADIUS", 6372795); /* * Расстояние между двумя точками * $φA, $λA - широта, долгота 1-й точки, * $φB, $λB - широта, долгота 2-й точки * Написано по мотивам http://gis-lab.info/qa/great-circles.html * Михаил Кобзарев < > * */ function calculateTheDistance ($φA, $λA, $φB, $λB) { // перевести координаты в радианы $lat1 = $φA * M_PI / 180; $lat2 = $φB * M_PI / 180; $long1 = $λA * M_PI / 180; $long2 = $λB * M_PI / 180; // косинусы и синусы широт и разницы долгот $cl1 = cos($lat1); $cl2 = cos($lat2); $sl1 = sin($lat1); $sl2 = sin($lat2); $delta = $long2 - $long1; $cdelta = cos($delta); $sdelta = sin($delta); // вычисления длины большого круга $y = sqrt(pow($cl2 * $sdelta, 2) + pow($cl1 * $sl2 - $sl1 * $cl2 * $cdelta, 2)); $x = $sl1 * $sl2 + $cl1 * $cl2 * $cdelta; // $ad = atan2($y, $x); $dist = $ad * EARTH_RADIUS; return $dist; } Пример вызова функции: $lat1 = 77.1539; $long1 = -139.398; $lat2 = -77.1804; $long2 = -139.55; echo calculateTheDistance($lat1, $long1, $lat2, $long2) . " метров"; // Вернет "17166029 метров"

Статья взята с сайта