Как записывается иррациональное число. Иррациональные числа — Гипермаркет знаний. Иррациональные числа, примеры

Определение иррационального числа

Иррациональными называют такие числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби.



Так, например, числа, полученные путем извлечения квадратного корня из натуральных чисел, являются иррациональными и не являются квадратами натуральных чисел. Но не все иррациональные числа получают путем извлечения квадратных корней, ведь полученное методом деления, число «пи», также является иррациональным, и его вы вряд ли получите, пытаясь извлечь квадратный корень из натурального числа.

Свойства иррациональных чисел

В отличие от чисел, записанных бесконечной десятичной дробью, только иррациональные числа записываются непериодическими бесконечными десятичными дробями.
Сумма двух неотрицательных иррациональных чисел в итоге может быть рациональным числом.
Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
Любое вещественное трансцендентное число является иррациональным.
Все иррациональные числа являются либо алгебраическими, либо трансцендентными.
Множество иррациональных чисел на прямой располагаются плотно, и между его любыми двумя числами обязательно найдется иррациональное число.
Множество иррациональных чисел бесконечно, несчетно и является множеством 2-й категории.
При выполнении любой арифметической операции с рациональными числами, кроме деления на 0, его результатом будет рациональное число.
При сложении рационального числа с иррациональным, в результате всегда получается иррациональное число.
При сложении иррациональных чисел в результате мы можем получить рациональное число.
Множество иррациональных чисел не есть четным.

Числа, не являются иррациональными

Иногда достаточно сложно ответить на вопрос, является ли число иррациональным, особенно в случаях, когда число имеет вид десятичной дроби или в виде числового выражения, корня или логарифма.

Поэтому не лишним будет знать, какие числа не относятся к иррациональным. Если следовать определения иррациональных чисел, то нам уже известно, что рациональные числа не могут быть иррациональными.

Иррациональными числами не являются:

Во-первых, все натуральные числа;
Во-вторых, целые числа;
В-третьих, обыкновенные дроби;
В-четвертых, разные смешанные числа;
В-пятых, это бесконечные периодические десятичные дроби.

Кроме всего перечисленного, иррациональным числом не может быть любая комбинация рациональных чисел, которая выполняется знаками арифметических операций, как +, -, , :, так как при этом итогом двух рациональных чисел будет также рациональное число.

А теперь посмотрим, какие же из чисел являются иррациональными:



А известно ли вам о существовании фан-клуба, где поклонники этого загадочного математического феномена ищут все новые сведения о Пи, пытаясь разгадать его тайну. Членом этого клуба может сталь любой человек, который знает наизусть определенное количество чисел Пи после запятой;

А знаете ли вы, что в Германии под охраной ЮНЕСКО находится дворец Кастадель Монте, благодаря пропорциям которого можно вычислить Пи. Целый дворец посвятил этому числу король Фридрих II.

Оказывается, число Пи пытались использовать при строительстве Вавилонской башни. Но к превеликому сожалению, это привело к краху проекта, так как на тот момент было недостаточно изучено точное исчисление значения Пи.

Певица Кейт Буш в своем новом диске записала песню под названием «Пи», в которой прозвучало сто двадцать четыре числа из знаменитого числового ряда 3, 141…..

Иррациона́льное число́ - это вещественное число , которое не является рациональным , то есть не может быть представлено в виде дроби , где - целые числа , . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби .

Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом: , т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Свойства

  • Всякое вещественное число может быть записано в виде бесконечной десятичной дроби , при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
  • Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим , либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно , является множеством второй категории .

Примеры

Иррациональные числа
- ζ(3) - √2 - √3 - √5 - - - - -

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где - целое число , а - натуральное число . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Ранее мы уже показали, что $1\frac25$ — близко к $\sqrt2$. Если бы оно точно равнялось $\sqrt2$, . Тогда соотношение — $\frac{1\frac25}{1}$, которое можно превратить в соотношение целых чисел $\frac75$, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, $1\frac25$ не является точной величиной $\sqrt2$. Более точный ответ $1\frac{41}{100}$, дает нам соотношение $\frac{141}{100}$. Еще большей точности мы достигаем, когда приравниваем $\sqrt2$ к $1\frac{207}{500}$. В этом случае соотношение в целых числах будет равно $\frac{707}{500}$. Но и $1\frac{207}{500}$ не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение $\sqrt2$, но это им так и не удалось. Они не смогли представить соотношение $\frac{\sqrt2}{1}$ в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение $\sqrt2$ невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне. Однако, возможно, эти сведения не соответствуют действительности.

Но если число $\frac{\sqrt2}{1}$ не может быть представлено в виде соотношения целых чисел, то и никакая , содержащая $\sqrt2$, например $\frac{\sqrt2}{2}$ или $\frac{4}{\sqrt2}$ также не может быть представлена в виде соотношения целых чисел, поскольку все такие дроби могут быть преобразованы в $\frac{\sqrt2}{1}$, умноженное на какое нибудь число. Так $\frac{\sqrt2}{2}=\frac{\sqrt2}{1} \times \frac12$. Или $\frac{\sqrt2}{1} \times 2=2\frac{\sqrt2}{1}$, что можно преобразовать, умножив верхнюю и нижнюю части на $\sqrt2$, и получить $\frac{4}{\sqrt2}$. (Не следует забывать, что независимо от того, что представляет собой число $\sqrt2$, если мы умножим его на $\sqrt2$, то получим 2.)

Поскольку число $\sqrt2$ нельзя представить в виде соотношения целых чисел, оно получило название иррационального числа . С другой стороны, все числа, которые можно представить в виде соотношения целых чисел, называются рациональными .

Рациональными являются все целые и дробные числа, как положительные, так и отрицательные.

Как оказалось, большинство квадратных корней являются иррациональными числами. Рациональные квадратные корни есть только у чисел, входящих в ряд квадратных чисел. Эти числа называются также идеальными квадратами. Рациональными числами являются также дроби, составленные из этих идеальных квадратов. Например, $\sqrt{1\frac79}$ является рациональным числом, так как $\sqrt{1\frac79}=\frac{\sqrt16}{\sqrt9}=\frac43$ или $1\frac13$ (4 - это корень квадратный из 16, а 3 - корень квадратный из 9).

И π

Таким образом, множество иррациональных чисел есть разность I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа 2 {\displaystyle {\sqrt {2}}} .

Свойства

  • Сумма двух положительных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют дедекиндовы сечения во множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя различными числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел. [ ]

Алгебраические и трансцендентные числа

Каждое иррациональное число является либо алгебраическим , либо трансцендентным . Множество алгебраических чисел является счётным множеством . Так как множество вещественных чисел несчётно, то множество иррациональных чисел несчётно.

Множество иррациональных чисел является множеством второй категории .

Возведём предполагаемое равенство в квадрат:

2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

История

Античность

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (приблизительно 750-690 года до нашей эры) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

Первое доказательство существования иррациональных чисел, а точнее существование несоизмеримых отрезков, обычно приписывается пифагорейцу Гиппасу из Метапонта (приблизительно 470 год до нашей эры). Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его, изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение так как это и есть отношение диагонали к стороне в правильном пятиугольнике.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Позже Евдокс Книдский (410 или 408 г. до н. э. - 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени - сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. Десятая книга «Начал » Евклида посвящена классификации иррациональных величин.

Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни - иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

Египетский математик Абу Камил (ок. 850 г. н. э. - ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях - в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. - 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV-XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза». (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы

Цепные дроби , тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века - в работах Лагранжа . Дирихле также внёс значительный вклад в развитие теории цепных дробей. В 1761 году Ламберт с помощю цепных дробей показал, что π {\displaystyle \pi } не является рациональным числом, а также что e x {\displaystyle e^{x}} и tg ⁡ x {\displaystyle \operatorname {tg} x} иррациональны при любом ненулевом рациональном x {\displaystyle x} . Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя - Клиффорда, показал, что π 2 {\displaystyle \pi ^{2}} иррационально, откуда иррациональность π {\displaystyle \pi } следует тривиально (рациональное число в квадрате дало бы рациональное).

Существование трансцендентных чисел было доказано Лиувиллем в 1844-1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π {\displaystyle \pi } Литература

Пример:
\(4\) - рациональное число,т.к.его можно записать как \(\frac{4}{1}\) ;
\(0,0157304\) - тоже рациональное,т.к.его можно записать в виде \(\frac{157304}{10000000}\) ;
\(0,333(3)…\)-и это рациональное число: можно представить как \(\frac{1}{3}\) ;
\(\sqrt{\frac{3}{12}}\) - рациональное, так как можно представить как \(\frac{1}{2}\) . Действительно, мы можем провести цепочку преобразований \(\sqrt{\frac{3}{12}}\) \(=\)\(\sqrt{\frac{1}{4}}\) \(=\) \(\frac{1}{2}\)


Иррациональное число – это число, которое невозможно записать в виде дроби с целыми числителем и знаменателем.

Невозможно, потому что это бесконечные дроби, да еще и непериодические. Поэтому нет таких целых чисел, которые бы поделившись друг на друга, дали бы иррациональное число.

Пример:
\(\sqrt{2}≈1,414213562…\) -иррациональное число;
\(π≈3,1415926… \) -иррациональное число;
\(\log_{2}{5}≈2,321928…\)-иррациональное число.


Пример (Задание из ОГЭ ). Значение, какого из выражений является числом рациональным?
1) \(\sqrt{18}\cdot\sqrt{7}\);
2)\((\sqrt{9}-\sqrt{14})(\sqrt{9}+\sqrt{14})\);
3) \(\frac{\sqrt{22}}{\sqrt{2}}\) ;
4) \(\sqrt{54}+3\sqrt{6}\).

Решение:

1) \(\sqrt{18}\cdot \sqrt{7}=\sqrt{9\cdot 2\cdot 7}=3\sqrt{14}\) – корень из \(14\) взять нельзя, значит и представить число в виде дроби с целыми числами тоже нельзя, следовательно число иррационально.

2) \((\sqrt{9}-\sqrt{14})(\sqrt{9}+\sqrt{14})= (\sqrt{9}^2-\sqrt{14}^2)=9-14=-5\) – корней не осталось, число легко представить в виде дроби, например такой \(\frac{-5}{1}\) , значит оно рациональное.

3) \(\frac{\sqrt{22}}{\sqrt{2}}=\sqrt{\frac{22}{2}}=\sqrt{\frac{11}{1}}=\sqrt{11}\) –корень нельзя извлечь - число иррациональное.

4) \(\sqrt{54}+3\sqrt{6}=\sqrt{9\cdot 6}+3\sqrt{6}=3\sqrt{6}+3\sqrt{6}=6\sqrt{6}\) – тоже иррациональное.