Кох, нильс фабиан хельге фон. Биография Научные открытия Нильса Бора

Бор Нильс Хендрик Давид (7 октября 1885 , Копенгаген - 18 ноября 1962 , Копенгаген), датский ученый, один из создателей современной физики. Автор основополагающих трудов по квантовой механике, теории атома, атомного ядра, ядерным реакциям.

Детство и юность

Нильс Бор родился в семье Кристиана Бора, профессора физиологии Копенгагенского университета, и Эллен Бор, происходившей из богатой и влиятельной еврейской семьи. Родители Нильса и его младшего, горячо любимого брата Харальда (будущего крупного математика) сумели сделать детские годы сыновей счастливыми и содержательными. Благотворное влияние семьи, в особенности - матери, играло решающую роль в формировании их душевных качеств.

Начальное образование Нильс получил в Гаммельхольмской грамматической школе, которую окончил в 1903 . В школьные годы был заядлым футболистом; позднее увлекался катанием на лыжах и парусным спортом. Двадцати трех лет окончил Копенгагенский университет, где приобрел репутацию необыкновенно одаренного физика-исследователя. Его дипломный проект, посвященный определению поверхностного натяжения воды по вибрациям водяной струи, был удостоен золотой медали Датской королевской академии наук. В 1908-11 Бор продолжил работу в университете, где выполнил целый ряд важнейших исследований, в частности по классической электронной теории металлов, составившей основу его докторской диссертации.

Работа в Англии

Через три года после окончания университета Бор приехал работать в Англию. После года пребывания в Кембридже у Дж. Дж. Томсона Бор перебрался в Манчестер к Резерфорду, лаборатория которого в то время занимала лидирующее положение. Здесь ко времени появления Бора проходили эксперименты, которые привели Резерфорда к планетарной модели атома. Точнее, модель еще находилась в стадии становления. Опыты по прохождению альфа-частиц через листочки фольги привели Резерфорда к убеждению, что в центре атома находится маленькое заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра располагаются гораздо более легкие электроны. Поскольку атом в целом электронейтрален, суммарный заряд всех электронов должен быть по модулю равным заряду ядра, но отличаться от него знаком. Вывод о том, что заряд ядра должен быть кратен заряду электрона был важен, но оставалось еще много неясного. Так, были обнаружены "изотопы" - вещества с одинаковыми химическими свойствами, но с различным атомным весом.

Проблема атомного номера элементов. Закон смещения

Первым важным достижением Бора в лаборатории Резерфорда было то, что он понял: химические свойства определяются числом электронов в атоме, а, значит, зарядом ядра, а не его массой, и это и объясняет существование изотопов. Поскольку альфа-частица - это ядро гелия, имеющее заряд +2, то при альфа-распаде, когда эта частица вылетает из ядра, "дочерний" элемент должен располагаться в таблице Менделеева на две клеточки левее "материнского", а при бета-распаде, когда из ядра вылетает электрон - на одну клеточку правее. Так был открыт "закон радиоактивных смещений". Но за этим открытием последовали и другие, гораздо более важные. Они касались самой модели атома.

Модель Резерфорда - Бора

Эту модель часто называют "планетарной" - в ней, подобно тому как планеты вращается вокруг Солнца, электроны движутся вокруг ядра. Но такой атом не может быть устойчивым: под действием кулоновского притяжения ядра каждый электрон движется с ускорением, а ускоренно движущийся заряд, согласно законам классической электродинамики, должен излучать электромагнитные волны, теряя при этом энергию. Количественный расчет показывает, что такая "радиационная неустойчивость" атома катастрофична: примерно за стомиллионную долю секунды все электроны должны были бы потерять энергию и упасть на ядро. Но в действительности ничего такого не происходит, и многие атомы вполне стабильны. Возникла проблема, которая могла показаться неразрешимой. И она действительно не могла быть разрешена без привлечения радикальных новых идей. Именно такие идеи и были выдвинуты Бором.

Он постулировал, что (вопреки законам механики и электродинамики) в атомах существуют такие орбиты, двигаясь по которым электроны не излучают. По Бору, орбита является стабильной, если момент количества движения находящегося на ней электрона кратен h / 2p, где h- постоянная Планка. Излучение же происходит только при переходе электрона с одной устойчивой орбиты на другую, и вся освобождающаяся при этом энергия уносится одним квантом излучения. Энергия такого кванта, равная произведению частоты n на h, в соответствии с законом сохранения энергии, равна разности начальной и конечной энергии электрона ("Правило частот"). Таким образом, Бор предложил соединить модельные представления Резерфорда с идеей квантов, впервые высказанной Планком в 1900 . Такое соединение в корне противоречило всем положениям и традициям классической теории. Но, в то же время, эта классическая теория не отвергалась полностью: электрон рассматривался как материальная точка, движущаяся по законам классической механики, но только из всех орбит "разрешенными" объявлялись лишь те, которые отвечают "условиям квантования".

Энергии электрона на таких орбитах получаются обратно пропорциональными квадратам целых чисел - номеров орбит. Привлекая "правило частот", Бор пришел к выводу, что частоты излучения должны быть пропорциональны разности обратных квадратов целых чисел. Эта закономерность действительно была уже установлена спектроскопистами, но не находила дотоле своего объяснения.

Бор объяснил не только спектр простейшего из атомов - водорода, но и гелия, в том числе, и ионизованного, показал, как учесть влияние содвижения ядра, предугадал структуру заполнения электронных оболочек, что позволило понять физически природу периодичности химических свойств элементов - периодическую таблицу Менделеева. За эти работы Бор в 1922 был удостоен Нобелевской премии.

Институт Бора в Копенгагене

После окончания работ у Резерфорда Бор вернулся в Данию, где он в 1916 был приглашен профессором в университет в Копенгагене. Через год он был избран членом Датского королевского общества (в 1939 он стал его президентом).

В 1920 Бор создает Институт теоретической физики и становится его директором. В знак признания его заслуг, город предоставляет Бору для института исторический "Дом Пивовара". Этому институту суждено было сыграть выдающуюся роль в развитии квантовой физики. Несомненно, определяющее значение имели здесь исключительные личные качества его директора. Он постоянно был окружен сотрудниками и учениками (грани между первыми и вторыми в действительности и не было), которые приезжали к Бору отовсюду. К его большой интернациональной школе принадлежали Ф. Блох, О. Бор, В. Вайскопф, X. Казимир, О. Клейн, X. Крамерс, Л. Д. Ландау, К. Меллер, У. Нишика, А.Пайс, Л. Розенфельд, Дж. Уиллер и многие другие. "Дом Пивовара" стал центром притяжения для всех теоретиков. К Бору не раз приезжал В. Гейзенберг, как раз в ту пору, когда создавался "принцип неопределенности", там вел мучительные дискуссии с Бором Э. Шредингер, пытавшийся защищать чисто-волновую точку зрения. Именно в институте Бора формировалось то, что определило качественно новое лицо физики 20 века.

Модель Резерфорда-Бора была очевидным образом непоследовательна. В ней объединялись и положения классической теории, и то, что им явно противоречило. Чтобы устранить эти противоречия, потребовался радикальный пересмотр многих основных положений теории. Здесь и прямые заслуги Бора, и роль его научного авторитета, да и просто личного влияния были очень велики. Именно Бор понял, что для создания физической картины процессов микромира нужен иной подход, нежели для "мира больших вещей" и он был одним из основных творцов этого подхода. Он ввел понятие о неконтролируемом воздействии измерительных процедур, о "дополнительных" величинах - таких, что чем точнее определяется одна из них, тем большая неопределенность оказывается у другой. С именем Бора связана вероятностная (так называемая копенгагенская) интерпретация квантовой теории и рассмотрение многих ее "парадоксов". Немалое значение имели здесь дискуссии Бора с Эйнштейном, так и не примирившимся с вероятностным истолкованием квантовой механики. Для понимания закономерностей микромира и их соотношения с законами классической (т.е. неквантовой) физики немаловажное значение имеет сформулированный Бором принцип соответствия.

Ядерная тематика

Бор, начав у Резерфорда с физики ядра, постоянно уделял ядерной тематике большое внимание. В 1936 он предложил теорию составного ядра, вскоре - капельную модель, которая сыграла заметную роль при исследовании проблемы деления ядер. Бор предсказал спонтанное деление ядер урана.

После фактического захвата Дании фашистами Бор тайно покинул родину и был доставлен сначала в Англию (при этом в самолете он чуть не погиб), а затем в Америку, где вместе с сыном Оге работал для Манхэтеннского проекта в Лос-Аламосе. В послевоенные годы он огромное внимание уделял проблеме контроля над ядерными вооружениями, мирного использования атома, обращался даже в посланиями к ООН, участвовал в создании Европейского центра ядерных исследований. Судя по тому, что он не отказался обсуждать с советским физиком некоторые стороны "атомного проекта", находил опасным монопольное владение атомным оружием.

Большое внимание Бор уделял сопредельным с физикой вопросам, в том числе, биологии. Его неизменно занимали философские проблемы естествознания.

Нравственный и научный авторитет Бора был исключительно высок. Любое, даже мимолетное общение с ним производило неизгладимое впечатление. Он говорил и писал так, что было видно: он напряженно ищет слова, которые бы предельно точно и правдиво выражали чувства и мысли. Глубоко прав был В. Л. Гинзбург, назвавший Бора неповторимо деликатным и мудрым.

Бор был почетным членом более 20 академий наук различных стран, лауреатом многих национальных и международных премий.

Их дом был центром весьма оживленных дискуссий по животрепещущим научным и философским вопросам, и на протяжении всей своей жизни Б. размышлял над философскими выводами из своей работы. Он учился в Гаммельхольмской грамматической школе в Копенгагене и окончил ее в 1903 г. Б. и его брат Гаральд, который стал известным математиком, в школьные годы были заядлыми футболистами; позднее Нильс увлекался катанием на лыжах и парусным спортом.

Когда Б. был студентом-физиком Копенгагенского университета, где он стал бакалавром в 1907 г., его признавали необычайно способным исследователем. Его дипломный проект, в котором он определял поверхностное натяжение воды по вибрации водяной струи, принес ему золотую медаль Датской королевской академии наук. Степень магистра он получил в Копенгагенском университете в 1909 г. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием. Среди прочего в ней вскрывалась неспособность классической электродинамики объяснить магнитные явления в металлах. Это исследование помогло Бору понять на ранней стадии своей научной деятельности, что классическая теория не может полностью описать поведение электронов.

Получив докторскую степень в 1911 г., Б. отправился в Кембриджский университет, в Англию, чтобы работать с Дж.Дж. Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Б. и содержащимся там выводам. Но Б. тем временем заинтересовался работой Эрнеста Резерфорда в Манчестерском университете. Резерфорд со своими коллегами изучал вопросы радиоактивности элементов и строения атома. Б. переехал в Манчестер на несколько месяцев в начале 1912 г. и энергично окунулся в эти исследования. Он вывел много следствий из ядерной модели атома, предложенной Резерфордом, которая не получила еще широкого признания. В дискуссиях с Резерфордом и другими учеными Б. отрабатывал идеи, которые привели его к созданию своей собственной модели строения атома.

Летом 1912 г. Б. вернулся в Копенгаген и стал ассистент-профессором Копенгагенского университета. В этом же году он женился на Маргрет Норлунд. У них было шесть сыновей, один из которых, Oгe Бор, также стал известным физиком.

В течение следующих двух лет Б. продолжал работать над проблемами, возникающими в связи с ядерной моделью атома. Резерфорд предположил в 1911 г., что атом состоит из положительно заряженного ядра, вокруг которого по орбитам вращаются отрицательно заряженные электроны. Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения. По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома. На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории.

В 1900 г. Макс Планк выдвинул предположение, что электромагнитное излучение, испускаемое горячим веществом, идет не сплошным потоком, а вполне определенными дискретными порциями энергии. Назвав в 1905 г. эти единицы квантами, Альберт Эйнштейн распространил данную теорию на электронную эмиссию, возникающую при поглощении света некоторыми металлами (фотоэлектрический эффект). Применяя новую квантовую теорию к проблеме строения атома, Б. предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца.

Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента (например, нагретого газа, состоящего из атомов водорода) проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Б., каждая яркая цветная линия (т.е. каждая отдельная длина волны) соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Б. вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны. Теория Б., опубликованная в 1913 г., принесла ему известность; его модель атома стала известна как атом Бора.

Немедленно оценив важность работы Б., Резерфорд предложил ему ставку лектора в Манчестерском университете – пост, который Бор занимал с 1914 по 1916 г. В 1916 г. он занял пост профессора, созданный для него в Копенгагенском университете, где он продолжал работать над строением атома. В 1920 г. он основал Институт теоретической физики в Копенгагене; за исключением периода второй мировой войны, когда Б. не было в Дании, он руководил этим институтом до конца своей жизни. Под его руководством институт сыграл ведущую роль в развитии квантовой механики (математическое описание волновых и корпускулярных аспектов материи и энергии). В течение 20-х гг. боровская модель атома была заменена более сложной квантово-механической моделью, основанной главным образом на исследованиях его студентов и коллег. Тем не менее атом Бора сыграл существенную роль моста между миром атомной структуры и миром квантовой теории.

Лучшие дня

Б. был награжден в 1922 г. Нобелевской премией по физике «за заслуги в исследовании строения атомов и испускаемого ими излучения». При презентации лауреата Сванте Аррениус, член Шведской королевской академии наук, отметил, что открытия Б. «подвели его к теоретическим идеям, которые существенно отличаются от тех, какие лежали в основе классических постулатов Джеймса Клерка Максвелла». Аррениус добавил, что заложенные Б. принципы «обещают обильные плоды в будущих исследованиях».

Б. написал много работ, посвященных проблемам эпистемологии (познания), возникающим в современной физике. В 20-е гг. он сделал решающий вклад в то, что позднее было названо копенгагенской интерпретацией квантовой механики. Основываясь на принципе неопределенности Вернера Гейзенберга, копенгагенская интерпретация исходит из того, что жесткие законы причины и следствия, привычные нам в повседневном, макроскопическом мире, неприменимы к внутриатомным явлениям, которые можно истолковать лишь в вероятностных терминах. Например, нельзя даже в принципе предсказать заранее траекторию электрона; вместо этого можно указать вероятность каждой из возможных траекторий.

Б. также сформулировал два из фундаментальных принципов, определивших развитие квантовой механики: принцип соответствия и принцип дополнительности. Принцип соответствия утверждает, что квантово-механическое описание макроскопического мира должно соответствовать его описанию в рамках классической механики. Принцип дополнительности утверждает, что волновой и корпускулярный характер вещества и излучения представляют собой взаимоисключающие свойства, хотя оба эти представления являются необходимыми компонентами понимания природы. Волновое или корпускулярное поведение может проявиться в эксперименте определенного типа, однако смешанное поведение не наблюдается никогда. Приняв сосуществование двух очевидно противоречащих друг другу интерпретаций, мы вынуждены обходиться без визуальных моделей – такова мысль, выраженная Б. в его Нобелевской лекции. Имея дело с миром атома, сказал он, «мы должны быть скромными в наших запросах и довольствоваться концепциями, которые являются формальными в том смысле, что в них отсутствует столь привычная нам визуальная картина».

В 30-х гг. Б. обратился к ядерной физике. Энрико Ферми с сотрудниками изучали результаты бомбардировки атомных ядер нейтронами. Б. вместе с рядом других ученых предложил капельную модель ядра, соответствующую многим наблюдаемым реакциям. Эта модель, где поведение нестабильного тяжелого атомного ядра сравнивается с делящейся каплей жидкости, дало в конце 1938 г. возможность Отто Р. Фришу и Лизе Майтнер разработать теоретическую основу для понимания деления ядра. Открытие деления накануне второй мировой войны немедленно дало пищу для домыслов о том, как с его помощью можно высвобождать колоссальную энергию. Во время визита в Принстон в начале 1939 г. Б. определил, что один из обычных изотопов урана, уран-235, является расщепляемым материалом, что оказало существенное влияние на разработку атомной бомбы.

В первые годы войны Б. продолжал работать в Копенгагене, в условиях германской оккупации Дании, над теоретическими деталями деления ядер. Однако в 1943 г., предупрежденный о предстоящем аресте, Б. с семьей бежал в Швецию. Оттуда он вместе с сыном Оге перелетел в Англию в пустом бомбовом отсеке британского военного самолета. Хотя Б. считал создание атомной бомбы технически неосуществимым, работа по созданию такой бомбы уже начиналась в Соединенных Штатах, и союзникам потребовалась его помощь. В конце 1943 г. Нильс и Оге отправились в Лос-Аламос для участия в работе над Манхэттенским проектом. Старший Б. сделал ряд технических разработок при создании бомбы и считался старейшиной среди многих работавших там ученых; однако его в конце войны крайне волновали последствия применения атомной бомбы в будущем. Он встречался с президентом США Франклином Д. Рузвельтом и премьер-министром Великобритании Уинстоном Черчиллем, пытаясь убедить их быть открытыми и откровенными с Советским Союзом в отношении нового оружия, а также настаивал на установлении системы контроля над вооружениями в послевоенный период. Однако его усилия не увенчались успехом.

После войны Б. вернулся в Институт теоретической физики, который расширился под его руководством. Он помогал основать ЦЕРН (Европейский центр ядерных исследований) и играл активную роль в его научной программе в 50-е гг. Он также принял участие в основании Нордического института теоретической атомной физики (Нордита) в Копенгагене – объединенного научного центра Скандинавских государств. В эти годы Б. продолжал выступать в прессе за мирное использование ядерной энергии и предупреждал об опасности ядерного оружия. В 1950 г. он послал открытое письмо в ООН, повторив свой призыв военных лет к «открытому миру» и международному контролю над вооружениями. За свои усилия в этом направлении он получил первую премию «За мирный атом», учрежденную Фондом Форда в 1957 г.

Достигнув 70-летнего возраста обязательной отставки в 1955 г., Б. ушел с поста профессора Копенгагенского университета, но оставался главой Института теоретической физики. В последние годы своей жизни он продолжал вносить свой вклад в развитие квантовой физики и проявлял большой интерес к новой области молекулярной биологии.

Человек высокого роста, с большим чувством юмора, Б. был известен своим дружелюбием и гостеприимством. «Доброжелательный интерес к людям, проявляемый Б., сделал личные отношения в институте во многом напоминающими подобные отношения в семье», – вспоминал Джон Кокрофт в биографических мемуарах о Б. Эйнштейн сказал однажды: «Что удивительно привлекает в Б. как ученом-мыслителе, так это редкий сплав смелости и осторожности; мало кто обладал такой способностью интуитивно схватывать суть скрытых вещей, сочетая это с обостренным критицизмом. Он, без сомнения, является одним из величайших научных умов нашего века». Б. умер 18 ноября 1962 г. в своем доме в Копенгагене в результате сердечного приступа.

Б. был членом более двух десятков ведущих научных обществ и являлся президентом Датской королевской академии наук с 1939 г. до конца жизни. Кроме Нобелевской премии, он получил высшие награды многих ведущих мировых научных обществ, включая медаль Макса Планка Германского физического общества (1930) и медаль Копли Лондонского королевского общества (1938). Он обладал почетными учеными степенями ведущих университетов, включая Кембридж, Манчестер, Оксфорд, Эдинбург, Сорбонну, Принстон, Макгил, Гарвард и Рокфеллеровский центр.

Этот датский учёный сделал прорыв в физике, став одним из создателей квантовой теории. Знаменитый физик, который помог создать атомное оружия, остаток жизни провёл, доказывая, что оно — огромная ответственность и предлагал правительствам разных стран от него отказаться.

Семья и детство

Нильс Бор появился на свет в столице Дании в семье весьма богатого учёного и наследницы династии банкиров. Его папа был профессором, преподавал физиологию и медицину в университете Копенгагена, коллеги дважды номинировали его на «Нобеля» в этой отрасли.

Поскольку родители часто выходили в свет и общались с истинными интеллектуалами города, Нильс с детства увлекался разными науками.

Когда он пошёл учиться в школу, то больше всего его интересовали философия, физика и математика - всё благодаря частым визитам друзей отца - известный учёных в этих отраслях. Кроме того, он увлекался и психологией. Вместе с троюродным братом, который со временем станет известным учёным в сфере гештальт-психологии, Эдгаром Рубином Нильс штудировал различные учебники в этом направлении.

Но юноша жил не только наукой, также он очень увлекался футболом. Даже был в команде, играющей на Олимпийских играх 1908 года — Дания тогда заняла второе место, уступив Англии.

Учёба и наука

Восемнадцатилетний Нильс стал студентом Копенгагенского университета, пошёл учиться на физико-математический факультет. Также изучал астрономию и химию.

Ещё студентом он делает первые опыты и исследует колебания струй жидкости, чтобы точнее определить поверхность натяжения воды.

В 1906 его достижения были высоко оценены - за теоретическую часть Нильсу вручили золотую медаль от Королевского общества Дании. Три следующих года Бор провёл, исследуя свою теорию на практике. Результаты опубликовали с рецензиями от популярных тогда учёных: сэра Джона Уильяма Стретта и сэра Уильяма Рамзея, — оба получили «Нобеля» в 1904 году.

В 1910 Бор стал магистром, в следующем году блистательно защитил докторскую по статистической механике. В ней он вывел свою теорию — о магнитном моменте электрических зарядов в движении и стационарном состоянии. Через девять лет эту же теорему заново открыла Йоханна ван Лёвен, поэтому в наше время она носит имя обоих учёных.

Бор и Резерфорд

Осенью 1911 Бор приезжает в Кембридж. Ему дали стипендию на 2 500 крон для стажировки за рубежом. Поэтому он выбирает Англию для своих исследований, конкретно - Кавендишскую лабораторию, в которой главным был Нобелевский лауреат по физике сэр Джон Томсон. Но сотрудничество не сложилось. Томсону не понравился Бор, который открыто указывал на просчёты и ошибки маститого физика, к тому же датчанин плохо говорил по-английски. Поэтому, несмотря не гениальность выбранного им наставника, Бору пришлось искать другой университет. И спустя полгода он переезжает в Манчестер, к «отцу» ядерной физики Эрнесту Резерфорду, тоже Нобелевскому лауреату. Вместе они работали над моделями атома и их изменениями в ходе радиоактивного распада. В лице Резерфорда Бор нашёл не только наставника и коллегу, но и очень близкого друга. Когда в 1912 учёный женился, то часть свадебного путешествия они с женой провели в Манчестере, навестив Резерфорда.

В 1913 выходит статья Бора о «Теории торможения заряженных частиц при их прохождении через вещество».

После возвращения в Копенгаген, Бор преподаёт в университете, а также активно работает над квантовой теорией строения атома. Весной 1913 он ещё раз едет в Манчестер - на консультацию с Резерфордом. После выходит его статья «О строении атомов и молекул» в журнале Philosophical Magazine. Её публикуют по частях, растягивают теоретическую часть от июля до декабря. В ней Бор описывает квантовую теорию водородоподобного атома.

Эта работа стала настоящей революцией того времени. Даже годы спустя физики признавали, что исследования Бора были величайшим шагом в изучении атомов и их строения.

Свой институт и «Нобель»

В 1914 Резерфорд пригласил Бора пожить в Манчестере, заодно и начать преподавать математическую физику в университете. Там учёный остаётся следующие два учебных года. В это же время он продолжает исследования, на основании которых развивает свою теорию, даже пытается перенести её на многоэлектронные атомы. Но идея оказывается тупиковой.

В июне 1916 Бор вернулся столицу и снова приступил к чтению лекций в университете на своей кафедре. Но работать под чьим-либо руководством Бор не хотел, поэтому обратился к правительству с просьбой выделить денег на строительство отдельного института для себя и своих единомышленников.

Через четыре года состоялось торжественное открыли Института теоретической физики (в наше время он носит имя Бора).

В 1918 выходит его статья «О квантовой теории линейчатых спектров», в ней он формулирует принцип соответствия и выводит взаимосвязь между квантовой теорией и классической физикой.

В 1922 Бору присудили Нобелевскую премию по физике за его изучение строения атома. Все свои открытия в этой отрасли Бор озвучит на открытой лекции перед студентами в конце того де года в Стокгольме.

Ещё один Эйнштейн

В 1925 возникает такое понятие как «квантовая механика». В результате многолетних опытов и опровержения нескольких теорий, Бор формулирует принцип дополнительности. В его основа лежит теория о том, что микрочастица получает свои динамические характеристики в зависимости от того, во взаимосвязи с какими объектами она пребывает. Этот принцип некоторые учёные считали настолько важным, что даже предлагали всю квантовую механику называть в его честь, проведя аналогию с теорией относительности Эйнштейна.

В 1930-х годах Бор чрезвычайно увлёкся темой ядерной физики. Настолько, что весь его институт полностью изменил направление своих разработок.

В 1936 году сформулировал процесс ядерной реакции, Через несколько лет он доказал, что у различных микроэлементов ядра делятся по-разному, в зависимости от того, какие нейтроны вызывают этот процесс.

Вторая мировая и ядерное оружие

Когда в Германии ко власти пришёл Гитлер, многие учёные бежали из страны. Вместе с братом Бор помогал им обустроиться в Копенгагене. Под угрозой оказался и сам физик, ведь его мать имела еврейские корни. Но он решил оставаться в городе до последнего и защищать свой институт.

В 1941 у него состоялась встреча с Вернером Гейзенбергом, этот физик в то время сотрудничал в нацистской Германией по вопросам разработки ядерного оружия. Но Бор помогать не согласился.

В 1943 они вместе с сыном бежали в США, где до конца войны жили под другими именами и разрабатывали атомную бомбу.

Уже работая над проектом, он осознал опасность такого оружия, поэтому написал не одно письмо Черчиллю и Рузвельту, чтобы те с осторожностью относились к атомной энергии. Разработкой Бора заинтересовалась и другая сторона - СССР, его даже приглашали приехать туда для обмена опытом, что в США расценили как попытку шпионажа.

Последние годы физик провёл, выступая с лекциями и в написании философских статей. Своё самое важное, как он считал, открытие - принцип дополнительности, он хотел применить в различных сферах: биологии, психологии и культуре.

Умер в возрасте 77 лет от сердечного приступа. Прах Бора находится в Копенгагене в семейной могиле.

  • Бор очень часто вступал в дискуссии с Эйнштейном. Часто они заканчивались на повышенных тонах, тем не менее оба считали друг друга близкими друзьями.
  • С 1965 года Копенгагенский институт теоретической физики носит название «институт Нильса Бора». После смерти его основателя и бессменного руководителя Институт возглавил Оге Бор (до 1970).
  • 105-й элемент таблицы Менделеева (дубний), открытый в 1970 году, до 1997 года был известен как нильсборий. В этом же году было утверждено название борий для 107-го элемента, открытого в 1981 году.
  • Имя Бора носит астероид 3948, открытый в 1985 году.
  • В 1998 году опубликована пьеса «Копенгаген» английского драматурга Майкла Фрейна, посвященная исторической встрече Бора и Резерфорда.

Титулы и награды

  • Медаль Хьюза (1921)
  • Медаль и премия Гутри (1922)
  • Нобелевская премия по физике (1922)
  • Медаль Маттеуччи (1923)
  • Силлимановская лекция (1923)
  • Медаль Барнарда (1925)
  • Медаль Франклина (1926)
  • Медаль имени Макса Планка (1930)
  • Фарадеевская лекция (1930)
  • Медаль Копли (1938)
  • Орден Слона (1947)
  • Международная золотая медаль Нильса Бора (1955) - в честь Н. Бора была учреждена награда и её первым лауреатом стал сам Бор
  • Премия «За мирный атом» (англ.) (1957)
  • Медаль и премия Резерфорда (1958)
  • Медаль Гельмгольца (1961)
  • Премия Соннинга (1961)
  • Почётные учёные степени Кембриджского, Манчестерского, Оксфордского, Эдинбургского, Сорбоннского, Принстонского, Гарвардского университетов, университета Макгилла, Рокфеллеровского центра и др.


Имя: Нильс Бор (Niels Bohr)

Возраст: 77 лет

Место рождения: Копенгаген, Дания

Место смерти: Копенгаген, Дания

Деятельность: Датский физик-теоретик

Семейное положение: был женат

Нильс Бор - биография

Хиросима, Нагасаки, Чернобыль. В каждой из этих трагедий атомный взрыв унес тысячи жизней. Догадывался ли ученый, к каким последствиям приведут его открытия?

Детские годы, семья

Нильс Бор - классический представитель золотой молодежи Дании. Родился он в 1885 году в историческом центре Копенгагена, в богатой и образованной семье. Его мать была дочерью влиятельного банкира. Отец, профессор физиологии Копенгагенского университета, дважды номинировался на Нобелевскую премию по физиологии и медицине.


С юных лет он возил Нильса и его младшего брата Харальда по удивительным местам страны -маякам, судоверфям и часовым башням. И всякий раз повторял: «В мире много тайн. Учитесь видеть незримое!»

Нильс Бор - образование

Отцовское воспитание дало плоды: в школе Нильс стал лучшим по математике и физике, затем с легкостью поступил в престижный вуз. Долговязый студент с большой головой поражал профессоров нестандартностью мышления. Там, где другие находили только одно решение задачи, Бор отыскивал десяток. «Зачем вы усложняете себе жизнь? - недоумевали преподаватели. - Ведь есть алгоритмы!» «Лишь новые пути двинут науку вперед!» - отвечал тот.

Даже стоя на воротах (Бор играл за сборную Дании по футболу), он умудрялся записывать формулы на клочках бумаги и оголенных руках.

Не был лишен будущий ученый и чувства юмора. Однажды он невероятно плохо выступил на семинаре. Из неловкого положения вышел своеобразно: «Я слышал сегодня так много скверных речей, что решил всем отомстить!»

До защиты докторской диссертации Нильса его отец не дожил каких-то пару месяцев. Впрочем, в его поддержке молодой физик уже не нуждался. Он стоял на пороге великих открытий и большой любви.


Став лучшим выпускником Копенгагенского университета, Бор получил грант на стажировку в Кембридже. От поездки в Англию он ждал многого. Ведь именно там работал Джозеф Томсон, лауреат Нобелевской премии по физике. Однако найти с ним общий язык Нильс так и не смог.

Из-за чего не поладили два гения? По одной из версий, датчанин плохо владел английским, по другой - указал Томсону на ошибку. Томсон был автором модели атома, в которой атом представлялся как шар с положительно заряженным веществом внутри, а в этом веществе, как изюм в кексе, находились отрицательно заряженные электроны. Бор не мог согласиться с этой моделью и обосновал Томсону ее ошибочность. Тот затаил обиду и на себя, и на слишком умного гостя. Физики расстались молча, с неприятным осадком в душе.

Нильс Бор - биография личной жизни

Вернувшись в Копенгаген, Нильс познакомился с Маргарет Норлунд, дочерью аптекаря. А через 3 года, летом 1912-го, влюбленные поженились. В этом браке родились шестеро сыновей. Остается лишь догадываться, как супруги понимали друг друга. Маргарет ничего не смыслила в физике, но была готова слушать мужа часами. Бор же, в свою очередь, не мог думать молча. Каждый вечер, расхаживая по кухне, он вслух размышлял о строении молекул и ядра. Маргарет при этом успевала и готовить, и конспектировать его речи.


Любовь и семейное благополучие необычайно вдохновляли Бора. Всего за несколько лет он не только развил и уточнил теорию строения атома, но и добился создания в Копенгагене Института теоретической физики, носящего ныне его имя. И это в годы европейского кризиса, в самый разгар Первой мировой!

В возрасте 37 лет Бор получил Нобелевскую премию за выдающиеся достижения в атомной физике. Была ли эта награда заслуженна и своевременна? Спорный вопрос. Во-первых, наработки Нильса казались неполными, противоречивыми и явно непригодными для практического использования. А во-вторых, являлись результатом исследований десятка физиков, работавших вместе с Бором. Среди них Лев Ландау, Эрнест Резерфорд и другие, включая сына ученого Ore Бора. И тогда, и сейчас остается невыясненным, какие из разделов теории атома принадлежали самому Бору, а какие - его коллегам.


Самое удивительное, что институт, как и сам Бор, редко работал по графику. А если озарение снисходило на ученого среди ночи, он будил и жену, и добрую половину своих коллег. «Срочно ко мне! - кричал Нильс в телефонную трубку. - Будем мыслить!» На ночной кухне Бора начал свою научную карьеру и молодой немец Вернер Гейзенберг. Через 20 лет учитель и ученик встретятся вновь - посреди Европы, скованной фашизмом.

Открытия Бора

С 1936 года Бор все глубже исследовал процессы деления ядер, а в 1938-м создал первый в Европе ускоритель заряженных частиц - циклотрон. После оккупации Дании нацистами ученый предпочел остаться в Копенгагене, несмотря на свое полуеврейское происхождение: хотел защитить институт от посягательств оккупационных властей.

Понимал ли он опасность своих открытий? Или искренне верил, что они пойдут человечеству во благо? Из идеально-романтической «спячки» Бора вывел тот самый Вернер Гейзенберг. В октябре 1941-го уже именитый немецкий физик и руководитель нацистского атомного проекта специально прибыл в Копенгаген, чтобы встретиться с бывшим учителем.

Встреча была недолгой и, наверное, самой загадочной во всей истории Второй мировой. По утверждению Бора, Гейзенберг предложил ему создать для Гитлера атомную бомбу. По версии самого Гейзенберга, он хотел уверить учителя, что сознательные немцы на создание бомбы точно не пойдут, а их работа над атомным проектом преследует исключительно мирные цели.

В этой истории неясно многое. Почему, к примеру, нацисты, зная о еврейских корнях Бора, просто не арестовали его? Ведь отправили же они в концлагерь его 84-летнюю тетю - известного датского педагога Ханну Адлер. И по какой причине американцы решили эвакуировать Бора лишь после его встречи с Гейзенбергом? Наконец, почему сам ученый, оказавшись в США, с таким энтузиазмом приступил к созданию ядерного оружия?..

Как бы то ни было, уже в начале 1944 года Бор лишился последних иллюзий в отношении мирного использования атома. Осознав личную вину в приближающейся трагедии, он попытался ее предотвратить: в мае встретился с Черчиллем, в июле направил меморандум Рузвельту , осенью через Петра Капицу обратился к Сталину . А в ответ - тишина. Означала она лишь одно: если потребуется, союзники пустят в ход ядерное оружие. Ящик Пандоры открылся.

16 июля 1945 года американцы взорвали в штате Нью-Мексико первую атомную бомбу, 6 и 9 августа сбросили заряды на Хиросиму и Нагасаки. Бор отреагировал на случившееся большой статьей в «Тайме», обвинив США в неоправданной жестокости. Но успокоило ли это его совесть? Еще один вопрос без ответа...

Ужасы Второй мировой сильно изменили Бора. Он увлекся биологией, психологией, философией естествознания и даже особенностями языка в науке и жизни. Всем «железным занавесам» вопреки, много раз приезжал в Москву с лекциями о гуманизме. В мире, полном несовершенств, он отчаянно искал гармонию.

В 1950 году ученый написал открытое письмо в ООН, в котором призвал сверхдержавы не повторять ядерных преступлений США. И через 7 лет, первым в истории, был удостоен премии «За мирный атом».

Скончался он в родном Копенгагене в 1962 году -во сне, из-за остановки сердца. За окном стоял теплый ноябрь, а в соседней комнате играли внуки.

«Мы должны помнить, что каждый из нас - часть природы, - написал незадолго до смерти Нильс Бор. - Жить в гармонии с ней - наш великий долг и главная цель». Замечательное напутствие будущим поколениям.

Здравствуйте! Предположим, что это равносторонний треугольник. И я хочу создать другую фигуру из этого равностороннего треугольника. Сделать это я хочу путем разделения каждой стороны треугольника на три равные части... На три равные части... Может, этот равносторонний треугольник нарисован не идеально, но, думаю, вы поймете. И в каждой средней части я хочу построить еще по одному равностороннему треугольнику. Итак, в средней части, вот здесь, я построю еще один равносторонний треугольник... Вот здесь тоже... И вот здесь еще один равносторонний треугольник. И вот из равностороннего треугольника получилось что-то вроде звезды Давида. И я хочу опять так сделать, т.е. каждую сторону я разделю на три равные части, и в каждой средней части нарисую еще по одному равностороннему треугольнику. Равносторонний треугольник в каждой средней части... Так я сделаю для каждой стороны. Вот здесь и вот здесь... Думаю, идея вам понятна... Вот здесь, вот здесь, здесь... Я почти закончила этот шаг... Вот так теперь будет выглядеть фигура. И я снова могу так сделать - еще раз каждый отрезок разделить на три равные части и в каждой средней части дорисовать по одному равностороннему треугольнику: здесь, здесь, здесь, здесь, и так далее. Думаю, вы понимаете, к чему все идет... И я могла бы продолжать так делать бесконечно. На этом уроке я хочу подумать над тем, что произойдет с этой фигурой. То, что я сейчас рисую, т.е. если мы будем продолжать так делать бесконечно, при каждом шаге каждую сторону фигуры будем делить на три равные части, а затем к каждой средней части дорисовывать по одному равностороннему треугольнику – эта фигура, представленная здесь, называется снежинкой Коха. Снежинка Коха... Впервые она была описана вот этим господином, шведским математиком, которого звали Нильс Фабиан Хельге фон Кох. И эта снежинка – один из самых ранних примеров фракталов. Т.е. это фрактал. Почему она считается фракталом? Потому что она выглядит очень похожей на саму себя при любом масштабе, в котором вы ее рассматриваете. Например, если вы рассматриваете ее в таком масштабе, то вот в этой части вы видите кучу треугольников, но если увеличить, например, вот эту часть, то вы все равно увидите что-то вроде вот такой фигуры. И если снова увеличите, то увидите все ту же фигуру. Т.е. фрактал – это фигура, составленная из нескольких частей, которые при любом масштабе выглядят подобными всей фигуре целиком. А что особенно интересно (и почему я внесла такой урок в плейлист по геометрии) – то, что периметр этой фигуры равен бесконечности. Т.е. если строить такую фигуру, как снежинку Коха, то придется бесконечное количество раз к каждому вот такому маленькому треугольнику дорисовывать еще по одному маленькому равностороннему треугольнику. И чтобы показать, что периметр такой фигуры равен бесконечности, давайте здесь рассмотрим одну из ее сторон... Вот одна из ее сторон. Если бы мы начали с исходного треугольника, то вот где находилась бы эта сторона. И предположим, ее длина равна S. Если разделить эту сторону на три равных части, то длина этой части будет равна S/3, длина этой – тоже S/3... Вообще-то лучше напишу внизу: S/3, S/3, S/3. Затем к средней части дорисовываем равносторонний треугольник. Вот так. Т.е. длина каждой стороны теперь равна S/3. А длина всей вот этой новой части... Нельзя ее теперь назвать просто линией, потому что на ней теперь есть треугольник... Длина вот этой вот части, этой стороны, теперь равна не S, а [(S/3)*4]. Прежде длина была равна [(S/3)*3], но теперь у нас раз, два, три, четыре отрезка длиной S/3. Теперь, после того, как на исходную сторону мы добавили один треугольник, то длина нашей новой стороны будет равна 4 умножить на S/3, т.е. (4/3)*S. Итак, если исходный периметр (т.е. если бы здесь был только один треугольник) равен Р₀, то после добавления одного набора треугольников периметр Р1 будет равен 4/3 умножить на исходный периметр. Потому что длина каждой из сторон фигуры будет теперь в 4/3 раза больше, чем изначально. Т.е. исходный периметр Р₀ состоял из трех сторон, потом каждая их сторон стала иметь длину в 4/3 раза больше, значит, новый периметр Р₁ будет равен 4/3 умножить на Р₀. А после добавления второго набора треугольников периметр Р₂ будет равен 4/3 умножить на Р₁. Т.е. после каждого добавления новых треугольников периметр фигуры становится в 4/3 раза больше предыдущего периметра. И если бесконечное количество раз добавлять новые треугольники, то, получается, при подсчете периметра вы умножаете какое-то число на 4/3 бесконечное количество раз – следовательно, получится бесконечное значение периметра. Значит, периметр с индексом «бесконечность» Р∞ (периметр фигуры, если добавлять к ней треугольники бесконечное количество раз) равен бесконечности. Ну, интересно, конечно, представить себе фигуру, имеющую бесконечный периметр, но интереснее то, что у этой фигуры на самом деле конечная площадь. Говоря «конечная площадь», я подразумеваю ограниченный объем пространства. Я могу нарисовать вокруг какую-то фигуру и эта снежинка Коха никогда не выйдет за ее границы. И есть подумать... Ну, я не буду приводить формальное доказательство. Просто подумаем, что происходит на любой из сторон фигуры. Итак, в первый раз, при первом шаге-разделении, появляется вот этот треугольник... При втором шаге появляются вот эти два треугольника, а также вот эти два. А затем появляются треугольники здесь, здесь, здесь, здесь, и т.д. Но заметьте: вы можете продолжать добавлять все больше и больше треугольников, по сути, бесконечное их количество, но вы никогда не выйдете за пределы вот этой точки. То же самое ограничение будет соблюдаться и для этой стороны, также для этой стороны, и для этой, для этой, а также и для этой. Т.е. даже если вы добавляете треугольники бесконечное количество раз, площадь этой фигуры, этой снежинки Коха, никогда не будет больше площади вот этого ограничивающего шестиугольника... Ну, или больше площади вот такой фигуры... Я рисую произвольную фигуру, выходящую за пределы шестиугольника. Можно было бы нарисовать круг, выходящий за его пределы... Итак, вот эта фигура, нарисованная синим или этот шестиугольник, нарисованный лиловым, конечно, имеют определенную площадь. И площадь этой снежинки Коха всегда будет ограничена, даже если добавлять к ней треугольники бесконечное количество раз. Итак, здесь есть много интересных вещей. Первое – то, что это фрактал. Можно увеличивать его в размерах и при этом мы увидим все ту же фигуру. Второе – бесконечный периметр. И третье – конечная площадь. Теперь вы, возможно, скажете: «Но это же слишком абстрактные вещи, в реальном мире таких не существует!» Но есть такой забавный эксперимент с фракталом, о котором люди говорят. Это вычисление периметра Англии (ну, собственно, такое можно сделать для любой страны). Очертания Англии выглядят как-то вот так... Итак, первый способ, с помощью которого вы могли бы приблизительно найти периметр – это измерить вот это расстояние, плюс это расстояние, плюс это расстояние, плюс это расстояние, плюс это расстояние и это расстояние. Тогда вы можете подумать: ну, эта фигура имеет конечный периметр. Понятное дело, что и площадь ее конечная. Но все-таки видно, что это не лучший способ вычисления периметра, можно применить способ получше. Вместо этого приблизительного вычисления можно обвести границу меньшими линиями, и так будет более точно. Тогда вы подумаете: хорошо, это намного лучшее приближение. Но, предположим, если увеличить эту фигуру... Если хорошо ее увеличить, то граница будет выглядеть как-то вот так... На ней будут вот такие вот изгибы... И, по сути, когда вы здесь вычисляли периметр, то вы просто посчитали ее высоту, вот так. Конечно же, это не будет периметром, и нужно будет разделить границу на много частей, приблизительно вот так, чтобы получить точный периметр. Но и в этом случае можно сказать, что это не совсем точное вычисление периметра, т.к. если увеличить вот эту часть линии, то окажется, что в увеличенном варианте она выглядит по-другому – например, вот так. Соответственно, и линии разбиения будут выглядеть по-другому – вот так. Тогда вы и скажете: «Э, нет, надо поточнее!» И еще больше будете разделять эту линию на части. И так можно делать бесконечно, с точностью до миллиметра. Реальная граница какого-либо острова или континента (или еще чего-нибудь) на самом деле является фракталом, т.е. фигурой с бесконечным периметром, при вычислении которого можно достичь, так сказать, атомарного уровня. Но все равно периметр точным не будет. Но это почти такой же феномен, как и снежинка Коха, и над ним интересно бывает поразмышлять. На сегодня все. До встречи на следующем уроке!