Методы анализа лекарственных средств. Методы исследования качества лекарственных средств Методы анализа лс по гф примеры

Целью исследования лекарственных веществ является установление пригодности лекарственного средства для медицинского применения, т.е. соответствия его нормативному документу на данный препарат.

Фармацевтический анализ – это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Особенностями фармацевтического анализа является его многогранность и многообразие веществ или их смесей, в том числе индивидуальные химические вещества, сложные смеси биологических веществ (белков, углеводом, олигопептидов и т.д.). Способы анализа нуждаются в постоянном совершенствовании и,если в УП фармакопее превалировали химические методы, в том числе качественные реакции, то на современном этапе используются преимущественно физико-химические и физические методы анализа.

Фармацевтический анализ в зависимости от поставленных задач включает различные аспекты контроля качества лекарств:
1. Фармакопейный анализ;
2. Постадийный контроль производства лекарственных средств;
3. Анализ лекарственных средств индивидуального изготовления.

Основным и наиболее существенным является фармакопейный анализ, т.е. анализ лекарственных средств на соответствие стандарту – фармакопейной статье или иному НД и, таким образом, подтверждение его пригодности. Отсюда и требования к высокой специфичности, селективности, точности и достоверности анализа.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (статистически достоверной выборки). Порядок отбора пробы указан либо в частной статье, либо в общей статье ГФ Х1 изд. (вып.2) с.15. Для проведения испытания лекарственных средств на соответствие требованиям нормативно-технической документации проводят многоступенчатый отбор проб (выборок). При многоступенчатом отборе пробу (выборку) образуют по ступеням и продукцию в каждой ступени отбирают случайным образом в пропорциональных количествах из единиц, отобранных в предыдущей ступени. Число ступеней определяется видом упаковки.

1 ступень: отбор единиц упаковочной тары (ящиков, коробок и т.д.);
2 ступень: отбор упаковочных единиц, находящихся в упаковочной таре (коробок, флаконов, банок и т.д.);
3 ступень: отбор продукции в первичной упаковке (ампул, флаконов, контурных упаковок и т.д.).

Для расчета отбора количества продукции на каждой ступени используют формулу:

где n – количество упаковочных единиц данной ступени.

Конкретный порядок формирования выборки подробно описан в ГФ Х1 издания, вып.2. При этом анализ считается достоверным при воспроизводимости как минимум четырех проб.

Критерии фармацевтического анализа

Для различных целей анализа имеют значения такие критерии как избирательность анализа, чувствительность, точность, время выполнения анализа, количество испытуемого вещества.

Избирательность анализа имеет существенное значение при анализе сложных препаратов, состоящих из нескольких действующих компонентов. В этом случае очень важна избирательность анализа для количественного определения каждого из веществ.

Требования к точности и чувствительности зависят от объекта и цели исследования. При испытании чистоты или примесей используют высокочувствительные методы. Для постадийного контроля производства важен фактор времени, затрачиваемый на анализ.

Важным параметром метода анализа является предел чувствительности метода. Этот предел означает наименьшее содержание, при котором можно достоверно обнаружить данное вещество. Наименее чувствительными являются химические методы анализа и качественные реакции. Самые чувствительные ферментные и биологические методы, позволяющие обнаруживать единичные макромолекулы веществ. Из реально применяемых самыми чувствительными являются радиохимический, каталитический и флуоресцентный методы, позволяющие определять до 10 -9 %; чувствительность спектрофотометрических методов 10 -3 -10 -6 %; потенциометрических 10 -2 %.

Термин «точность анализа» включает одновременно два понятия: воспроизводимость и правильность полученных результатов.

Воспроизводимость – характеризует рассеяние результатов анализа по сравнению со средним значением.

Правильность – отражает разность между действительным и найденным содержанием вещества. Точность анализа зависит от качества приборов, опытности аналитика и т.д. Точность анализа не может быть выше, чем точность наименее точного измерения. Это означает, что если при титровании точность составляет ±0,2 мл плюс ошибка от натекания тоже ±0,2 мл, т.е. суммарно ±0,4 мл то при расходовании 20 мл титранта ошибка составляет 0,2%. При уменьшении навески и количества титранта точность уменьшается. Таким образом титриметрический анализ позволяет выполнять определение с относительной погрешностью ± (0,2-0,3)%. Каждый из методов имеет свою точность. При анализе важно иметь представление о следующих понятиях:

Грубые ошибки- являются просчетом наблюдателя или нарушения методики анализа. Такие результаты отбрасываются как недостоверные.

Систематические ошибки – отражают правильность результатов анализа. Они искажают результаты измерений, как правило, в одну сторону на некоторое постоянное значение. Систематические ошибки можно частично устранить введением поправок, калибровкой прибора и т.д.

Случайные ошибки – отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметические случайных ошибок стремится к нулю. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.

Абсолютная ошибка –представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина.

Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают ее обычно в процентах или долях.

Значения относительных ошибок находятся в зависимости от того каким методом выполняют анализ и что из себя представляет анализируемое вещество – индивидуальное вещество и смесь многих компонентов.

Относительная ошибка при исследованиях индивидуальных веществ спектрофотометрическим методом составляет 2-3 %, ИК-спектрофотометрией – 5-12%; жидкостной хроматографией 3-4%; потенциометрией 0,3-1%. Сочетанные методы как правило снижают точность анализа. Наименее точными являются биологические методы – их относительная ошибка достигает 50%.

Методы идентификации лекарственных веществ.

Важнейшим показателем при испытании лекарственных веществ является их идентификация или как это принято в фармакопейных статьях подлинность. Для определения подлинности лекарственных веществ используют многочисленные методы. Все основные и общие описаны в ГФ Х1 издания, вып.1. Исторически основной упор делался на химические, в т.ч. качественные цветные реакции, характеризующие наличие определенных ионов или функциональных групп у органических соединений, одновременно с этим широко использовались и физические методы. В современных фармакопеях упор делается на физико-химические методы.

Остановимся на основных физических методах .

Достаточно стабильной константой, характеризующей вещество, его чистоту и подлинность является температура плавления. Этот показатель широко используется для стандартизации субстанций лекарственных веществ. Подробно методы определения температуры плавления описаны в ГФ Х1, самостоятельно вы смогли опробовать его на лабораторных занятиях. Чистое вещество имеет постоянную температуру плавления, однако при добавлении в него примесей температура плавления как правило снижается весьма существенно. Такой эффект называют пробой смешения и именно проба смешения позволяет устанавливать подлинность препарата при наличии стандартного образца или заведомой пробы. Бывают, правда и исключения, так рацемическая сульфокамфорная кислота плавится при более высокой температуре, а различные кристаллические формы индометацина отличаются температурой плавления. Т.е. данный метод является одним из показателей, позволяющих характеризовать как чистоту продукта, так и его подлинность.

Для некоторых препаратов используют такой показатель как температура затвердевания. Другим показателем, характеризую-щим вещество является температура кипения или температурные пределы перегонки. Этим показателем характеризуют жидкие вещества, например, спирт этиловый. Температура кипения менее характеристичный показатель, он сильно зависит от давления атмосферы, возможности образования смесей или азеотропов и применяется достаточно редко.

Среди других физических методов следует отметить определение плотности, вязкости. Стандартные методики анализа описаны в ГФ Х1. Методом, характеризующим подлинность препарата является также определение растворимости его в различных растворителях. По ГФ Х1 изд. Этот метод характеризуется как свойство, которое может служить ориентировочной характеристикой испытуемого препарата. Наряду с температурой плавления растворимость вещества является одним из параметров, по которому устанавливают подлинность и чистоту практически всех лекарственных веществ. В фармакопее установлена ориентировочная градация веществ по растворимости от очень легко растворим до практически не растворим. При этом растворившимся считается вещество, в растворе которого в проходящем свете не наблюдается частиц вещества.

Физико-химические методы определения подлинности .

Наиболее информативными с точки зрения определения подлинности веществ являются физико-химические методы, основанные на свойствах молекул веществ взаимодействовать с какими-либо физическими факторами. К физико-химическим методам следует отнести:

1.Спектральные методы
УФ-спектроскопия
Спектроскопия в видимом свете
ИК-спектроскопия
Флуоресцентная спектроскопия
Атомно-абсорбционная спектроскопия
Рентгеновские методы анализа
Ядерный магнитный резонанс
Рентгеноструктурный анализ

2.Сорбционные методы анализа
Тонкослойная хроматография
Газожидкостная хроматография
Высокоэффективная жидкостная хроматография
Элетрофорез
Ионофорез
Гель-хроматография

3.Массовые методы анализа
Масс-спектрометрия
Хроматомассспектрометрия

4.Электрохимические методы анализа
Полярография
Электронный парамагнитный резонанс

5.Использование стандартных образцов

Рассмотрим вкратце применимые в фармации из методов анализа. Подробно все эти методы анализа вам будут прочитаны в конце декабря профессором Мягких В.И. Для определения подлинности лекарственных веществ используют некоторые спектральные методы. Наиболее достоверным является использование низкочастотной области ИК спектроскопии, где полосы поглощения наиболее достоверно отображают данное вещество. Еще эту область называю область отпечатков пальцев. Как правило, для подтверждения подлинности используют сравнение ИК-спектров, снятых в стандартных условиях стандартного образца и испытуемого образца. Совпадение всех полос поглощения подтверждает подлинность препарата. Использование УФ и видимой спектроскопии менее достоверно, т.к. характер спектра не является индивидуальным и отражает только определенный хромофор в структуре органического соединения. Атомно-абсорбционная спектроскопия и рентгеновская спектроскопия используются для анализа неорганических соединений, для идентификации химических элементов. Ядерный магнитный резонанс позволяет устанавливать структуру органических соединений и является достоверным методом подтверждения подлинности, однако в силу сложности приборов и дороговизны используется очень редко и, как правило, только в исследовательских целях. Флуоресцентная спектроскопия применима только для определенного класса веществ, флуоресцирующих под действием УФ излучения. При этом спектр флуоресценции и спектр возбуждения флуоресценции достаточно индивидуальны, но сильно зависят от среды, в которой растворено данное вещество. Этот метод чаще используют для количественного определения, особенно малых количеств, поскольку он является одним из наиболее чувствительных.

Рентгеноструктурный анализ является наиболее достоверным методом подтверждения структуры вещества, он позволяет установить точную химическую структуру вещества, однако для поточного анализа подлинности просто не пригоден и используется исключительно в научных целях.

Сорбционные методы анализа нашли очень широкое применение в фармацевтическом анализе. Они используются для определения подлинности, наличия примесей и количественного определения. Подробно об этих методах и используемой аппаратуре вам будет прочитана лекция профессором В.И.Мягких – региональным представителем фирмы Шимадзу – одного из главных производителей хроматографического оборудования. Эти методы основаны на принципе сорбции-десорбции веществ на определенных носителях в потоке носителя. В зависимости от носителя и сорбента подразделяют на тонкослойную хроматографию, жидкостную колоночную (аналитическую и препаративную, в том числе ВЭЖХ), газожидкостную хроматографию, гель фильтрацию, ионофорез. Два последних метода применяются для анализа сложных белковых объектов. Существенным недостатком методов является их относительность, т.е. хроматография может характеризовать вещество и его количество только при сравнении со стандартным веществом. Однако следует отметить как существенное достоинство – высокая достоверность метода и точность, т.к. в хроматографии любая смесь должна разделиться на индивидуальные вещества и результатом анализа является именно индивидуальное вещество.

Масс-спектрометрические и электрохимические методы используют для подтверждения подлинности редко.

Особое место занимают методы определения подлинности в сравнении со стандартным образцом. Этот метод используют достаточно широко в зарубежных фармакопеях для определения подлинности сложных макромолекул, сложных антибиотиков, некоторых витамином, и других веществ, содержащих особенно хиральные атомы углерода, поскольку определить подлинность оптически активного вещества другими методами сложно или вовсе невозможно. Стандартный образец должен разрабатывать и выпускаться на основании разработанной и утвержденной фармакопейной статьи. В России существуют и применяются всего несколько стандартных образцов и для анализа используют чаще всего так называемые РСО – рабочие стандартные образцы, приготавливаемые непосредственно перед опытом из заведомых субстанций или соответствующих веществ.

Химические методы установления подлинности.

Установление подлинности лекарственных веществ химическими методами используется главным образом для неорганических лекарственных веществ, т.к. иных методов чаще всего нет или они требуют сложной и дорогой аппаратуры. Как уже говорилось неорганические элементы легко идентифицируются методами атомно-абсорбционной или рентгеновской спектроскопии. В наших Фармакопейных статьях обычно используются химические методы установления подлинности. Эти методы принято делить на следующие:

Реакции осаждения анионов и катионов. Типичными примерами являются реакции осаждения ионов натрия и калия с (цинкуранилацетатом и винной кислотой) соответственно:

Таких реакций используется великое множество и они будут подробно обсуждаться в специальном разделе фармацевтической химии в части неорганических веществ.

Окислительно-восстановительные реакции.

Окислительно-восстановительные реакции используют для восстановления металлов из оксидов. Например серебра из его окиси формалинов (реакция серебряного зеркала):

реакция окисления дифениламина лежит в основе испытаний подлинности нитратов и нитритов:

Реакции нейтрализации и разложения анионов.

Карбонаты и гидрокарбонаты под действием минеральных кислот образуют угольную кислоту, которая разлагается до двуокиси углерода:

Аналогично разлагаются нитриты, тиосульфаты, аммониевые соли.

Изменения окраски бесцветного пламени. Соли натрия окрашивают пламя в желтый цвет, меди зеленый, калия в фиолетовый, кальция в кирпично-красный. Именно этот принцип использован в атомно-абсорбционной спектроскопии.

Разложение веществ при пиролизе . Метод используют для препаратов йода, мышьяка, ртути. Из используемых в настоящее время наиболее характерна реакция основного нитрата висмута, который при нагревании разлагается с образованием окислов азота:

Идентификация элементоорганических лекарственных веществ.

Качественный элементный анализ используют для идентификации соединений, содержащих в органической молекуле мышьяк, серу, висмут, ртуть, фосфор, галогены. Поскольку атомы этих элементов не ионизированы для их идентификации используют предварительную минерализацию, либо пиролизом, либо опять-таки пиролизом с серной кислотой. Серу определяют по сероводороду реакцией с нитропруссидом калия или солей свинца. Йод также определяют пиролизом по выделению элементарного йода. Из всех этих реакций интерес представляет идентификация мышьяка, не столько как лекарственного препарата – они практически не используются, а как метод контроля примесей, но об этом позже.

Испытания подлинности органических лекарственных веществ. Химические реакции, используемые для испытаний подлинности органических лекарственных веществ, можно разделить на три основных группы:
1.Общие химические реакции органических соединений;
2.Реакции образования солей и комплексных соединений;
3.Реакции используемые для идентификации органических оснований и их солей.

Все эти реакции в конечном итоге основаны на принципах функционального анализа, т.е. реакционно-способного центра молекулы, который вступая в реакцию дает соответствующий ответ. Чаще всего это изменение каких-либо свойств вещества: цвета, растворимости, агрегатного состояния и т.д.

Рассмотрим некоторые примеры использования химических реакций для идентификации лекарственных веществ.

1. Реакции нитрования и нитрозирования. Используются достаточно редко, например, для идентификации фенобарбитала, фенацетина, дикаина, правда препараты эти почти не используются в медицинской практике.

2. Реакции диазотирования и азосочетания . Эти реакции используют для открывания первичных аминов. Диазотированный амин сочетается с бэта-нафтолом, давая характерное красное или оранжевое окрашивание.

3. Реакции галогенирования . Используют для открытия алифатических двойных связей – при добавлении бромной воды идет присоединение брома по двойной связи и раствор обесцвечивается. Характерная реакция анилина и фенола – при их обработке бромной водой образуется трибромпроизводное, выпадающее в осадок.

4. Реакции конденсации карбонильных соединений . Реакция заключается в конденсации альдегидов и кетонов с первичными аминами, гидроксиламином, гидразинами и семикарбазидом:

Образующиеся азометины (или Шиффовы основания) имеют характерный желтый цвет. Реакцию используют для идентификации,например сульфониламидов. В качестве альдегида используют 4-диметиламинобензальдегид.

5. Реакции окислительной конденсации . Процесс окислительного расщепления и образования азометинового красителя лежит в основе нингидриновой реакции. Эту реакцию широко используют для открытия и фотоколориметрического определения α- и β-аминокислот, в присутствии которых появляется интенсивная темно-синяя окраска. Она обусловлена образованием замещенной соли дикетогидриндилидендикетогидрамина – продукта конденсации избытка нингидрина и восстановленного нингидрина с аммиаком, выделившимся при окислении испытуемой аминокислоты:

Для открытия фенолов используют реакцию образования триарилметановых красителей. Так фенолы взаимодействуя с формальдегидом образуют красители. К аналогичным реакциям можно отнести взаимодействие резорцина с фталевым ангидридом приводящим к образованию флуоресцентного красителя – флуоресцеина.

Используются также и многие другие реакции.

Особый интерес представляют реакции с образованием солей и комплексов. Неорганические соли железа (III), меди (II), серебра, кобальта, ртути (II) и другие для испытания подлинности органических соединений: карбоновых кислот, в том числе аминокислот, производных барбитуровой кислоты, фенолов, сульфониламидов, некоторых алкалоидов. Образование солей и комплексных соединений происходит по общей схеме:

R-COOH + MX = R-COOM + HX

Аналогично протекает комплексообразование аминов:

R-NH 2 + X = R-NH 2 ·X

Одним из наиболее распространенных реактивов в фармацевтическом анализе является раствор хлорида железа (III). Взаимодействия с фенолами он образует окрашенный раствор феноксидов, они окрашены в синий или фиолетовый цвет. Такая реакция используется для открытия фенола или резорцина. Однако мета-замещенные фенолы не образуют окрашенных соединений (тимол).

Соли меди образуют комплексные соединения с сульфониламидами, соли кобальта с барбитуратами. Многие эти реакции используют и для количественного определения.

Идентификация органических оснований и их солей . Эта группа методов чаще всего используется в готовых формах, особенно при исследованиях растворов. Так соли органических аминов при добавлении щелочей образуют осадок основания (например, раствор папаверина гидрохлорида) и наоборот соли органических кислот при добавлении минеральной кислоты дают осадок органического соединения (например, салицилат натрия). Для идентификации органических оснований и их солей широко используют так называемые осадительные реактивы. Известно более 200 осадительных реактивов, которые образуют с органическими соединениями нерастворимые в воде простые или комплексные соли. Наиболее употребительные растворы приводятся во втором томе ГФ 11 издания. В качестве примера можно привести:
Реактив Шейблера – фосфорновольфрамовая кислота;
Пикриновая кислота
Стифниновая кислота
Пикраминовая кислота

Все эти реактивы используются для осаждения органических оснований (к примеру, нитроксолин).

Следует отметить, что все эти химические реакции используются для идентификации лекарственных веществ не сами по себе, а в комплексе с другими методами, чаще всего физико-химическими, такими как хроматография, спектроскопия. Вообще необходимо обратить внимание, что проблема подлинности лекарственных веществ является ключевой, т.к. этот факт определяет безвредность, безопасность и эффективность лекарственного средства, поэтому такому показателю необходимо уделять большое внимание и подтвердить подлинность вещества одним методом недостаточно.

Общие требования к испытаниям на чистоту.

Другим не менее важным показателем качества лекарственного средства является чистота. Все лекарственные препараты, независимо от способа их получения испытывают на чистоту. При этом устанавливается содержание примесей в препарате. Условно можно разделить примеси на две группы: первая, примеси, оказывающие фармакологическое действие на организм; вторая, примеси, указывающие на степень очистки вещества. Последние не влияют на качество препарата, но в больших количествах снижают его дозу и соответственно уменьшают активность препарата. Поэтому все фармакопеи устанавливают определенные пределы этих примесей в лекарственных препаратах. Таким образом, основной критерий доброкачественности препарата – отсутствие примесей, что невозможно по природе. Понятие отсутствие примесей связано с пределом обнаружения тем или иным методов.

Физические и химические свойства веществ и их растворов дают ориентировочное представление о наличии примесей в лекарственных препаратах и регламентируют их пригодность для использования. Поэтому, чтобы оценить доброкачественность, наряду с установлением подлинности и определением количественного содержания, проводят целый ряд физических и химических испытаний, подтверждающих степень его чистоты:

Прозрачность и степень мутности проводится путем сравнения с эталоном мутности, а прозрачность определяется путем сравнения с растворителем.

Цветность. Изменение степени цветности может быть обусловлено:
а) наличием посторонней окрашенной примеси;
б) химическим изменением самого вещества (окисление, взаимодействие с Ме +3 и +2 или другие химические процессы, протекающие с образованием окрашенных продуктов. Например:

Резорцин желтеет при хранении за счет окисления под действием кислорода воздуха с образованием хинонов. При наличии, например, солей железа салициловая кислота приобретает фиолетовый цвет вследствие образования салицилатов железа.

Оценка цветности проводится по результатам сравнения основного опыта с эталонами цветности, а бесцветность определяют путем сравнения с растворителем.

Очень часто используют для обнаружения примесей органических веществ испытание, основанное на их взаимодействии с концентрированной серной кислотой, которая при этом может выступать в роли окислителя или дегидратирующего средства. В результате таких реакций образуются окрашенные продукты, Интенсивность полученной окраски не должна превышать соответствующего эталона цветности.

Определение степени белизны порошкообразных лекарственных средств – физический метод, впервые включенный в ГФ Х1. Степень белизны (оттенка) твердых лекарственных веществ можно оценивать различными инструментальными методами на основе спектральной характеристики света отраженного от образца. Для этого применяют коэффициенты отражения при освещении образца белым светом, полученным от специального источника, со спектральным распределением или пропущенным через светофильтры (с мах пропускания 614 нм (красный) или 439 нм (синий)). Можно также измерять коэффициент отражения света, пропущенного через зеленый светофильтр.

Более точно оценку белизны лекарственных веществ можно осуществлять с помощью спектрофотометров отражения. Значение степени белизны и степени яркости являются характеристиками качества белых и белых с оттенками лекарственных веществ. Их допустимые пределы регламентируются в частных статьях.

Определение кислотности, щелочности, рН.

Изменение этих показателей обусловлено:
а) изменением химической структуры самого лекарственного вещества:

б) взаимодействием препарата с тарой, например, превышение допустимых пределов щелочности в растворе новокаина за счет выщелачивания стекла;
в) поглощнием газообразных продуктов (СО 2 , NН 3) из атмосферы.

Определение качества лекарственных средств по этим показателям осуществляется несколькими способами:

а) по изменению окраски индикатора, например, примесь минеральных кислот в кислоте борной определяется по метиловому красному, который не изменяет своей окраски от действия слабой борной кислоты, но розовеет в случае наличия в ней примесей минеральных кислот.

б) титриметрический метод – например, для установления допустимого предела содержания йодоводородной кислоты, образующейся при хранении 10% спиртового раствора I 2 , проводят титрование щелочью (не более 0,3 мл 0,1 моль/л NаОН по объему титранта). (Раствор формальдегида – титруют щелочью в присутствии фенолфталеина).

В ряде случаев ГФ устанавливает объем титранта для определения кислотности или щелочности.

Иногда проводят последовательное прибавление двух титрованных растворов: вначале кислоты и затем щелочи.

в) путем определения значения величины рН – для ряда лекарственных средств (и обязательно для всех инъекционных растворов) по НТД предусматривается определять величины рН.

Приемы подготовки вещества при исследовании кислотности, щелочности, рН

  1. Приготовление раствора определенной концентрации, указанной в НТД (для веществ, растворимых в воде)
  2. Для нерастворимых в воде – готовят взвесь определенной концентрации и определяют кислотно-щелочные свойства фильтрата.
  3. Для жидких препаратов, не смешивающихся с водой, проводят взбалтывание с водой, затем отделяют водный слой и определяют его кислотно-щелочные свойства.
  4. Для нерастворимых твердых и жидких веществ определение можно проводить непосредственно во взвеси (ZnO)

Значение рН ориентировочно (до 0,3 ед) можно определять с помощью индикаторной бумаги или универсального индикатора.

Колориметрический способ основан на свойстве индикаторов изменять свою окраску при определенных интервалах значений рН среды. Для выполнения испытаний используют буферные растворы с постоянной концентрацией водородных ионов, отличающихся друг от друга на величину рН, равную 0,2 . К серии таких растворов и к испытуемому раствору прибавляют одинаковое количество (2-3 капли) индикатора. По совпадению окраски с одним из буферных растворов судят о значении рН среды испытуемого раствора.

Определение летучих веществ и воды.

Летучие вещества могут попасть в лекарственные средства либо вследствие плохой очистки от растворителей или промежуточных продуктов получения, либо в результате накопления продуктов разложения. Вода в лекарственном веществе может содержаться в виде капиллярной, абсорбировано связанной, химически связанной (гидратно- и кристаллогидратной) или свободной.

Для определения летучих веществ и воды используют методы высушивания, дистилляции и титрование раствором Фишера.

Метод высушивания. Метод применяют для определения потери в массе при высушивании. Потери могут быть за счет содержания в веществе гигроскопической влаги и летучих веществ. Сушат в бюксе до постоянной массы при определенной температуре. Чаще вещество выдерживают при температуре 100-105 ºС, но условия высушивания и доведения до постоянной массы могут быть и иными.

Определение летучих веществ может проводиться для некоторых средств методом прокаливания. Вещество нагревают в тигле до полного удаления летучих веществ. затем постепенно повышают температуру до полного прокаливания при красном калении. Например, ГФХ регламентирует определение примеси карбоната натрия в лекарственном веществе натрия гидрокарбонат методом прокаливания. Натрия гидрокарбонат разлагается при этом на карбонат натрия, диоксид углерода и воду:

Теоретически потеря в массе составляет 36,9 %. По ГФХ потеря в массе должна быть не менее 36,6%. Разница между теоретической и указанной в ГФХ потерей в массе определяет допустимый предел примеси карбоната натрия в веществе.

Метод дистилляции в ГФ 11 называется «Определение воды», он позволяет определить воду гигроскопическую. Этот метод основан на физическом свойстве паров двух несмешивающихся жидкостей. Смесь воды с органическим растворителем перегоняется при более низкой температуре, чем каждая из этих жидкостей. В качестве органического растворителя ГФХ1 рекомендует использовать толуол или ксилол. Содержание воды в испытуемом веществе устанавливают по объему ее в приемнике после окончания процесса перегонки.

Титрование реактивом Фишера. Метод позволяет определять суммарное содержание как свободной, так и кристаллогидратной воды в органических, неорганических веществах, растворителях. Преимущество этого метода – быстрота выполнения и селективность по отношению к воде. Раствор Фишера представляет собой раствор диоксида серы, йода и пиридина в метаноле. К числу недостатков метода, помимо необходимости строгого соблюдения герметичности, относится невозможность определения воды в присутствии веществ, которые реагируют с компонентами реактива.

Определение золы.

Зольность обусловлена минеральными примесями, которые появляются в органических веществах в процессе получения из исходных продуктов вспомогательных материалов и аппаратуры (прежде всего катионов металлов), т.е. характеризует наличие неорганических примесей в органических веществах.

а) Общая зола – определяется по результатам сжигания (озоления, минерализации) при высокой температуре, характеризует сумму всех неорганических веществ-примесей.

Состав золы:
Карбонаты: СаСО 3 , Nа 2 СО 3 , К 2 СО 3 , РbСО 3
Оксиды: CaO, PbO
Сульфаты: CaSO 4
Хлориды: CaCl 2
Нитраты: NaNO 3

При получении лекарственных средств из растительного сырья минеральные примеси могут быть обусловлены загрязнениями растений пылью, поглощением микроэлементов и неорганических соединений из почвы, воды и т.д.

б) Зола, нерастворимая в хлороводородной кислоте , получают после обработки общей золы разбавленной НСl. Химический состав золы – хлориды тяжелых металлов (АgCl, НgСl 2 , Нg 2 Сl 2), т.е. высокотоксичные примеси.

в) Сульфатная зола – Сульфатную золу определяют при оценке доброкачественности многих органических веществ. Характеризует примеси Мn +n в стабильной сульфатной форме. Образовавшаяся сульфатная зола (Fе 3 (SО 4) 2 , РbSО 4 , СаSО 4) используется для последующего определения примеси тяжелых металлов.

Примеси неорганических ионов – С1 – , SО 4 -2 , NН 4 + , Са +2 , Fе +3(+2) , Рв +2 , Аs +3(+5)

Недопустимые примеси :
а) примеси, имеющие токсический характер (примесь СN – в йоде),
б) обладающие антагонистическим действием (Nа и К, Мg и Са)

Отсутствие примесей, не допускаемых в лекарственном веществе, устанавливают по отрицательной реакции с соответствующими реактивами. Сравнение в этом случае проводится с частью раствора, к которому добавлены все реактивы, кроме основного открывающего данную примесь (контрольный опыт). Положительная реакция говорит о наличии примеси и о недоброкачественности лекарственного средства.

Допустимые примеси – примеси, не оказывающие влияния на фармакологический эффект и содержание которых допускается в незначительных количествах, установленных НТД.

Для установления допустимого предела содержания примесей ионов в лекарственных средствах используются эталонные растворы, которые содержат соответствующий ион в определенной концентрации.

Некоторые лекарственные вещества испытывают на наличие примеси методом титрования, например, определение примеси норсульфазола в лекарственном средстве фталазол. Примесь норсульфазола во фталазоле устанавливают количественно нитритометрически. На титрование 1 г фталазола должно расходоваться не более 0,2 мл 0,1 моль/л NaNО 2 .

Общие требования к реакциям, которые используются при испытаниях на допустимые и недопустимые примеси:
1. чувствительность,
2. специфичность,
3. воспроизводимость используемой реакции.

Результаты реакций, протекающих с образованием цветных продуктов, наблюдают в отраженном свете на матовобелом фоне, а белые осадки в виде мути и опалесценции – в проходящем свете на черном фоне.

Приборные методы определения примесей.

С развитием методов анализа постоянно повышаются требования к чистоте лекарственных веществ и лекарственных форм. В современных фармакопеях наряду с рассмотренными методами используются и различные приборные методы, основанные на физико-химических, химических и физических свойствах веществ. Использование УФ и видимой спектроскопии редко дает положительные результаты и обусловлено это тем, что строение примесей, особенно органических лекарств, как правило. Близко к строению и самого лекарства, поэтому спектры поглощения различаются мало, а концентрация примеси обычно в десятки раз ниже, чем основного вещества, что делает дифференциальные методы анализа малопригодными и позволяет оценить примесь только ориентировочно, т.е как принято называть полуколичественно. Несколько лучше бывают результаты, если одно из веществ, особенно, примесь образует комплексное соединение, а другое нет, тогда максимумы спектров существенно различаются и уже можно определять примеси количественно.

В последние годы на предприятиях появились приборы ИК-Фурье, позволяющие определять как содержание основного вещества, так и примесей, особенно воды без разрушения образца, однако их применение сдерживается дороговизной приборов и отсутствием стандартизированных методик анализа.

Отличные результаты определения примесей возможны тогда, когда примесь флуоресцирует под действием УФ излучение. Точность таких анализов очень высока, также как и их чувствительность.

Широкое применение для испытаний на чистоту и количественное определение примесей как в лекарственных вещества (субстанциях), так и в лекарственных формах, что, пожалуй, не менее важно, т.к. многие примеси образуются в процессе хранения лекарств, получили хроматографические методы: ВЭЖХ, ТСХ, ГЖХ.

Эти методы позволяют определять примеси количественно, причем каждую из примесей индивидуально в отличие от других методов. Подробно методы хроматографии ВЭЖХ и ГЖХ будут рассмотрены в лекции проф. Мягких В.И. Мы остановимся только на тонкослойной хроматографии. Метод тонкослойной хроматографии был открыт русским ученым Цветом и в начале существовал как хроматография на бумаге. Тонкослойная хроматография (ТСХ) основана на различии скоростей перемещения компонентов анализируемой смеси в плоском тонком слое сорбента при движении по нему растворителя (элюента). Сорбентами служат силикагель, окись алюминия, целлюлоза. Полиамид, элюентами – органические растворители разной полярности или их смеси между собой и иногда с растворами кислот или щелочей и солей. Механизм разделения обусловлен коэффициентами распределения между сорбентом и жидкой фазой исследуемого вещества, что в свою очередь связано со многими, в том числе химическими и физико-химическими свойствами веществ.

В ТСХ поверхность пластинки алюминиевой или стеклянной покрывают суспензией сорбента, высушивают на воздухе и активируют для удаления следов растворителя (влаги). В практике используют обычно пластины промышленного изготовления с закрепленным слоем сорбента. На слой сорбента наносят капли анализируемого раствора объемом 1-10 мкл. Край пластины погружают в растворитель. Эксперимент проводят в специальной камере – стеклянном сосуде, закрытом крышкой. Растворитель перемещается по слою под действием капиллярных сил. Возможно одновременное разделение нескольких различных смесей. Для увеличения эффективности разделения используют многократное элюирование или в перпендикулярном направлении тем же или другим элюентом.

После завершения процесса пластинку высушивают на воздухе и устанавливают положение хроматографических зон компонентов различными способами, например, облучением УФ-излучением, опрыскиванием окрашивающими реагентами, выдерживают в парах йода. На полученной картине распределения (хроматограмме) хроматографические зоны компонентов смеси располагаются в виде пятен в соответствии с их сорбируемостью в данной системе.

Положение хроматографических зон на хроматограмме характеризуют величиной R f . которая равна отношению пути l i , пройденному і-тым компонентом от точки старта, к пути Vп R f = l i / l.

Величина R f зависит от коэффициента распределения (адсорбции) К і и соотношения объемов подвижной (V п) и неподвижной (V н) фаз.

На разделение в ТСХ влияет ряд факторов – состав и свойства элюента, природа, дисперсность и пористость сорбента, температура, влажность, размеры и толщина слоя сорбента и размеры камеры. Стандартизация условий эксперимента позволяет устанавливать R f с относительным стандартным отклонением 0,03.

Идентификацию компонентов смеси проводят по величинам R f . Количественное определение веществ в зонах можно осуществлять непосредственно на слое сорбента по площади хроматографической зоны, интенсивности флуоресценции компонента или его соединения с подходящим реагентом, радиохимическими методами. Используют также автоматические сканирующие приборы, измеряющие поглощение, пропускание, отражение света или радиоактивность хроматографических зон. Разделенные зоны можно снять с пластины вместе со слоем сорбента, десорбировать компонент в растворитель и анализировать раствор спектрофотометрически. С помощью ТСХ можно определить вещества в количествах от 10 -9 до 10 -6 ; ошибка определения не менее 5-10%.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • Вступление
  • Глава 1. Основные принципы фармацевтического анализа
    • 1.1 Критерии фармацевтического анализа
    • 1.2 Ошибки, возможные при проведении фармацевтического анализа
    • 1.4 Источники и причины недоброкачественности лекарственных веществ
    • 1.5 Общие требования к испытаниям на чистоту
    • 1.6 Методы фармацевтического анализа и их классификация
  • Глава 2. Физические методы анализа
    • 2.1 Проверка физических свойств или измерение физических констант лекарственных веществ
    • 2.2 Установление рН среды
    • 2.3 Определение прозрачности и мутности растворов
    • 2.4 Оценка химических констант
  • Глава 3. Химические методы анализа
    • 3.1 Особенности химических методов анализа
    • 3.2 Гравиметрический (весовой) метод
    • 3.3 Титриметрические (объемные) методы
    • 3.4 Газометрический анализ
    • 3.5 Количественный элементный анализ
  • Глава 4. Физико-химические методы анализа
    • 4.1 Особенности физико-химических методов анализа
    • 4.2 Оптические методы
    • 4.3 Абсорбционные методы
    • 4.4 Методы, основанные на испускании излучения
    • 4.5 Методы, основанные на использовании магнитного поля
    • 4.6 Электрохимические методы
    • 4.7 Методы разделения
    • 4.8 Термические методы анализа
  • Глава 5. Биологические методы анализа1
    • 5.1 Биологический контроль качества лекарственных средств
    • 5.2 Микробиологический контроль лекарственных средств
  • Выводы
  • Список использованной литературы

Вступление

Фармацевтический анализ -- это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 --10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 --10 -9 %; чувствительность спектрофотометрических методов Ю -3 --10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Так, при вычислении результатов титриметрических определений наименее точная цифра -- количество миллилитров титранта, израсходованного на титрование. В современных бюретках в зависимости от класса их точности максимальная ошибка отмеривания около ±0,02 мл. Ошибка от натекания тоже равна ±0,02 мл. Если при указанной общей ошибке отмеривания и натекания ±0,04 мл на титрование расходуется 20 мл титранта, то относительная ошибка составит 0,2%. При уменьшении навески и количества миллилитров титранта точность соответственно уменьшается. Таким образом, титриметрическое определение можно выполнять с относительной погрешностью ±(0,2--0,3)%.

Точность титриметрических определений можно повысить, если пользоваться микробюретками, применение которых значительно уменьшает ошибки от неточного отмеривания, натекания и влияния температуры. Погрешность допускается также при взятии навески.

Отвешивание навески при выполнении анализа лекарственного вещества осуществляют с точностью до ±0,2 мг. При взятии обычной для фармакопейного анализа навески 0,5 г препарата и точности взвешивания ±0,2 мг относительная ошибка будет равна 0,4%. При анализе лекарственных форм, выполнении экспресс-анализа такая точность при отвешивании не требуется, поэтому навеску берут с точностью ±(0,001--0,01) г, т.е. с предельной относительной ошибкой 0,1--1%. Это можно отнести и к точности отвешивания навески для колориметрического анализа, точность результатов которого ±5%.

1.2 Ошибки, возможные при проведении фармацевтического анализа

При выполнении количественного определения любым химическим или физико-химическим методом могут быть допущены три группы ошибок: грубые (промахи), систематические (определенные) и случайные (неопределенные).

Грубые ошибки являются результатом просчета наблюдателя при выполнении какой-либо из операций определения или неправильно выполненных расчетов. Результаты с грубыми ошибками отбрасываются как недоброкачественные.

Систематические ошибки отражают правильность результатов анализа. Они искажают результаты измерений обычно в одну сторону (положительную или отрицательную) на некоторое постоянное значение. Причиной систематических ошибок в анализе могут быть, например, гигроскопичность препарата при отвешивании его навески; несовершенство измерительных и физико-химических приборов; опытность аналитика и т.д. Систематические ошибки можно частично устранить внесением поправок, калибровкой прибора и т.д. Однако всегда необходимо добиваться того, чтобы систематическая ошибка была соизмерима с ошибкой прибора и не превышала случайной ошибки.

Случайные ошибки отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметическое случайных ошибок стремится к нулю при постановке большого числа опытов в одних и тех же условиях. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.

Правильность результатов определений выражают абсолютной ошибкой и относительной ошибкой.

Абсолютная ошибка представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина (граммах, миллилитрах, процентах).

Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают относительную ошибку обычно в процентах (умножая полученную величину на 100). Относительные ошибки определений физико-химическими методами включают как точность выполнения подготовительных операций (взвешивание, отмеривание, растворение), так и точность выполнения измерений на приборе (инструментальная ошибка).

Значения относительных ошибок находятся в зависимости от того, каким методом выполняют анализ и что представляет собой анализируемый объект -- индивидуальное вещество или многокомпонентную смесь. Индивидуальные вещества можно определять при анализе спек- трофотометрическим методом в УФ- и видимой областях с относительной погрешностью ±(2--3)%, ИК-спектрофотометрией ±(5--12)%, газо- жидкостцой хроматографией ±(3--3,5)%; полярографией ±(2--3)%; потенциометрией ±(0,3--1)%.

При анализе многокомпонентных смесей относительная погрешность определения этими методами возрастает примерно в два раза. Сочетание хроматографии с другими методами, в частности использование хроматооптических и хроматоэлектрохимических методов, позволяет выполнять анализ многокомпонентных смесей с относительной погрешностью ±(3--7)%.

Точность биологических методов намного ниже, чем химических и физико-химических. Относительная ошибка биологических определений достигает 20--30 и даже 50%. Для повышения точности в ГФ XI введен статистический анализ результатов биологических испытаний.

Относительная ошибка определения может быть уменьшена за счет увеличения числа параллельных измерений. Однако эти возможности имеют определенный предел. Уменьшать случайную ошибку измерений, увеличивая число опытов, целесообразно до тех пор, пока она станет меньше систематической. Обычно в фармацевтическом анализе выполняют 3--6 параллельных измерений. При статистической обработке результатов определений с целью получения достоверных результатов выполняют не менее семи параллельных измерений.

1.3 Общие принципы испытаний подлинности лекарственных веществ

Испытание на подлинность -- это подтверждение идентичности анализируемого лекарственного вещества (лекарственной формы), осуществляемое на основе требований Фармакопеи или другой нормативно-технической документации (НТД). Испытания выполняют физическими, химическими и физико-химическими методами. Непременным условием объективного испытания подлинности лекарственного вещества является идентификация тех ионов и функциональных групп, входящих в структуру молекул, которые обусловливают фармакологическую активность. С помощью физических и химических констант (удельного вращения, рН среды, показателя преломления, УФ- и ИК-спектра) подтверждают и другие свойства молекул, оказывающие влияние на фармакологический эффект. Применяемые в фармацевтическом анализе химические реакции сопровождаются образованием окрашенных соединений, выделением газообразных или нерастворимых в воде соединений. Последние можно идентифицировать по температуре плавления.

1.4 Источники и причины недоброкачественности лекарственных веществ

Основные источники технологических и специфических примесей -- аппаратура, исходное сырье, растворители и другие вещества, которые используют при получении лекарственных средств. Материал, из которого изготовлена аппаратура (металл, стекло), может служить источником примесей тяжелых металлов и мышьяка. При плохой очистке в препаратах могут содержаться примеси растворителей, волокна тканей или фильтровальной бумаги, песок, асбест и т.д., а также остатки кислот или щелочей.

На качество синтезируемых лекарственных веществ могут оказывать влияние различные факторы.

Технологические факторы -- первая группа факторов, оказывающих влияние в процессе синтеза лекарственного вещества. Степень чистоты исходных веществ, температурный режим, давление, рН среды, растворители, применяемые в процессе синтеза и для очистки, режим и температура сушки, колеблющаяся даже в небольших пределах, -- все эти факторы могут привести к появлению примесей, которые накапливаются от одной к другой стадии. При этом могут происходить образование продуктов побочных реакций или продуктов распада, процессы взаимодействия исходных и промежуточных продуктов синтеза с образованием таких веществ, от которых трудно затем отделить конечный продукт. В процессе синтеза возможно также образование различных таутомерных форм как в растворах, так и в кристаллическом состоянии. Так, например, многие органические соединения могут существовать в амидной, имидной и других таутомерных формах. Причем нередко в зависимости от условий получения, очистки и хранения лекарственное вещество может представлять собой смесь двух таутомеров или других изомеров, в том числе оптических, различающихся по фармакологической активности.

Вторая группа факторов -- образование различных кристаллических модификаций, или полиморфизм. Около 65% лекарственных веществ, относящихся к числу барбитуратов, стероидов, антибиотиков, алкалоидов и др., образуют по 1--5 и более различных модификаций. Остальные дают при кристаллизации стабильные полиморфные и псевдополиморфные модификации. Они различаются не только по физико-химическим свойствам (температуре плавления, плотности, растворимости) и фармакологическому действию, но имеют различную величину свободной поверхностной энергии, а следовательно, неодинаковую устойчивость к действию кислорода воздуха, света, влаги. Это вызвано изменениями энергетических уровней молекул, что оказывает влияние на спектральные, термические свойства, растворимость и абсорбцию лекарственных веществ. Образование полиморфных модификаций зависит от условий кристаллизации, используемого при этом растворителя, температуры. Превращение одной полиморфной формы в другую происходит при хранении, сушке, измельчении.

В лекарственных веществах, получаемых из растительного и животного сырья, основными примесями являются сопутствующие природные соединения (алкалоиды, ферменты, белки, гормоны и др.). Многие из них очень сходны по химическому строению и физико-химическим свойствам с основным продуктом экстракции. Поэтому очистка его представляет большую сложность.

Большое влияние на загрязнение примесями одних лекарственных препаратов другими может оказать запыленность производственных помещений химико-фармацевтических предприятий. В рабочей зоне этих помещений при условии получения одного или нескольких препаратов (лекарственных форм) все они могут содержаться в виде аэрозолей в воздухе. При этом происходит так называемое "перекрестное загрязнение".

Всемирной организацией здравоохранения (ВОЗ) в 1976 г. были разработаны специальные правила организации производства и контроля качества лекарственных средств, которые предусматривают условия предотвращения "перекрестного загрязнения".

Важное значение для качества лекарств имеют не только технологический процесс, но и условия хранения. На доброкачественность препаратов оказывает влияние излишняя влажность, которая может привести к гидролизу. В результате гидролиза образуются основные соли, продукты омыления и другие вещества с иным характером фармакологического действия. При хранении препаратов-кристаллогидратов (натрия арсенат, меди сульфат и др.) необходимо, наоборот, соблюдать условия, исключающие потерю кристаллизационной воды.

При хранении и транспортировке препаратов необходимо учитывать воздействие света и кислорода воздуха. Под влиянием этих факторов может происходить разложение, например, таких веществ, как хлорная известь, серебра нитрат, иодиды, бромиды и т.д. Большое значение имеет качество тары, используемой для хранения лекарственных препаратов, а также материал, из которого она изготовлена. Последний тоже может быть источником примесей.

Таким образом, примеси, содержащиеся в лекарственных веществах, можно разделить на две группы: примеси технологические, т.е. внесенные исходным сырьем или образовавшиеся в процессе производства, и примеси, приобретенные в процессе хранения или транспортировки, под воздействием различных факторов (теплоты, света, кислорода воздуха и т.д.).

Содержание тех и других примесей должно строго контролироваться, чтобы исключить присутствие токсичных соединений или наличие индифферентных веществ в лекарственных средствах в таких количествах, которые мешают их использованию для конкретных целей. Иными словами, лекарственное вещество должно иметь достаточную степень чистоты, а следовательно, отвечать требованиям определенной спецификации.

Лекарственное вещество является чистым, если дальнейшая очистка не меняет его фармакологической активности, химической стабильности, физических свойств и биологической доступности.

В последние годы в связи с ухудшением экологической обстановки на наличие примесей тяжелых металлов испытывают и лекарственное растительное сырье. Важность проведения таких испытаний вызвана тем, что при проведении исследований 60 различных образцов растительного сырья установлено содержание в них 14 металлов, в том числе таких токсичных, как свинец, кадмий, никель, олово, сурьма и даже таллий. Их содержание в большинстве случаев значительно превышает установленные ПДК для овощей и фруктов.

Фармакопейный тест на определение примесей тяжелых металлов -- один из широко применяемых во всех национальных фармакопеях мира, которые рекомендуют его для исследования не только индивидуальных лекарственных веществ, но и масел, экстрактов, ряда инъекционных лекарственных форм. По мнению Комитета экспертов ВОЗ, такие испытания следует проводить в отношении лекарственных средств, имеющих разовые дозы не менее 0,5 г.

1.5 Общие требования к испытаниям на чистоту

Оценка степени чистоты лекарственного препарата -- один из важных этапов фармацевтического анализа. Все лекарственные препараты независимо от способа получения испытывают на чистоту. При этом устанавливают содержание примесей. Их можно разделить на две группы: примеси, оказывающие влияние на фармакологическое действие лекарственного препарата, и примеси, указывающие на степень очистки вещества. Последние не влияют на фармакологический эффект, но присутствие их в больших количествах снижает концентрацию и соответственно уменьшает активность препарата. Поэтому фармакопеи устанавливают определенные пределы этих примесей в лекарственных препаратах.

Таким образом, основной критерий доброкачественности лекарственного препарата -- наличие допустимых пределов физиологически неактивных примесей и отсутствие токсичных примесей. Понятие отсутствие условно и связано с чувствительностью способа испытания.

Общие требования, которые предъявляются к испытаниям на чистоту, -- чувствительность, специфичность и воспроизводимость используемой реакции, а также пригодность ее применения для установления допустимых пределов содержания примесей.

Для испытаний чистоты избирают реакции с такой чувствительностью, которая позволяет определить допустимые пределы примесей в данном лекарственном препарате. Эти пределы устанавливают предварительной биологической проверкой с учетом возможного токсического воздействия примеси.

Определить максимальное содержание примесей в испытуемом препарате можно двумя путями (эталонным и безэталонным). Один из них основан на сравнении с эталонным раствором (стандартом). При этом в одинаковых условиях наблюдают окраску или помутнение, возникающие под действием какого-либо реактива. Второй путь -- установление предела содержания примесей по отсутствию положительной реакции. При этом используют химические реакции, чувствительность которых ниже, чем предел обнаружения допустимых примесей.

Для ускорения выполнения испытаний на чистоту, их унификации и достижения одинаковой точности анализа в отечественных фармако- пеях использована система эталонов. Эталон представляет собой образец, содержащий определенное количество открываемой примеси. Установление наличия примесей производят колориметрическим или нефелометрическим методом, сравнивания результаты реакций в растворе эталона и в растворе препарата после добавления одинаковых количеств соответствующих реактивов. Достигаемая при этом точность вполне достаточна, чтобы установить, больше или меньше, чем допустимо, содержится примесей в испытуемом препарате.

При выполнении испытаний на чистоту необходимо строго соблюдать общие указания, предусмотренные фармакопеями. Вода и используемые реактивы не должны содержать ионов, наличие которых устанавливают; одинакового диаметра и бесцветными должны быть пробирки; навески должны отвешиваться с точностью до 0,001 г; реактивы следует добавлять одновременно и в одинаковых количествах как к эталонному, так и к испытуемому раствору; образующуюся опалесценцию наблюдают в проходящем свете на темном фоне, а окраску -- в отраженном свете на белом фоне. Если устанавливают отсутствие примеси, то к испытуемому раствору прибавляют все реактивы, кроме основного; затем полученный раствор делят на две равные части и к одной из них прибавляют основной реактив. При сравнении не должно быть заметных различий между обеими частями раствора.

Следует иметь в виду, что последовательность и скорость прибавления реактива влияют на результаты испытаний на чистоту. Иногда необходимо также соблюдать интервал времени, в течение которого следует вести наблюдение за результатом реакции.

Источником примесей при производстве готовых лекарственных форм могут служить плохо очищенные наполнители, растворители и другие вспомогательные вещества. Поэтому степень чистоты этих веществ должна подвергаться тщательному контролю перед использованием их в производстве.

1.6 Методы фармацевтического анализа и их классификация

В фармацевтическом анализе используются разнообразные методы исследования: физические, физико-химические, химические, биологические. Применение физических и физико-химических методов требует соответствующих приборов и инструментов, поэтому данные методы называют также приборными, или инструментальными.

Использование физических методов основано на измерении физических констант, например, прозрачности или степени мутности, цветности, влажности, температуры плавления, затвердевания и кипения и др.

С помощью физико-химических методов измеряют физические константы анализируемой системы, которые изменяются в результате химических реакций. К этой группе методов относятся оптические, электрохимические, хроматографические.

Химические методы анализа основаны на выполнении химических реакций.

Биологический контроль лекарственных веществ осуществляют на животных, отдельных изолированных органах, группах клеток, на определенных штаммах микроорганизмов. Устанавливают силу фармакологического эффекта или токсичность.

Методики, используемые в фармацевтическом анализе, должны быть чувствительными, специфическими, избирательными, быстрыми и пригодными для экспресс-анализа в условиях аптеки.

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

Подлинность лекарственного вещества подтверждают; агрегатное состояние (твердое вещество, жидкость, газ); окраска, запах; форма кристаллов или вид аморфного вещества; гигроскопичность или степень выветриваемости на воздухе; устойчивость к воздействию света, кислорода воздуха; летучесть, подвижность, воспламеняемость (жидкостей). Окраска лекарственного вещества -- одно из характерных свойств, позволяющее осуществить его предварительную идентификацию.

Определение степени белизны порошкообразных лекарственных средств -- физический метод, впервые включенный в ГФ XI. Степень белизны (оттенка) твердых лекарственных веществ можно оценить различными инструментальными методами на основе спектральной характеристики света, отраженного от образца. Для этого измеряют коэффициенты отражения при освещении образца белым светом, полученным от специального источника со спектральным распределением или пропущенным через светофильтры с максимумом пропускания 614 нм (красный) или 459 нм (синий). Можно также измерять коэффициент отражения света, пропущенного через зеленый светофильтр (522 нм). Коэффициент отражения -- это отношение величины отраженного светового потока к величине падающего светового потока. Он позволяет определить наличие или отсутствие у лекарственных веществ цветового оттенка по степени белизны и степени яркости. Для белых или белых с сероватым оттенком веществ степени белизны теоретически равна 1. Вещества, у которых она 0,95--1,00, а степени яркости < 0,85, имеют сероватый оттенок.

Более точно оценку белизны лекарственных веществ можно осуществить с помощью спектрофотометров отражения, например СФ-18, выпускаемых ЛОМО (Ленинградским оптико-механическим объединением). Интенсивность цветовых или сероватого оттенков устанавливают по абсолютным коэффициентам отражения. Значения степени белизны и степени яркости являются характеристиками качества белых и белых с оттенками лекарственных веществ. Их допустимые пределы регламентируются в частных статьях.

Более объективным является установление различных физических констант: температуры плавления (разложения), температуры затвердевания или кипения, плотности, вязкости. Важный показатель подлинности -- растворимость лекарственного препарата в воде, растворах кислот, щелочей, органических растворителях (эфире, хлороформе, ацетоне, бензоле, этиловом и метиловом спирте, маслах и др.).

Константой, характеризующей гомогенность твердых веществ, является температура плавления. Ее используют в фармацевтическом анализе для установления подлинности и чистоты большинства твердых лекарственных веществ. Известно, что это температура, при которой твердое тело находится в равновесии с жидкой фазой при насыщенной фазе пара. Температура плавления является постоянной величиной для индивидуального вещества. Присутствие даже небольшого содержания примесей изменяет (как правило, снижает) температуру плавления вещества, что позволяет судить о степени его чистоты. Подтвердить индивидуальность исследуемого соединения можно пробой смешанного плавления, так как смесь двух веществ, имеющих одинаковые температуры плавления, плавится при той же температуре.

Для установления температуры плавления ГФ XI рекомендует капиллярный метод, позволяющий подтвердить подлинность и ориентировочно степень чистоты лекарственного препарата. Так как в лекарственных препаратах допускается некоторое содержание примесей (нормируемое ФС или ВФС), то температура плавления может быть выражена не всегда четко. Поэтому большинство фармакопей, в том числе и ГФ XI, под температурой плавления подразумевает интервал температур, при котором происходит процесс плавления испытуемого препарата от появления первых капель жидкости до полного перехода вещества в жидкое состояние. Некоторые органические соединения при нагревании разлагаются. Процесс этот происходит при температуре разложения и зависит от ряда факторов, в частности от скорости нагрева.

Приведенные в частных статьях ГФ (ФС, ВФС) интервалы температур плавления указывают на то, что между началом и окончанием плавления лекарственного вещества интервал не должен превышать 2°С. Если он превышает 2°С, то в частной статье должно быть указано, на какую величину. Если переход вещества из твердого в жидкое состояние нечеткий, то вместо интервала температуры плавления устанавливают температуру, при которой происходит только начало или только окончание плавления. Это значение температуры должно укладываться в интервал, приведенный в частной статье ГФ (ФС, ВФС).

Описание прибора и методик определения температуры плавления приведено в ГФ XI, вып.1 (с. 16). В зависимости от физических свойств применяют различные методы. Один из них рекомендуется для твердых веществ, легко превращаемых в порошок, а два других -- для веществ, не растирающихся в порошок (жиры, воск, парафин, вазелин и др.). Следует учитывать, что на точность установления температурного интервала, при котором происходит плавление испытуемого вещества, могут влиять условия подготовки образца, скорость подъема и точность измерения температуры, опытность аналитика.

В ГФ XI, вып. 1 (с. 18) уточнены условия определения температуры плавления и рекомендован новый прибор с диапазоном измерений в пределах от 20 до 360°С (ПТП) с электрическим обогревом. Он отличается наличием стеклянного блока-нагревателя, обогрев которого осуществляется навитой константановой проволокой, оптическим приспособлением и щитком управления с номограммой. Капилляры для этого прибора должны иметь длину 20 см. Прибор ПТП обеспечивает более высокую точность определения температуры плавления. Если получаются расхождения при определении температуры плавления (указанной в частной статье), то следует приводить результаты ее определения на каждом из использованных приборов.

Под температурой затвердевания понимают наиболее высокую, остающуюся в течение короткого времени, постоянную температуру, при которой происходит переход вещества из жидкого состояния в твердое. В ГФ XI, вып. 1 (с. 20) описаны устройство прибора и методика определения температуры затвердевания. По сравнению с ГФ X в нее внесено дополнение, касающееся веществ, способных переохлаждаться.

Температура кипения, или, точнее говоря, температурные пределы перегонки, -- это интервал между начальной и конечной температурой кипения при нормальном давлении 760 мм рт.ст. (101,3 кПа). Температуру, при которой в приемник перегнались первые 5 капель жидкости, называют начальной температурой кипения, а температуру, при которой перешло в приемник 95% жидкости, -- конечной температурой кипения. Указанные пределы температур можно установить макрометодом и микрометодом. Помимо прибора, рекомендованного ГФ XI, вып. 1 (с. 18), для определения температуры плавления (ПТП) может быть использован прибор для определения температурных пределов перегонки (ТПП) жидкостей, изготавливаемый Клин- ским заводом "Лаборприбор" (ГФ XI, вып. 1, с. 23). Этот прибор обеспечивает получение более точных и воспроизводимых результатов.

Следует учитывать, что температура кипения зависит от атмосферного давления. Температуру кипения устанавливают только у сравнительно небольшого числа жидких лекарственных препаратов: циклопропана, хлорэтила, эфира, фторотана, хлороформа, трихлорэтилена, этанола.

При установлении плотности берут массу вещества определенного объема. Плотность устанавливают с помощью пикнометра или ареометра по методикам, описанным в ГФ XI, вып. 1 (с. 24--26), строго соблюдая температурный режим, так как плотность зависит от температуры. Обычно это достигают термостатированием пикнометра при 20°С. Определенные интервалы значений плотности подтверждают подлинность этилового спирта, глицерина, масла вазелинового, вазелина, парафина твердого, галогенопроизводных углеводородов (хлорэтила, фторотана, хлороформа), раствора формальдегида, эфира для наркоза, амилнитрита и др. ГФ XI, вып. 1 (с. 26) рекомендует устанавливать содержание спирта в препаратах спирта этилового 95, 90, 70 и 40%-ного по плотности, а в лекарственных формах либо дистилляцией с последующим установлением плотности, либо по температуре кипения водно-спиртовых растворов (в том числе настоек).

Дистилляцию осуществляют кипячением определенных количеств спиртоводных смесей (настоек) в колбах, герметически соединенных с приемником. Последний представляет собой мерную колбу вместимостью 50 мл. Собирают 48 мл отгона, доводят его температуру до 20°С и добавляют водой до метки. Плотность отгона устанавливают пикнометром.

При определении спирта (в настойках) по температуре кипения используют прибор, описанный в ГФ XI, вып. 1 (с. 27). Показания термометра снимают через 5 мин после начала кипения, когда температура кипения стабилизируется (отклонения не более ±0,1°С). Полученный результат пересчитывают на нормальное атмосферное давление. Концентрацию спирта вычисляют с помощью таблиц, имеющихся в ГФ XI, вып. 1 (с.28).

Вязкость (внутреннее трение) -- физическая константа, подтверждающая подлинность жидких лекарственных веществ. Различают динамическую (абсолютную), кинематическую, относительную, удельную, приведенную и характеристическую вязкость. Каждая из них имеет свои единицы измерения.

Для оценки качества жидких препаратов, имеющих вязкую консистенцию, например глицерина, вазелина, масел, обычно определяют относительную вязкость. Она представляет собой отношение вязкости исследуемой жидкости к вязкости воды, принятой за единицу. Для измерения кинематической вязкости используют различные модификации вискозиметров типа Оствальда и Уббелоде. Кинематическую вязкость обычно выражают в м 2 * с -1 . Зная плотность исследуемой жидкости, можно затем вычислить динамическую вязкость, которую выражают в Па * с. Динамическую вязкость можно также установить с помощью ротационных вискозиметров различных модификаций типа ""Полимер РПЭ-1 И или микрореометров серии ВИР. На измерении скорости падения шарика в жидкости основано устройство вискозиметров типа Гепплера. Они позволяют установить динамическую вязкость. Все приборы должны термостатироваться, так как вязкость в значительной степени зависит от температуры испытуемой жидкости.

Растворимость в ГФ XI рассматривают не как физическую константу, а как свойство, которое может служить ориентировочной характеристикой испытуемого препарата. Наряду с температурой плавления растворимость вещества при постоянной температуре и давлении является одним из параметров, по которому устанавливают подлинность и чистоту практически всех лекарственных веществ.

Методика определения растворимости по ГФ XI основана на том, что навеска предварительно растертого (в необходимых случаях) препарата вносится в отмеренный объем растворителя и непрерывно перемешивается в течение 10 мин при (20±2)°С. Растворившимся считают препарат, в растворе которого в проходящем свете не наблюдается частиц вещества. Если для растворения препарата требуется более 10 мин, то его относят к числу медленно растворимых. Их смесь с растворителем нагревают на водяной бане до 30° С и наблюдают полноту растворения после охлаждения до (20±2)°С и энергичного встряхивания в течение 1--2 мин. Более детальные указания об условиях растворения медленно растворимых лекарственных веществ, а также препаратов, образующих мутные растворы, приведены в частных статьях. Показатели растворимости в различных растворителях указываются в частных статьях. В них оговариваются случаи, когда растворимость подтверждает степень чистоты лекарственного вещества.

В ГФ XI, вып. 1 (с. 149) включен метод фазовой растворимости, который дает возможность осуществлять количественную оценку степени чистоты лекарственного вещества путем точных измерений значений растворимости. Этот метод основан на правиле фаз Гиббса, которое устанавливает зависимость между числом фаз и числом компонентов в условиях равновесия. Суть установления фазовой растворимости заключается в последовательном прибавлении увеличивающейся массы препарата к постоянному объему растворителя. Для достижения состояния равновесия смесь подвергают длительному встряхиванию при постоянной температуре, а эатем с помощью диаграмм определяют содержание растворенного лекарственного вещества, т.е. устанавливают, является ли испытуемый препарат индивидуальным веществом или смесью. Метод фазовой растворимости отличается объективностью, не требует для выполнения дорогостоящего оборудования, знания природы и структуры примесей. Это позволяет использовать его для качественного и количественного анализов, а также для изучения стабильности и получения очищенных образцов препаратов (до степени чистоты 99,5%), Важное достоинство метода -- возможность отличать оптические изомеры и полиморфные формы лекарственных веществ. Метод применим ко всем видам соединений, которые образуют истинные растворы.

2.2 Установление рН среды

Важную информацию о степени чистоты лекарственного препарата дает значение рН его раствора. По этому значению можно судить о наличии примесей кислых или щелочных продуктов.

Принцип обнаружения примесей свободных кислот (неорганических и органических), свободных щелочей, т.е. кислотности и щелочности, заключается в нейтрализации этих веществ в растворе препарата или в водном экстракте. Нейтрализацию выполняют в присутствии индикаторов (фенолфталеин, метиловый красный, тимолфталеин, бромфеноловый синий и др). О кислотности или щелочности судят либо по окраске индикатора, либо по ее изменению, либо устанавливают количество титрованного раствора щелочи или кислоты, затраченное на нейтрализацию.

Реакция среды (рН) является характеристикой химических свойств вещества. Это важный параметр, который следует устанавливать при выполнении технологических и аналитических операций. Степень кислотности или основности растворов необходимо учитывать при выполнении испытаний чистоты лекарственных препаратов и количественного определения. От значений рН растворов зависят сроки хранения лекарственных веществ, а также осрбенности их применения.

Значение рН ориентировочно (до 0,3 ед.) можно определять с помощью индикаторной бумаги или универсального индикатора. Из многочисленных способов установления значения рН среды ГФ XI рекомендует колориметрический и потенциометрический способы.

Колориметрический способ весьма несложен по выполнению. Он основан на свойстве индикаторов изменять свою окраску при определенных интервалах значений рН среды. Для выполнения испытаний используют буферные растворы с постоянной концентрацией водородных ионов, отличающихся друг от друга на величину рН, равную 0,2. К серии таких растворов и к испытуемому раствору прибавляют одинаковое количество (2--3 капли) индикатора. По совпадению окраски с одним из буферных растворов судят о значении рН среды испытуемого раствора.

В ГФ XI, вып. 1 (с. 116) приведены подробные сведения о приготовлении стандартных буферных растворов для различных областей рН: от 1,2 до 11,4. В качестве реактивов для этой цели используют сочетания различных соотношений растворов хлорида калия, гидрофталата калия, однозамещенного фосфата калия, борной кислоты, тетрабората натрия с соляной кислотой или раствором гидроксида натрия. Вода очищенная, используемая для приготовления буферных растворов, должна иметь рН 5,8--7,0 и быть свободной от примеси углекислого газа.

Потенциометрический способ следует отнести к физико-химическим (электрохимическим) методам. Потенциометрическое определение рН основано на измерении электродвижущей силы элемента, составленного из стандартного электрода (с известным значением потенциала) и индикаторого электрода, потенциал которого зависит от рН испытуемого раствора. Для установления рН среды используют потенциометры или рН-метры различных марок. Их настройку осуществляют с помощью буферных растворов. Потенциометрический способ определения рН отличается от колориметрического более высокой точностью. Он имеет меньше ограничений, может быть применен для определения рН в окрашенных растворах, а также в присутствии окислителей и восстановителей.

В ГФ XI, вып. 1 (с. 113) включена таблица, в которой указаны растворы веществ, используемых в качестве стандартных буферных растворов, для проверки рН-метров. Приведенные в таблице данные позволяют установить зависимость рН этих растворов от температуры.

2.3 Определение прозрачности и мутности растворов

Прозрачность и степень мутности жидкости по ГФ X (с. 757) и ГФ XI, вып. 1 (с. 198) устанавливают путем сравнения при вертикальном расположении пробирок испытуемой жидкости с тем же растворителем или с эталонами. Жидкость считают прозрачной, если при ее освещении матовой электролампой (мощностью 40 Вт) на черном фоне не наблюдается присутствие нерастворенных частиц, кроме единичных волокон. По ГФ X эталоны представляют собой взвесь, полученную из определенных количеств белой глины. Эталонами для определения степени мутности по ГФ XI служат взвеси в воде из смесей определенных количеств гидразина сульфата и гекса- метилентетрамина. Вначале готовят 1%-ный раствор гидразина сульфата и 10%-ный раствор гексаметилентетрамина. Смешиванием равных объемов этих растворов получают исходный эталон.

В общей статье ГФ XI приведена таблица, в которой указаны количества основного эталона, необходимые для приготовления эталонных растворов I, II, III, IV. Здесь же указана схема просмотра прозрачности и степени мутности жидкостей.

Окраску жидкостей по ГФ XI, вып. 1 (с. 194) устанавливают путем сравнения испытуемых растворов с равным количеством одного из семи эталонов при дневном отраженном свете на матово- белом фоне. Для приготовления эталонов используют четыре основных раствора, полученных смешением в различных соотношениях исходных растворов хлорида кобальта, дихромата калия, сульфата меди (II) и хлорида железа (III). В качестве растворителя для приготовления основных растворов и эталонов используют раствор серной кислоты (0,1 моль/л).

Бесцветными считают жидкости, не отличающиеся по цвету от воды, а растворы -- от соответствующего растворителя.

Адсорбционная способность и дисперсность также являются показателями чистоты некоторых лекарственных препаратов.

Очень часто используют для обнаружения примесей органических веществ испытание, основанное на их взаимодействии с концентрированной серной кислотой. Последняя при этом может выступать в роли окислителя или дегидратирующего средства.

В результате таких реакций образуются окрашенные продукты. Интенсивность полученной окраски не должна превышать соответствующего эталона цветности.

Для установления чистоты лекарственных препаратов широко используют определение золы (ГФ XI, вып.2, с.24). Прокаливанием навески препарата в фарфоровом (платиновом) тигле устанавливают общую золу. Затем после добавления разведенной соляной кислоты определяют золу, нерастворимую в соляной кислоте. Кроме того, определяют также сульфатную золу, получаемую после нагревания и прокаливания навески препарата, обработанной концентрированной серной кислотой.

Один из показателей чистоты органических лекарственных препаратов -- содержание остатка после прокаливания.

При установлении чистоты некоторых лекарственных препаратов проверяют также наличие восстанавливающих веществ (по обесцвечиванию раствора перманганата калия), красящих веществ (бесцветность водного извлечения). Обнаруживают также водорастворимые соли (в нерастворимых препаратах), вещества, нерастворимые в этаноле, и примеси, нерастворимые в воде (по эталону мутности).

2.4 Оценка химических констант

Для оценки чистоты масел, жиров, воска, некоторых сложных эфиров используют такие химические константы, как кислотное число, число омыления, эфирное число, йодное число (ГФ XI, вып. 1, с. 191, 192, 193).

Кислотное число -- масса гидроксида калия (мг), которая необходима для нейтрализации свободных кислот, содержащихся в 1 г исследуемого вещества.

Число омыления -- масса гидроксида калия (мг), которая необходима для нейтрализации свободных кислот и кислот, образующихся при полном гидролизе сложных эфиров, содержащихся в 1 г исследуемого вещества.

Эфирное число -- масса гидроксида калия (мг), которая необходима для нейтрализации кислот, образующихся при гидролизе сложных эфиров, содержащихся в 1 г исследуемого вещества (т.е. разность между числом омыления и кислотным числом).

Йодное число -- масса иода (г), которая связывает 100 г исследуемого вещества.

В ГФ XI приведены методики установления указанных констант и способы их расчета.

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

Эти методы используются для установления подлинности лекарственных веществ, испытаний их на чистоту и количественного определения.

Для целей идентификации используют реакции, которые сопровождаются внешним эффектом, например изменением окраски раствора, выделением газообразных продуктов, выпадением или растворением осадков. Установление подлинности неорганических лекарственных веществ заключается в обнаружении с помощью химических реакций катионов и анионов, входящих в состав молекул. Химические реакции, применяемые для идентификации органических лекарственных веществ, основаны на использовании функционального анализа.

Чистота лекарственных веществ устанавливается помощью чувствительных и специфичных реакций, пригодных для определения допустимых пределов содержания примесей.

Химические методы оказались самыми надежными и эффективными, они дают возможность выполнить анализ быстро и с высокой достоверностью. В случае сомнения в результатах анализа последнее слово остается за химическими методами.

Количественные методы химического анализа подразделяют на гравиметрический, титриметрический, газометрический анализ и количественный элементный анализ.

3.2 Гравиметрический (весовой) метод

Гравиметрический метод основан на взвешивании осажденного вещества в виде малорастворимого соединения или отгонки органических растворителей после извлечения лекарственного вещества. Метод точен, но длителен, так как предусматривает такие операции, как фильтрование, промывание, высушивание (или прокаливание) до постоянной массы.

Из неорганических лекарственных веществ гравиметрическим методом можно определять сульфаты, переводя их в нерастворимые соли бария, и силикаты, предварительно прокаливая до диоксида кремния.

Рекомендуемые ГФ методики гравиметрического анализа препаратов солей хинина основаны на осаждении основания этого алкалоида под действием раствора гидроксида натрия. Аналогично определяют бигумаль. Препараты бензилпенициллина осаждают в виде N -этилпиперидиновой соли бензилпенициллина; прогестерон -- в виде гидра- зона. Возможно применение гравиметрии для определения алкалоидов (взвешиванием свободных от примесей оснований или пикратов, пикролонатов, кремневольфраматов, тетрафенилборатов), а также для определения некоторых витаминов, которые осаждают в виде нерастворимых в воде продуктов гидролиза (викасол, рутин) или в виде кремневольфрамата (тиамина бромид). Известны также гравиметрические методики, основанные на осаждении из натриевых солей кислотных форм барбитуратов.

Подобные документы

    Специфические особенности фармацевтического анализа. Испытание на подлинность лекарственных препаратов. Источники и причины недоброкачественности лекарственных веществ. Классификация и характеристика методов контроля качества лекарственных веществ.

    реферат , добавлен 19.09.2010

    Критерии фармацевтического анализа, общие принципы испытаний подлинности лекарственных веществ, критерии доброкачественности. Особенности экспресс-анализа лекарственных форм в условиях аптеки. Проведение экспериментального анализа таблеток анальгина.

    курсовая работа , добавлен 21.08.2011

    Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа , добавлен 07.04.2016

    Состояние маркетинговых исследований фармацевтического рынка ЛС. Методы анализа ассортимента лекарственных средств. Товароведческая характеристика винпоцетина. Анализ препаратов для улучшения мозгового кровообращения, разрешенных к применению в стране.

    курсовая работа , добавлен 03.02.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Классификация лекарственных форм и особенности их анализа. Количественные методы анализа однокомпонентных и многокомпонентных лекарственных форм. Физико-химические методы анализа без разделения компонентов смеси и после предварительного их разделения.

    реферат , добавлен 16.11.2010

    Микрофлора готовых лекарственных форм. Микробное обсеменение лекарственных препаратов. Способы предупреждения микробной порчи готовых лекарственных веществ. Нормы микробов в нестерильных лекарственных формах. Стерильные и асептические препараты.

    презентация , добавлен 06.10.2017

    Изучение современных лекарственных препаратов для контрацепции. Способы их применения. Последствия взаимодействия при совместном применении контрацептивов с другими препаратами. Механизм действия негормональных и гормональных лекарственных препаратов.

    курсовая работа , добавлен 24.01.2018

    История развития технологии лекарственных форм и аптечного дела в России. Роль лекарств в лечении заболеваний. Правильный прием лекарственных препаратов. Способ применения и дозы. Профилактика болезней с использованием медикаментов, рекомендации врача.

    презентация , добавлен 28.11.2015

    Система анализа маркетинговой информации. Отбор источников информации. Анализ ассортимента аптечной организации. Характерные черты рынка лекарственных препаратов. Принципы сегментирования рынка. Основные механизмы действия противовирусных препаратов.

Страница 1

Одна из наиболее важных задач фармацевтической химии – это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание. ГФ предлагает следующие методы контроля качества ЛС .

Физические и физико-химические методы. К ним относятся: определение температур плавления и затвердевания, а также температурных пределов перегонки; определение плотности, показателей преломления (рефрактометрия), оптического вращения (поляриметрия); спектрофотометрия – ультрафиолетовая, инфракрасная; фотоколориметрия, эмиссионная и атомно-абсорбционная спектрометрия, флуориметрия, спектроскопия ядерного магнитного резонанса, масс-спектрометрия; хроматография – адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная; электрофорез (фронтальный, зональный, капиллярный); электрометрические методы (потенциометрическое определение рН, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод рамановской спектроскопии – оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тиоацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой .

Важной физической константой, характеризующей подлинность и степень чистоты ЛС, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для лекарственных веществ, содержащих некоторое количество допустимых примесей, ГФ регламентирует интервал температуры плавления в пределах 2 °С. Но в соответствии с законом Рауля (AT = iK3C, где AT – понижение температуры кристаллизации; К3 – криоскопическая постоянная; С – концентрация) при i = 1 (неэлектролит) значение АТ не может быть одинаковым для всех веществ. Это связано не только с содержанием примесей, но и с природой самого ЛВ, т. е. с величиной криоскопической постоянной К3, отражающей молярное понижение температуры плавления ЛВ. Таким образом, при одинаковом AT = = 2 "С для камфоры (К3 = 40) и фенола (К3 = 7,3) массовые доли примесей не равны и составляют соответственно 0,76 и 2,5 %.

Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

Критериями чистоты являются также цвет ЛВ и/или прозрачность жидких лекарственных форм .

Определенным критерием чистоты ЛС могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них гаюскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению .

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплек-сонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

УДК 615.015:615.07:53

АНАЛИЗ ЛЕКАРСТВЕННЫХ СРЕДСТВ ПРИ ФАРМАКОКИНЕТИЧЕСКИХ

ИССЛЕДОВАНИЯХ

Дмитрий Владимирович Рейхарт1, Виктор Владимирович Чистяков2

Кафедра организации и управления в сфере обращения лекарственных средств (зав. - чл.-корр. РАМН, проф. Р.У. Хабриев) Московской государственной медицинской академии им. И.М. Сеченова,

2 Центр по химии лекарственных средств - ВНИХФИ (ген. директор - К.В. Шилин), г. Москва

Проведен обзор чувствительных и специфичных аналитических методов, применяемых при изучении фармакокинетики лекарственных препаратов. Показаны достоинства и ограничения применения имму-ноферментного анализа, метода высокоэффективной жидкостной хроматографии с флуоресцентной и масс-спектрометрической детекцией. Применение того или иного метода при оценке фармакокинетики лекарственных препаратов в каждом конкретном случае определяется структурой исследуемого соединения и оснащенностью лаборатории.

Ключевые слова: жидкостная хроматография, флюоресцентная и масс-спектрометрическая детекция, иммуноферментный анализ, фармакокинетика.

Изучение фармакокинетики основано главным образом на оценке концентрации в организме пациента лекарственного вещества (ЛВ) в определенные моменты времени после приема препарата. Объектом исследования служат кровь (цельная, сыворотка, плазма), моча, слюна, кал, желчь, амниотическая жидкость и др. Наиболее доступны и чаще исследуются образцы крови и мочи.

Измерение концентрации ЛВ можно разделить на два этапа: 1 - выделение конкретного лекарственного вещества из биологического объекта, концентрирование исследуемого соединения, отделение его от основных эндогенных компонентов; 2 - разделение смеси соединений, идентификация ЛВ и количественный анализ.

Изучение концентрации препарата в крови дает информацию о продолжительности циркуляции лекарства в организме, биодоступности препарата, влиянии концентрации на фармакологический эффект, терапевтической и летальной дозах, динамике образования активных или токсичных метаболитов.

Изучение концентрации препарата в моче позволяет оценить скорость элиминации ЛВ и функцию почек. Концентрация метаболитов в моче - косвенный показатель активности метаболизирующих ферментов.

Исследование биологического материала включает измерение массы (объема) пробы, высвобождение препарата (метаболитов) из 532

клеток пробы, отделение целых клеток (например, при анализе крови) или частей клеток (при анализе гомогенатов тканей), добавление внутреннего стандарта, отделение белков, очистку пробы (центрифугирование, фильтрация), процедуры экстракции, реэкстракции, концентрирования и превращения исследуемых веществ в удобные для анализа производные, основные процедуры обработки проб крови и мочи соответственно (рис. 1).

«Идеальный» аналитический метод измерения концентрации ЛВ должен обладать высокой чувствительностью, специфичностью и воспроизводимостью, возможностью работы с малыми объемами, простотой подготовки материала, дешевизной и легкостью обслуживания оборудования, надежностью и возможностью автоматизации, простотой работы персонала и универсальностью (возможность анализа различных классов ЛВ).

Для получения достоверных данных необходимо делать поправку на стабильность действующего вещества и/или продукта (продуктов), а также степень его биотрансформации в анализируемых биологических средах .

Валидация метода должна проводиться c учетом его предполагаемого применения, при калибровке следует учитывать диапазон концентраций исследуемого образца. Категорически не рекомендуется применять два или более метода анализа проб в одном и том же материале со сходным диапазоном калибровочных значений.

Существует большое число методов определения концентрации ЛВ в биологических жидкостях: xроматографические, микробиологические, спектрофотометрические, полярографические, иммунологические (радиоим-мунные, иммуноэнзимные), радиоизотопные и другие методы.

Критическими параметрами метода являются чувствительность, скорость, точность, возможность работы с малым объемом биоматериала и стоимость.

В табл. 1 сравниваются аналитические методы анализа ЛВ .

Наиболее широко (до 95% исследований) на практике применяется метод высокоэффектив-

Рис. 1. Основные процедуры обработки проб крови и мочи.

ной жидкостной хроматографии (ВЭЖХ) с различными видами детекции.

Преимуществами ВЭЖХ по сравнению, например, с методом газожидкостной хроматографии (ГЖХ) являются отсутствие ограничений по термостабильности анализируемых препаратов, возможность работы с водными растворами и летучими соединениями, использования вариантов «нормальнофазной» и «обращеннофазной» хроматографии. Многие из видов детекции являются неразрушающи-

иммуноферментный, ВЭЖХ с флуоресцентной детекцией, ВЭЖХ с масс-спектрометрической детекцией, которые в настоящее время активно применяются в фармакокинетических исследованиях.

Иммуноферментный метод

Метод иммуноферментного анализа (ИФА) предложен в начале 70-х годов прошлого столетия. Принцип ИФА заключается во взаимодействии специфических белковых ан-

Сравнительная характеристика методов анализа лекарственных средств

Методы Абсолютная чувствительность, г Чувст- витель- ность, баллы Слож- ность, баллы Избира- тельность, баллы Универ- сальность Сум- марная оценка, баллы

Жидкостная хроматография:

УФ-детектор 10-7 3 -3 4 4 8

флуоресцентный детектор 10-8 - 10-9 4 -3 5 2 8

масс-спектрометрический детектор 10-11 - 10-12 5 -5 5 4 9

Иммунологические 10-10 - 10-11 5 -1 4 1 9

Газовая хроматография:

электронозахватный детектор 10-10 5 -4 4 2 7

пламенно-ионизационный детектор 10-8 - 10-9 4 -3 2 4 7

ми; методы детекции, используемые в ВЭЖХ, обладают более высокой специфичностью.

Рассмотрим особенности высокочувствительных методов, позволяющих анализировать нанограммовые количества ЛВ (табл.1):

тител с анализируемым веществом, выступающим в роли антигена. Чем выше концентрация вещества-антигена, тем больше образуется комплексов антиген-антитело. Для количественного анализа комплексообразования при-

меняют два подхода - с предварительным отделением комплекса (гетерогенные методы) или без его отделения (гомогенные методы). В том и другом случае пробу с неизвестной концентрацией анализируемого вещества добавляют к сыворотке, в которой антитело связано в комплекс с меченным аналогом исследуемого вещества, и вещество из анализируемой пробы вытесняется из комплекса. Количество вытесненного меченного аналога пропорционально концентрации вещества в пробе. Определив, сколько меченного аналога оказалось вытеснено из комплекса (или, напротив, осталось связанным), можно рассчитать искомый уровень вещества в пробе. Предварительно проводится калибровка с использованием стандартных растворов (со стандартными концентрациями тестируемого вещества).

Выпускаются наборы реактивов - так называемые диагностикумы (антисыворотка, соединенный с препаратом фермент, субстрат, кофактор, стандартные растворы для калибровки), рассчитанные на 50-200 анализов. Для анализа обычно достаточно 0,05-0,2 мл сыворотки крови больного.

Иммуноэнзимные методы обладают высокой чувствительностью и специфичностью. Диагностикумы сравнительно дешевые и имеют более продолжительные сроки годности, чем наборы для радиоиммунных методов. При использовании ИФА устраняется необходимость отделения комплекса антиген-антитело - достаточно сложной процедуры, с относительно высоким риском ошибки. Им-муноэнзимный метод может выполняться в любой больничной или поликлинической лаборатории; разработаны приборы, обеспечивающие полную автоматизацию анализа.

Простота анализа, высокая чувствительность, точность, воспроизводимость,

умеренная цена аппаратуры и реактивов - все это создает перспективу для широкого внедрения иммунологических методов в медицинскую практику.

Высокоэффективная жидкостная хромотография с флуоресцентной детекцией

При ВЭЖХ детектор генерирует электрический сигнал, сила которого пропорциональна концентрации анализируемого вещества, растворенного в подвижной фазе. В первых жидкостных хроматографах (ионообменных) прошедшая через колонку подвижная фаза с компонентами пробы собиралась в небольшие сосуды, а затем при помощи титрометрии, колориметрии, полярографии и т.д. определялось содержание компонента в этой порции. Иными словами, процессы разделения пробы

и определения ее количественного состава были разделены во времени и пространстве. В современном жидкостном хроматографе эти процессы обеспечиваются одним прибором.

Для детекции компонентов пробы может быть использовано любое физико-химическое свойство подвижной фазы (поглощение или излучение света, электропроводность, показатель преломления и т.д.), которое изменяется при наличии в ней молекул разделяемых соединений. Из существующих 50 физико-химических методов детекции в настоящее время активно используется 5-6.

Чувствительность-важнейшая характеристика детектора. Если определять чувствительность через двойную амплитуду шума нулевой линии, а шум выражать в физических единицах, то чувствительность фотометрического детектора будет выражаться в единицах оптической плотности, рефрактометрического - в единицах показателя преломления, вольтам-перометрического - в амперах, кондуктомет-рического - в сименсах. В фармацевтическом анализе чувствительность выражают в минимальном количестве определяемого вещества. Степень чувствительности различных типов детекторов приведена в табл. 1.

Несмотря на то что в настоящее время 80% хроматографов оснащено в базовой комплектации спектрофотометрическими детекторами, всё большее распространение получает флуоресцентная детекция, особенно при определении концентрации соединений, способных «светиться» под действием возбуждающего излучения. Интенсивность люминесценции пропорциональна интенсивности возбуждающего света. Исследование спектров испускания (флуоресценции и фосфоресценции) - более чувствительный и специфичный метод, чем исследование спектров поглощения.

Спектр флуоресценции вещества во многих случаях представляет собой зеркальное отражение полосы поглощения с наименьшей энергией и обычно располагается рядом с этой полосой с её длинноволновой стороны. Данный метод наиболее удобно применять при исследовании лекарственных препаратов, обладающих собственной флуоресценцией (хлорохин, доксорубицин, доксазо-зин, атенолол, индометацин, пропранолол, тетрациклины, хинидин и др.). Некоторые ЛВ можно сравнительно легко превратить во флуоресцирующие соединения (процесс дериватизации), например гидрокортизон (обработка серной кислотой), меперидин (конденсация с формальдегидом), 6-меркап-топурин и метотрексат (окисление перманганатом калия). Другие препараты с активными функциональными группами можно конденсировать с флуоресцирующими реа-

гентами - флуорескамином (хлордеазепок-сид, новокаинамид, сульфаниламиды и др.), 7-нитробензо-2,1,3-оксадиазолом (пропокси-фен и др.) и т.д. Вместе с тем необходимо отметить, что при высокой чувствительности и селективности флуоресцентные методы детектирования ограничены кругом ЛВ, имеющих естественную флуоресценцию, а процесс дериватизации при количественном анализе требует больших затрат.

Высокоэффективная жидкостная хроматография с масс-спектрометрической детекцией

Высокочувствительным вариантом современного детектора для ВЭЖХ, применяемого для фармакокинетических исследований, является масс-спектрометрометр. Масс-спектрометрический детектор позволяет значительно сократить время анализа, в частности за счет исключения подготовительной стадии (экстракции). Данный метод дает возможность одновременно идентифицировать несколько веществ, и это исключает ошибки, связанные с наличием неразделяемых компонентов.

Масс-спектрометрия - один из наиболее перспективных методов физико-химического анализа лекарственных средств. Традиционно органическая масс-спектрометрия используется для решения двух основных проблем: идентификации веществ и изучения фрагментации ионизированных молекул в газовой фазе. Соединение масс-спектрометра с жидкостным хроматографом значительно расширило возможности классического метода. С появлением новых методов ионизации, таких как «электроспрей» (ESI - англ. electrospray ionization) - ионизация в электрическом поле при атмосферном давлении) и «МАЛДИ» - ионизация лазерной десорбцией, список молекул, которые могут быть изучены данным методом, значительно расширился.

В настоящее время комбинация ВЭЖХ и масс-спектрометрического детектора с «электроспреем» нашла широкое распространение в исследовании фармакокинетики и биоэквивалентности лекарственных препаратов . Первоначально метод ESI был разработан под руководством Л.Н. Галль , а в 2002 г. Д. Фен-ну и К. Танаке была присуждена Нобелевская премия за разработку методов индентифика-ции и структурного анализа биологических макромолекул и, в частности, методов масс-спектрометрического анализа биологических макромолекул. В механизме образования ионизированных частиц выделяют три стадии. Первая - образование заряженных капель на срезе капилляра. Посредством приложенного напряжения происходит перераспределение заряда в растворе, положительные ионы скап-

ливаются у выхода. При сильном приложенном поле (3-5 кВ) образуется струя из вершины конуса, которая далее разлетается на мелкие капли. Вторая стадия - постепенное сокращение размеров заряженных капель за счет испарения растворителя и последующего распада капель вплоть до получения истинных ионов. Заряженные капли движутся сквозь атмосферу по направлению к противоположному электроду. Третья стадия - повторяющиеся циклы разделения и уменьшения объема капель до полного испарения растворителя и образования ионов в газовой фазе.

Современные ЖХ-МС системы (LC/MS - англ. liquid chromatography/mass-spectrometry) позволяют регистрировать полный ионный ток (TIC - англ. total ion current), проводить контроль заданных ионов (SIM - англ. selected ion monitoring) и контроль заданных реакций селективное мониторирование реакции (SRM - англ. selected reaction monitoring).

При анализе полного ионного тока (TIC) получают данные обо всех соединениях, последовательно выходящих из хроматографической колонки. Масс-хроматограммы напоминают хроматограммы с УФ-детекцией, при этом площадь под пиком соответствует количеству вещества. При определении заданных ионов (SIM) оператор может ограничить диапазон детекции необходимых соединений выделив, например, минорные вещества. Наибольшей чувствительностью и специфичностью обладает SRM-метод, когда регистрация ионного тока идет по одному выбранному иону, характерному для исследуемого соединения (при ESI-ионизации и регистрации положительных ионов это, как правило, - молекулярный ион МН+).

В недавно опубликованных работах обсуждается возможность количественного анализа органических веществ в биологических объектах без хроматографического разделения с помощью мультионной детекции и внутреннего контроля в виде меченного дейтерием аналога . В частности, для молекул липидной природы определен диапазон концентраций (от пико- до наномолей), при котором авторы наблюдали линейную зависимость интенсивности ионного тока от концентрации вещества. Увеличение концентрации соединений в растворе приводило к ион-молекулярным взаимодействиям в процессе ионизации и нарушению линейности.

Описан метод количественного определения простагландинов и полиненасыщен-ных жирных кислот с использованием электроспрей-ионизации - масс-спектрометрии без хроматографического разделения с применением внутреннего стандарта и регистрации отрицательных ионов . В работе

Ю.О. Каратассо и И. В. Логуновой чувствительность масс-спектрометрии при исследовании потенциального антиаритмического средства составила 3 нг/0,5 мл плазмы крови.

При выборе аналитического метода необходимо иметь в виду, что использование ИФА лимитируется наличием обязательных реактивов, флуоресцентной детекции, необходимостью собственной флуоресценции у исследуемого соединения. Хотя при масс-спектрометрической детекции вышеуказанные ограничения несущественны, однако стоимость оборудования на сегодняшний день остается достаточно высокой, и данный вид анализа требует специальных навыков.

ЛИТЕРАТУРА

1. Александров М.Л., Галль Л.Н., Краснов Н.В. и др. Экстракция ионов из растворов при атмосферном давлении - новый метод масс-спектрометрического анализа // Докл. Акад. наук СССР. - 1984. - Т.277. - № 2. -

2. Каратассо Ю.О, Логунова И. В., Сергеева М. Г. и др. Количественный анализ лекарственных препаратов в плазме крови с использованием электроспрей ионизации - масс-спектрометрии без хроматографического разделения // Хим. фарм. журн. - 2007. - № 4. - С. 161-166.

3. Каратассо Ю.О, Алёшин С.Е., Попова Н.В. и др. Количественный анализ простагландинов и полине-насыщенных жирных кислот методом масс-спектро-метрии с ионизацией электрораспылением // Масс-спектрометрия. -2007. - Т.4. - В.3. - С. 173-178.

4. Холодов Л.Е, Яковлев В.П. Клиническая фармакокинетика. - М.:Медицина, 1985. - 463 с.

5. Covey T.R., Lee E.D., Henion J.D. High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples // Anal. Chem. - 1986. - Vol. 58 (12). - P. 2453-2460.

6. Conference report on analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies // J. Pharmac. sci. - 1992. - Vol.81. - P. 309-312.

7. De Long C.J., Baker P.R.S., SamuelM. et al. Molecular species composition of rat liver phospholipids by ESI-MS/ MS: The effect of chromatography//J. Lipid Res. - 2001. - Vol. 42. - P. 1959-1968.

8. Electrospray Ionization Mass Spectrometry. Ed. R.B.Cole // Wiley. - New York, 1997.

9. Han X., Yang K., Yang J. et al. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids // Am. Soc. Mass Spectrom. - 2006. - Vol. 17(2). - P. 264-274.

10. Koivusalo M., Haimi P., Heikinheimo L. et al. Quantitative determination of phospholipids compositions by ESI-MS: Effects of acyl chain length, unsaturation, and lipid concentration on instrument response // J. Lipid Res. - 2001. - Vol. 42. - P. 663-672.

11. Lee M.S., Kerns E.H. LC/MS applications in drug discovery//Mass Spectrom. Rev. - 1999. - Vol. 18 (3-4). - P. 187-279.

Поступила 28.05.10.

ANALYSIS OF DRUGS IN PHARMACOKINETIC STUDIES

D.V. Reikhart, V.V. Chistyakov

Conducted was a review of sensitive and specific analytical methods for studying the pharmacokinetics of drugs. Shown were the advantages and limitations of immune-enzyme analysis, of high performance liquid chromatography with fluorescence and mass spectrometric detection. The usage of a method in the evaluation of the pharmacokinetics of drugs in each case should be determined by the structure of the compound and the laboratory equipment.

Key words: liquid chromatography, fluorescence and mass spectrometric detection, immune-enzyme analysis, pharmacokinetics.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РФ

Анализ сложных лекарственных форм

Ч. 1. Лекарственные формы аптечного производства

Учебное пособие

Для самостоятельной подготовки и руководство к лабораторным занятиям по фармацевтической химии для студентов фармацевтических факультетов вузов очной и заочной формы обучения

УДК 615.07 (071) ББК Р 282 Е 732

Е.В. Ермилова, В.В. Дудко, Т.В. Кадырова Анализ сложных лекарственных форм Ч. 1. Лекарственные формы аптечного производства: Уч. пособие. – Томск: Изд. 20012 . – 169 с.

Пособие содержит методики анализа лекарственных форм аптечного производства. В нем рассмотрены терминологии, классификации лекарственных форм, приведены нормативные документы, контролирующие качество лекарственных средств аптечного производства, указаны особенности внутриаптечного экспресс-анализа; подробно излагаются основные этапы анализа лекарственных форм, при этом, особое внимание уделяется химическому контролю.

Основная часть пособия посвящена изложению материала по анализу лекарственных форм: жидких (микстуры, стерильные) и твердых (порошки), приведены многочисленные примеры.

В приложение вынесены выписки из приказов, рефрактометрические таблицы, информация по индикаторам, формы отчетных журналов.

Для студентов фармацевтических факультетов высших учебных заведений.

Табл. 21. Илл. 27. Библиогр.: 18 назв.

Предисловие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации. . . . . . . . . . . . . . . . ………. 5 1.1.1. Термины, характеризующие лекарственные средства.. ….5 1.1.2. Термины, характеризующие лекарственные формы. . . ….5 1.2. Классификация лекарственных форм. . . . . . . . . . . . . . . . . . . . . . 7

1.3. Нормативные документы и требования к качеству лекарственных средств аптечного производства. . . . . . . . . . . . . …...7 1.4. Особенности экспресс-анализа лекарственных средств аптечного производства. . . . . . . . . . . . . . . . . . . . . . . . . . ……………8

1.4.1. Особенности определения подлинности экспресс-методом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………..9

1.4.2. Особенности количественного экспресс-анализа. . . . . . . . …9

2.1. Органолептический и физический контроль. . . . . . . . . . . . . . . . . . 10 2.1.1. Органолептический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1.2. Физический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.Химический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1.Испытания на подлинность. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.2.. Количественный анализ. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 14

2.2.2.1. Способы выражения концентраций. . . . . . . . . . . . . . . . .15 2.2.2.2. Методы титриметрического анализа. . . . . . . . . . . . . . . 16 2.2.2.3. Расчет массы (объема) лекарственной формы и объема титранта для анализа. . . . . . . . . . . . . . . . . . . . . 17

2.2.2.4. Обработка результатов измерений. . . . . . . . . . . . . . . . . .19 2.2.2.5. Оформление результатов анализа. . . . . . . . . . . . . . . . . . 32

III. АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

Жидкие лекарственные формы . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.1. Анализ микстур. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .33 3.2. Анализ стерильных лекарственных форм. . . . . . . . . . . . . . . . . . . . .59

Твердые лекарственные формы

3.3. Порошки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Вопросы контроля самоподготовки. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Тестовый контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Ответы тестового контроля. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

ПРИЛОЖЕНИЯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Предисловие

Основой для написания учебного пособия явилась программа по фармацевтической химии для студентов фармацевтических вузов (факультетов)

М.: ГОУ ВУНМЦ, 2003 г.

Одной из составных частей фармацевтического анализа является анализ лекарственных средств аптечного и заводского производства, осуществляемый методами фармакопейного анализа, по требованиям различных указаний,

пособий, инструкций и т. п.

Учебное пособие посвящено методам исследования лекарственных форм

(микстуры, стерильные, порошки), изготавливаемых в аптеке, где используются все виды внутриаптечного контроля, но самым действенным является химический контроль, который дает возможность проверить соответствие изготовленной лекарственной формы рецептурной прописи, как по подлинности, так и по количественному содержанию. Приведенные методики определения подлинности и количественного содержания составлены таким образом, чтобы использовать оптимальные методы исследования, и на анализ затрачивалось минимальное количество лекарственного средства.

В основной части приведены многочисленные примеры использования рефрактометрии в количественном анализе лекарственных средств, так как этот метод широко используется в аптечной практике.

Предложенное учебное пособие способствует развитию у студентов химического аналитического мышления.

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации

1.1.1. Термины, характеризующие лекарственные средства

Лекарственные средства – вещества, применяемые для профилактики,

диагностики, лечения болезни, предотвращения беременности, полученные из

биологических технологий.

Лекарственное вещество - лекарственное средство, представляющее собой индивидуальное химическое соединение или биологическое вещество.

Лекарственный препарат - лекарственное средство в виде определенной

лекарственной формы.

Лекарственная форма - придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при котором достигается необходимый лечебный эффект.

1.1.2. Термины, характеризующие лекарственные формы

Порошки твердая лекарственная форма для внутреннего и наружного применения, состоящая из одного или нескольких измельченных веществ и обладающая свойством сыпучести.

Таблетки – дозированная лекарственная форма, получаемая прессованием лекарственных или смеси лекарственных и вспомогательных веществ, предназначенная для внутреннего, наружного, сублингвального,

имплантационного или парентерального применения.

Капсулы – дозированная лекарственная форма, состоящая из лекарственного средства, заключенного в оболочку.

Мази мягкая лекарственная форма, предназначенная для нанесения на кожу, раны или слизистые оболочки и состоящая из лекарственного вещества и основы.

Пасты - мази с содержанием порошкообразных веществ свыше 20-25%.

Суппозитории дозированная лекарственная форма, твердая при комнатной температуре и расплавляющаяся при температуре тела.

Растворы жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ, предназначенных для инъекционного, внутреннего или наружного применения.

Капли жидкая лекарственная форма, предназначенная для внутреннего или наружного применения, дозируемая каплями.

Суспензии жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде.

Эмульсии однородная по внешнему виду лекарственная форма,

состоящая из взаимно нерастворимых тонко диспергированных жидкостей,

предназначенная для внутреннего, наружного или парентерального применения.

Экстракты – концентрированные извлечения из лекарственного растительного сырья. Различают жидкие экстракты (Extracta fluida); густые экстракты (Extracta spissa) – вязкие массы с содержанием влаги не более 25%;

сухие экстракты (Extracta sicca) – сыпучие массы с содержанием влаги не более

Настои лекарственная форма, представляющая собой водное извлечение из лекарственного растительного сырья или водный раствор сухих или жидких экстрактов (концентратов).

Отвары настои, отличающиеся режимом экстракции.

Аэрозоли лекарственная форма, в которой лекарственные и вспомогательные вещества находятся под давлением газа-вытеснителя

(пропеллента) в аэрозольном баллоне, герметически закрытом клапаном.

1.2. Классификация лекарственных форм

Классификацию лекарственных форм проводят в зависимости от:

1.2.1. Агрегатного состояния Твердые: порошки, таблетки, драже, гранулы и др.

Жидкие : истинные и коллоидные растворы, капли, суспензии, эмульсии,

линименты, и др.

Мягкие : мази, суппозитории, пилюли, капсулы и др.

Газообразные : аэрозоли, газы.

1.2.2. Количества лекарственных веществ

Однокомпонентные

Многокомпонентные

1.2.3. Места изготовления

Заводского

Аптечного

1.2.4. Способа изготовления

Растворы для инъекций Микстуры Глазные капли Отвары Настои Аэрозоли Настои

Гомеопатические средства и т. д.

1.3. Нормативные документы и требования к качеству

лекарственных средств аптечного производства

Вся производственная деятельность аптеки должна быть направлена на обеспечение высококачественного изготовления лекарственных средств.

Одним из важнейших факторов, определяющих качество лекарственных средств, изготовляемых в аптеке, является организация внутриаптечного контроля.

Внутриаптечный контроль – это комплекс мероприятий, направленных на своевременное выявление и предупреждение ошибок, возникающих в процессе изготовления, оформления и отпуска лекарств.

Лекарства аптечного производства подвергаются нескольким видам контроля в зависимости от характера лекарственной формы.

Система внутриаптечного контроля качества лекарственных средств предусматривает проведение предупредительных мероприятий, приемочного, органолептического, письменного, опросного, физического, химического контроля и контроля при отпуске.

Согласно инструкции Министерства здравоохранения Российской Федерации «О контроле качества лекарственных средств, изготовляемых в аптеках» (Приказ № 214 от 16 июля 1997 г.), все лекарственные средства подвергаются внутриаптечному контролю: органолептическому, письменному и контролю при отпуске – обязательно, опросному и физическому – выборочно, а химическому – в соответствии с пунктом 8 данного приказа (смотри приложение).

1.4. Особенности экспресс-анализа лекарственных средств

аптечного производства

Необходимость внутриаптечного контроля обусловлена соответствующими высокими требованиями к качеству лекарственных средств, изготовляемых в аптеках.

Поскольку изготовление и отпуск лекарственных препаратов в аптеках ограничивается сжатыми сроками, оценку их качества осуществляют экспресс– методами.

Основные требования, предъявляемые к экспресс-анализу, расход минимальных количеств лекарственных средств при достаточной точности и чувствительности, простота и быстрота выполнения по возможности без разделения ингредиентов, возможность проведения анализа без изъятия приготовленного лекарственного препарата.

Если не удается выполнить анализ без разделения компонентов, то используют те же принципы разделения, что и при макро-анализе.

1.4.1. Особенности определения подлинности экспресс – методом

Основное отличие определения подлинности экспресс - методом от макро-анализа заключается в использовании малых количеств исследуемых смесей без их разделения.

Анализ выполняют капельным методом в микро-пробирках, фарфоровых чашках, на часовых стеклах, при этом расходуется от 0,001 до 0,01 г порошка или 1 5 капель исследуемой жидкости.

Для упрощения анализа достаточно проведение одной реакции для вещества, причем наиболее простой, например, для атропина сульфата достаточно подтвердить наличие сульфат-иона, для папаверина гидрохлорида – хлорид - иона классическими методами.

1.4.2. Особенности количественного экспресс-анализа

Количественный анализ может быть выполнен титриметрическими или физико-химическими методами.

Титриметрический экспресс-анализ отличается от макро - методов расходом меньших количеств анализируемых препаратов: 0,05 0,1 г порошка или 0,5 2 мл раствора, причем точную массу порошка можно отвешивать на ручных весах; для повышения точности можно использовать разбавленные растворы титрантов: 0,01 0,02 моль/л.

Навеску порошка или объем жидкой лекарственной формы берут с таким расчетом, чтобы на определение расходовалось 1 3 мл раствора титранта.

Из физико-химических методов в аптечной практике широко используется экономичный метод рефрактометрии при анализе концентратов,

полуфабрикатов и других лекарственных форм.

II. ОСНОВНЫЕ ЭТАПЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА

2.1. Органолептический и физический контроль

2.1.1. Органолептический контроль

Органолептический контроль заключается в проверке лекарственной формы по следующим показателям: внешний вид («Описание»), запах,

однородность, отсутствие механических примесей. На вкус проверяются выборочно, а лекарственные формы, приготовленные для детей – все.

Однородность порошков, гомеопатических тритураций, мазей, пилюль,

суппозиториев проверяется до разделения массы на дозы в соответствии с требованиями действующей Государственной фармакопеи. Проверка осуществляется выборочно у каждого фармацевта в течение рабочего дня с учетом видов лекарственных форм. Результаты органолептического контроля регистрируются в журнале.

2.1.2. Физический контроль

Физический контроль заключается в проверке общей массы или объема лекарственной формы, количества и массы отдельных доз (не менее трех доз),

входящих в данную лекарственную форму.

При этом проверяются:

Каждая серия фасовки или внутриаптечной заготовки в количестве не менее трех упаковок;

Лекарственные формы, изготовленные по индивидуальным рецептам (требованиям), выборочно в течение рабочего дня с учетом всех видов лекарственных форм, но не менее 3% от количества лекарственных форм, изготовленных за день;