Методы индукции и дедукции в философии. Значение «индукция в философии. Становление философии. Основные направления, школы философии и этапы ее исторического развития

В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.

История развития и опыты Фарадея

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Рис. 1. Схема опыта Фарадея

На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Что мы узнали?

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 271.

наведение) - движение знания от отдельного - ко всеобщему, от особенного - к закономерному. Противоположностью индукции является дедукция. Индукция как способ исследования обосновывается и развивается Бэконом.

Отличное определение

Неполное определение ↓

ИНДУКЦИЯ

от лат. inductio - наведение), вид обобщения, связанный с предвосхищением результатов наблюдений и экспериментов на основе данных опыта. В И. данные опыта «наводят» на общее, или индуцируют общее, поэтому индуктивные обобщения обычно рассматривают как опытные истины или эмпирич. законы. По отношению к бесконечности охватываемых законом явлений фактич. Опыт всегда незакончен и неполон. Эта особенность опыта входит в содержание И., делая ее проблематичной: нельзя с достоверностью говорить об истинности индуктивного обобщения или о его логич. обоснованности, поскольку никакое конечное число подтверждающих наблюдений «... само по себе никогда не может доказать достаточным образом необходимость» (Э нгельс Ф., см. Маркс К. и Энгельс Ф., Соч., т. 20, с. 544). В этом смысле И. есть предвосхищение основания (petitio principii), на к-рое идут ради обобщений, принимая И. как истояник предположит. суждений - гипотез, к-рые затем проверяются или обосновываются в системе более «надежных» принципов.

Объективной основой И. служат закономерности природы и общества; субъективной - познаваемость этих закономерностей с помощью логич. или статистич. схем «индуктивных умозаключений». Логич. схемы применяются в предположении, что явления (результаты наблюдений или экспериментов) не являются случайными; статистические, напротив, основываются на предположении о «слуяайности явлений». Статистич. гипотезы - это предположения о теоретич. законах распределения случайных признаков или оценки параметров, определяющих предполагаемые распределения в изуяаемых множествах. Задачей статистич. И. являются оценка индуктивных гипотез как функций выборочных характеристик и принятие или отклонение гипотез на основании этих характеристик.

Исторически первой схемой логич. И. является перечислительная (популярная) И. Она возникает, когда в частных случаях усматривается к.-л. регулярность (напр., повторяемость свойств, отношений и пр.), позволяющая построить достаточно представит. цепь единичных суждений, констатирующую эту регулярность. При отсутствии противоречащих примеров такая цепь становится формальным основанием для общего заключения (индуктивной гипотезы): то, что верно в n наблюдавшихся случаях, верно в следующем или во всех случаях, сходных с ними. Когда число всех сходных случаев совпадает с числом рассмотренных, индуктивное обобщение является исчерпывающим отчетом о фактах. Такую И. называют п о л н о й, или совершенной, поскольку она выразима схемой дедуктивного вывода. Если же число сходных случаев конечнонеобозримо или бесконечно, говорят о неполной И. Неполную И. называют н а у ч н о й, если, кроме формального, дается и реальное основание И. путем доказательства неслучайности наблюдаемой регулярности, напр. путем указания причинно-следственных отношений (динамич. закономерностей), порождающих эту регулярность. Схемы умозаключений, предлагаемые логикой И. для «улавливания» причинно-следств. отношений, называют индуктивными методами Бэкона - Милля; применение этих схем предполагает, в свою очередь, достаточно сильные абстракции, обоснование к-рых равносильно обоснованию неполной И.

Общепринятых способов обоснования логич. И. пока нет, как нет их и для статистич. схем, к-рые оправдываются только тем, что редко дают ошибочные результаты. Поскольку И. сравнима с принятием решения в условиях неопределенности, вероятностные критерии играют заметную роль в структуре т. н. индуктивного поведения. Напр., индуктивную гипотезу принимают, если известен факт, индуцирующий ее с большой вероятностью, и отклоняют, если такой факт маловероятен. Но вероятностные критерии не являются единственными. Статистикой подтверждающих примеров нельзя, напр., оправдать принятие естеств.-науч. законов, полученных путем И., априорная вероятность к-рых пренебрежимо мала. Это, однако, не противоречит вероятностному подходу к И., а только подтверждает его правило: чем меньше априорная вероятность «работающей» гипотезы, тем больше шансов за ое «неслучайность», за то, что она адекватно отражает состояние природы. Особенно убеждает в этом возможность включить индуктивный закон в известную систему знания, доказать его совместимость с этой системой или его выводимость в ней. Иногда удается и большее - абстрактным рассуждением показать, что, хотя обобщение сделано на частных примерах, истинность его от этих и аналогичных примеров не зависит, если только верны нек-рые др. рассуждения. Последние могут иметь большую силу убедительности или даже быть общезначимыми, что ведет уже к чисто логич. обоснованию И. Именно так обстоит дело, напр., в математике, где неполная И. проверяется или обосновывается методом математической И.

Два примера индуктивных умозаключений:

Енисей течет с юга на север; Лена течет с юга на север; Обь и Иртыш текут с юга на север.

Енисей, Лена, Обь, Иртыш - крупные реки Сибири. Все крупные реки Сибири текут с юга на север.

Железо - металл; медь - металл; калий - металл; кальций -

металл; рутений - металл; уран - металл.

Железо, медь, калий, кальций, рутений, уран - химические

элементы.

Все химические элементы - металлы.

Посылки обоих этих умозаключений истинны, но заключение первого истинно, а второго ложно.

Понятие дедукции (дедуктивного умозаключения) не является вполне ясным. И. (индуктивное умозаключение) определяется, в сущности, как "недедукция" и представляет собой еще менее ясное понятие. Можно темные менее указать относительно твердое "ядро" индуктивных способов рассуждения. В него входят, в частности, неполная И., индуктивные методы установления причинных связей, аналогия, т.наз. "перевернутые" законы логики и др.

Неполная И. представляет собой рассуждение, имеющее следующую структуру:

S1 есть Р, S2 есть Р,

Все S1, S2,..., Sn есть S.

Все S есть Р.

Посылки данного рассуждения говорят о том, что предметам S1, S2,..., Sn, не исчерпывающим всех предметов класса S, присущ признак Р и что все перечисленные предметы S1, S2, ..., Sn принадлежат классу S. В заключении утверждается, что все S имеют признак Р. Напр.:

Железо ковко.

Золото ковко.

Свинец ковок.

Железо, золото и свинец - металлы.

Все металлы ковки.

Здесь из знания лишь некоторых предметов класса металлов делается общий вывод, относящийся ко всем предметам этого класса.

Индуктивные обобщения широко применяются в эмпирической аргументации. Их убедительность зависит от числа приводимых в подтверждение случаев. Чем обширнее база индукции, тем более правдоподобным является индуктивное заключение. Но иногда и при достаточно большом числе подтверждений индуктивное обобщение оказывается все-таки ошибочным. Напр.:

Алюминий - твердое тело.

Железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец - твердые тела.

Алюминий, железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец - металлы.

Все металлы - твердые тела.

Все посылки этого умозаключения истинны, но его общее заключение ложно, поскольку ртуть - единственная из металлов - жидкость.

Поспешное обобщение, т. е. обобщение без достаточных на то оснований, - обычная ошибка в индуктивных умозаключениях и, соответственно, в индуктивной аргументации. Индуктивные обобщения всегда требуют известной осмотрительности и осторожности. Их убедительная сила невелика, особенно если база индукции незначительна ("Софокл - драматург; Шекспир -драматург; Софокл и Шекспир - люди; следовательно, каждый человек - драматург"). Индуктивные обобщения хороши как средство поиска предположений (гипотез), но не как средство подтверждения каких-то предположений и аргументации в их поддержку.

Начало систематическому изучению И. было положено в начале XVII в. Ф. Бэконом. Уже он весьма скептически относился к неполной И., опирающейся на простое перечисление подтверждающих примеров.

Этой "детской вещи" Бэкон противопоставлял описанные им особые индуктивные принципы установления причинных связей. Он даже полагал, что предлагаемый им индуктивный путь открытия знаний, являющийся очень простой, чуть ли не механической процедурой, "почти уравнивает дарования и мало что оставляет их превосходству...". Продолжая его мысль, можно сказать, что он надеялся едва ли не на создание особой "индуктивной машины". Вводя в такого рода вычислительную машину все предложения, относящиеся к наблюдениям, мы получали бы на выходе точную систему законов, объясняющих эти наблюдения.

Программа Бэкона была, разумеется, чистой утопией. Никакая "индуктивная машина", перерабатывающая факты в новые законы и теории, невозможна. И., ведущая от единичных утверждений к общим, дает только вероятное, а не достоверное знание.

Высказывалось предположение, что все "перевернутые" законы логики могут быть отнесены к схемам индуктивного умозаключения. Под "перевернутыми" законами имеются в виду формулы, получаемые из имеющих форму импликации (условного утверждения) законов логики путем перемены мест основания и следствия. К примеру, поскольку выражение "Если р и q, то р" есть закон логики, то выражение "Если р, то р и q" есть схема индуктивного умозаключения. Аналогично для "Если р, то р или q" и "Если р или q, то р" и т. п. Сходно для законов модальной логики: поскольку выражения "Если р, то возможно р" и "Если необходимо р, то р" - законы логики, выражения "Если возможно р, то р" и "Если р, то необходимо р" являются схемами индуктивного рассуждения и т. п. Законов логики бесконечно много. Это означает, что и схем индуктивного рассуждения (индуктивной аргументации) бесконечное число.

Предположение, что "перевернутые" законы логики представляют собой схемы индуктивного рассуждения, наталкивается на серьезные возражения: некоторые "перевернутые" законы остаются законами дедуктивной логики; ряд "перевернутых" законов, при истолковании их как схем И., звучит весьма парадоксально. "Перевернутые" законы логики не исчерпывают, конечно, всех возможных схем

Отличное определение

Неполное определение ↓

Индукция

По природе своей индукция и дедукция являются частными случаями умозаключения.

Умозаключение - логическая операция, в результате которой из одного или нескольких принятых утверждений появляется новое утверждение - заключение (вывод).

Индукция (лат. inductio -- наведение) -- процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.

Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.

Различают полную индукцию -- метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию -- наблюдения за отдельными частными случаями наводят на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции.

История появления индукции

Термин впервые встречается у Сократа. Но индукция Сократа имеет мало общего с современной индукцией. Сократ под индукцией подразумевает нахождение общего определения понятия путём сравнения частных случаев и исключения ложных, слишком узких определений.

Аристотель указал на особенности индуктивного умозаключения. Он определяет его как восхождение от частного к общему. Он отличал полную индукцию от неполной, указал на роль индукции при образовании первых принципов, но не выяснил основы неполной индукции и её права. Он рассматривал её как способ умозаключения, противоположный силлогизму. Силлогизм, по мнению Аристотеля, указывает посредством среднего понятия на принадлежность высшего понятия третьему, а индукция третьим понятием показывает принадлежность высшего среднему.

В эпоху Возрождения началась борьба против Аристотеля и силлогистического метода, и вместе с тем начали рекомендовать индуктивный метод как единственно плодотворный в естествознании и противоположный силлогистическому. В Бэконе обыкновенно видят родоначальника современной И., хотя справедливость требует упомянуть и о его предшественниках, например Леонардо да Винчи и др. Восхваляя И., Бэкон отрицает значение силлогизма. По методу Бэкона нельзя сделать нового заключения, не подводя исследуемый предмет под общие суждения, то есть не прибегая к силлогизму. Итак, Бэкону не удалось установление И. как особого метода, противоположного дедуктивному.

Дальнейший шаг сделан Дж. Ст. Миллем. Всякий силлогизм, по мнению Милля, заключает в себе; всякое силлогистическое заключение идёт в действительности от частного к частному, а не от общего к частному. Эта критика Милля несправедлива, ибо от частного к частному мы не можем заключать, не введя добавочного общего положения о сходстве частных случаев между собой. Рассматривая индукцию, Милль, во-первых, задаётся вопросом об основании или праве на индуктивное заключение и видит это право в идее однообразного порядка явлений, и, во-вторых, сводит все способы умозаключения в И. к четырём основным: метод согласия (если два или более случая исследуемого явления сходятся в одном только обстоятельстве, то это обстоятельство и есть причина или часть причины исследуемого явления, метод различия (если случай, в котором встречается исследуемое явление, и случай, в котором оно не встречается, совершенно сходны во всех подробностях, за исключением исследуемой, то обстоятельство, встречающееся в первом случае и отсутствующее во втором, и есть причина или часть причины исследуемого явления); метод остатков (если в исследуемом явлении часть обстоятельств может быть объяснена определёнными причинами, то оставшаяся часть явления объясняется из оставшихся предшествующих фактов) и метод соответствующих изменений (если вслед за изменением одного явления замечается изменение другого, то мы можем заключить о причинной связи между ними). Характерно, что эти методы при ближайшем рассмотрении оказываются дедуктивными способами; напр. метод остатков не представляет собой ничего иного, как определение путём исключения. Аристотель, Бэкон и Милль представляют собой главные моменты развития учения об индукции; только ради детальной разработки некоторых вопросов приходится обращать внимание на Клода Бернара («Введение в экспериментальную медицину»), на Эстерлена («Medicinische Logik»), Гершеля, Либиха, Вэвеля, Апельта и др.

ДЕДУКТИВНЫЙ И ИНДУКТИВНЫЙ МЕТОДЫ

Среди общелогических методов познания наиболее распространенными являются дедуктивный и индуктивный методы. Известно, что дедукция и индукция – это важнейшие виды умозаключений, играющие огромную роль в процессе получения новых знаний на основе выведения из ранее полученных. Однако эти формы мышления принято рассматривать также и как особые методы, приемы познания.

Цель нашей работы– на основе сущности дедукции и индукции обосновать их единство, неразрывную связь и тем самым показать несостоятельность попыток противопоставления дедукции и индукции, преувеличения роли одного из этих методов за счет умаления роли другого .

Раскроем сущность этих методов познания.

Дедукция (от лат. deductio – выведение) – переход в процессе познания от общего знания о некотором классе предметов и явлений к знанию частному и единичному . В дедукции общее знание служит исходным пунктом рассуждения, и это общее знание предполагается «готовым», существующим. Заметим, что дедукция может осуществляться также от частного к частному или от общего к общему. Особенность дедукции как метода познания, состоит в том, что истинность ее посылок гарантирует истинность заключения. Поэтому дедукция обладает огромной силой убеждения и широко применяется не только для доказательства теорем в математике, но и всюду, где необходимы достоверные знания.

Индукция (от лат. inductio – наведение) – это переход в процессе познания от частного знания к общему ; от знания меньшей степени общности к знанию большей степени общности. Иными словами, – это метод исследования, познания, связанный с обобщением результатов наблюдений и экспериментов. Основная функция индукции в процессе познания – получение общих суждений, в качестве которых могут выступать эмпирические и теоретические законы, гипотезы, обобщения. В индукции раскрывается «механизм» возникновения общего знания. Особенностью индукции является ее вероятностный характер, т.е. при истинности исходных посылок заключение индукции только вероятно истинно и в конечном результате может оказаться как истинным, так и ложным. Таким образом, индукция не гарантирует достижение истины, а лишь «наводит» на нее, т.е. помогает искать истину.

Анализ - процесс мысленного, а нередко и реального расчленения предмета, явления на части (признаки, свойства, отношения) с целью их всестороннего изучения. Процедурой, обратной анализу, является синтез. Синтез - это соединение выделенных в ходе анализа сторон предмета в единое целое. Анализ и синтез явл-ся наиболее элементарными и простыми приемами познания, которые лежат в самом фундаменте чел-кого мышления.

В процессе исследования часто приходится, опираясь на уже имеющи­еся знания, делать заключения о неизвестном. Переходя от известного к не­известному, можно либо использовать знания об отдельных фактах, либо, на­оборот, опираясь на общие принципы, делать заключения о частных явлениях.

что такое в философии индукция и дидукция

  1. Индукция (от лат. inductio — наведение, побуждение) есть формальнологическое умозаключение, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного к общему.

    Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Наряду с другими методами познания, индуктивный метод сыграл важную роль в открытии некоторых законов природы (всемирного тяготения, атмосферного давления, теплового расширения тел и Др.) .

    Индукция, используемая в научном познании (научная индукция) , может реализовываться в виде следующих методов:

    1. Метод единственного сходства (во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие — различны; следовательно, этот единственный сходный фактор есть причина данного явления) .

    2. Метод единственного различия (если обстоятельства возникновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления) .

    3. Соединенный метод сходства и различия (представляет собой комбинацию двух вышеуказанных методов) .

    4. Метод сопутствующих изменений (если определенные изменения одного явления всякий раз влекут за собой некоторые изменения в другом явлении, то отсюда вытекает вывод о причинной связи этих явлений) .

    5. Метод остатков (если сложное явление вызывается многофакторной причиной, причем некоторые из этих факторов известны как причина какой-то части данного явления, то отсюда следует вывод: причина другой части явления — остальные факторы, входящие в общую причину этого явления) .

    Родоначальником классического индуктивного метода познания является Ф. Бэкон. Но он трактовал индукцию чрезвычайно широко, считал ее важнейшим методом открытия новых истин в науке, главным средством научного познания природы.

    На самом же деле вышеуказанные методы научной индукции служат главным образом для нахождения эмпирических зависимостей между экспериментально наблюдаемыми свойствами объектов и явлений.

    Дедукция (от лат. deductio — выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному.

    Но особенно большое познавательное значение дедукции проявляется в том случае, когда в качестве общей посылки выступает не просто индуктивное обобщение, а какое-то гипотетическое предположение, например новая научная идея. В этом случае дедукция является отправной точкой зарождения новой теоретической системы. Созданное таким путем теоретическое знание предопределяет дальнейший ход эмпирических исследований и направляет построение новых индуктивных обобщений.

    Получение новых знаний посредством дедукции существует во всех естественных науках, но особенно большое значение дедуктивный метод имеет в математике. Оперируя математическими абстракциями и строя свои рассуждения на весьма общих положениях, математики вынуждены чаще всего пользоваться дедукцией. И математика является, пожалуй, единственной собственно дедуктивной наукой.

    В науке Нового времени пропагандистом дедуктивного метода познания был видный математик и философ Р. Декарт.

    Но, несмотря на имевшие место в истории науки и философии попытки оторвать индукцию от дедукции, противопоставить их в реальном процессе научного познания, эти два метода не применяются как изолированные, обособленные друг от друга. Каждый из них используется на соответствующем этапе познавательного процесса.

  2. Это методы познания мира.
    Кратко:
    * дедукция — от общего к частному;
    * индукция — от частного к общему.

    И вообще, есть Википедия.