Одз для всех типов уравнений. Что такое ОДЗ? Дробные уравнения. ОДЗ

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные "сложные" функции - это всего лишь их сочетания и комбинации.

1. Дробная функция - ограничение на знаменатель.

2. Корень четной степени - ограничение на подкоренное выражение.

3. Логарифмы - ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) - ограничение на аргумент.

Для тангенса:

4. Обратные тригонометрические функции.

Арксинус Арккосинус Арктангенс, Арккотангенс

Далее решаются следующие примеры на тему "Область определения функций".

Пример 1 Пример 2
Пример 3 Пример 4
Пример 5 Пример 6
Пример 7 Пример 8
Пример 9 Пример 10
Пример 11 Пример 12
Пример 13 Пример 14
Пример 15 Пример 16

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 - уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 - получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 - функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 - функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.


Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Сделаем вывод:

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) - уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 - функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 - функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 - функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

В нашем случае:

x + 5 = 0 → x = -5 - в этой точке заданная функция не существует.

x + 5 ≠ 0 → x ≠ -5

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R\{-5} илиD(f)=(-∞;-5) (-5;+∞) или x∈ R\{-5} илиx∈ (-∞;-5) (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.


Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:


Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем - неотрицательна.

2х - 8 ≥ 0

Решим простое неравенство:

2х - 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)= .

Все это говорит о том, как важно наличие ОДЗ.

Пример 3

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Пример 4

Найти ОДЗ выражения 1 3 - x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Пример 5

Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Пример 6

Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

Ответ: [ − 1 , 0) ∪ (0 , + ∞)

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

Тождественные преобразования:

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Пример 7

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Пример 8

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Пример 9

Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

Нужно избегать преобразований, которые сужают ОДЗ.

Пример 10

Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Пример 11

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Пример 12

Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Шамшурин А.В. 1

Гагарина Н.А. 1

1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №31»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Я начал работу с того, что в Интернете пересмотрел множество тем по математике и выбрал эту тему, потому что уверен, что важность нахождения ОДЗ играет огромную роль в решении уравнений и задач. В своей исследовательской работе я рассмотрел уравнения, в которых достаточно только нахождения ОДЗ, опасность, необязательность, ограниченность ОДЗ, некоторые запреты в математике. Самое главное для меня хорошо сдать ЕГЭ по математике, а для этого надо знать: когда, зачем и как находить ОДЗ. Это и подтолкнуло меня к исследованию темы, целью которой, стало показать, что овладение данной темой поможет учащимся правильно выполнить задания на ЕГЭ. Чтобы достичь этой цели, я исследовал дополнительную литературу и другие источники. Мне стало интересно, а знают учащиеся нашей школы: когда, зачем и как находить ОДЗ. Поэтому я провёл тест по теме «Когда, зачем и как находить ОДЗ?» (было дано 10 уравнений). Количество учащихся - 28. Справились - 14 %, опасность ОДЗ (учли) - 68 %, необязательность (учли) - 36 %.

Цель : выявление: когда, зачем и как находить ОДЗ.

Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

Задачи:

  1. Показать значимость ОДЗ при решении уравнений и неравенств.
  2. Провести практическую работу по данной теме и подвести её итоги.

Я думаю полученные мною, знания и навыки помогут мне решить вопрос: искать ОДЗ или не надо? Я перестану делать ошибки, научившись правильно делать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

Глава 1

Что такое ОДЗ?

ОДЗ - это область допустимых значений , то есть это все значения переменной, при которых выражение имеет смысл.

Важно. Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных мест.

Некоторые запреты в математике. Таких запретных действий в математике очень мало. Но их не все помнят…

  • Выражения, состоящие под знаком чётной кратности или должно быть>0 или равно нулю, ОДЗ:f(x)
  • Выражение, стоящее в знаменателе дроби не может быть равно нулю, ОДЗ:f(x)
  • |f(x)|=g(x), ОДЗ: g(x) 0

Как записать ОДЗ? Очень просто. Всегда рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Преобразование примера может изменить ОДЗ и, соответственно ответ.

Алгоритм нахождения ОДЗ:

  1. Определите вид запрета.
  2. Найти значения, при которых выражение не имеет смысла.
  3. Исключить эти значения из множества действительных чисел R.

Решить уравнение: =

Без ОДЗ

С ОДЗ

Ответ: х=5

ОДЗ: => =>

Ответ: корней нет

Область допустимых значений оберегает нас от таких серьёзных ошибок. Честно говоря, именно из-за ОДЗ многие «ударники» превращаются в «троечников». Считая, что поиск и учёт ОДЗ малозначимым шагом в решении, они пропускают его, а потом удивляются: «почему учитель поставил 2?». Да потому и поставил, что ответ неверен! Это не «придирки» учителя, а вполне конкретная ошибка, такая же как неверное вычисление или потерянный знак.

Дополнительные уравнения:

а) = ; б) -42=14х+ ; в) =0; г) |x-5|=2x-2

Глава 2

ОДЗ. Зачем? Когда? Как?

Область допустимых значений - есть решение

  1. ОДЗ представляет собой пустое множество, а значит, исходный пример не имеет решений
  • = ОДЗ:

Ответ: корней нет.

  • = ОДЗ:

Ответ: корней нет.

0, уравнение не имеет корней

Ответ: корней нет.

Дополнительные примеры:

а) + =5; б) + =23х-18; в) =0.

  1. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

ОДЗ: х=2, х=3

Проверка: х=2, + , 0<1, верно

Проверка: х=3, + , 0<1, верно.

Ответ: х=2, х=3.

  • > ОДЗ: х=1,х=0

Проверка: х=0, > , 0>0, неверно

Проверка: х=1, > , 1>0, верно

Ответ: х=1.

  • + =х ОДЗ: х=3

Проверка: + =3, 0=3, неверно.

Ответ: корней нет.

Дополнительные примеры:

а) = ; б) + =0; в) + =х -1

Опасность ОДЗ

Заметим, тождественные преобразования могут:

  • не влиять на ОДЗ;
  • приводить к расширенному ОДЗ;
  • приводить к сужению ОДЗ.

Известно также, что в результате некоторых преобразований, изменяющих исходное ОДЗ, может привести к неверным решениям.

Давайте поясним каждый случай примером.

1) Рассмотрим выражение х +4х+7х, ОДЗ переменной х для этого есть множество R. Приведём подобные слагаемые. В результате оно примет вид x 2 +11x. Очевидно, ОДЗ переменной x этого выражения тоже является множество R. Таким образом, проведенное преобразование не изменило ОДЗ.

2) Возьмем уравнение x+ - =0. В этом случае ОДЗ: x≠0. Это выражение тоже содержит подобные слагаемые, после приведения которых, приходим к выражению x, для которого ОДЗ есть R. Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

3) Возьмем выражение. ОДЗ переменной x определяется неравенством (x−5)·(x−2)≥0, ОДЗ: (−∞, 2]∪∪/Режим доступа: Материалы сайтов www.fipi.ru, www.eg

  • Область допустимых значений - есть решение [Электронный ресурс]/Режим доступа: rudocs.exdat.com›docs/index-16853.html
  • ОДЗ - область допустимых значений, как найти ОДЗ [Электронный ресурс]/Режим доступа: cleverstudents.ru›expressions/odz.html
  • Область допустимых значений: теория и практика [Электронный ресурс]/Режим доступа: pandia.ru›text/78/083/13650.php
  • Что такое ОДЗ [Электронный ресурс]/ Режим доступа: www.cleverstudents.ru›odz.html
  • Что такое ОДЗ и как его искать - объяснение и пример. Электронный ресурс]/ Режим доступа: cos-cos.ru›math/82/
  • Приложение 1

    Практическая работа «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    │х+14│= 2 - 2х

    │3-х│=1 - 3х

    Приложение 2

    Ответы к заданиям практической работы «ОДЗ: когда, зачем и как?»

    Вариант 1

    Вариант 2

    Ответ: корней нет

    Ответ: х-любое число, кроме х=5

    9х+ = +27 ОДЗ: х≠3

    Ответ: корней нет

    ОДЗ: х=-3, х=5. Ответ:-3;5.

    у= -убывает,

    у= -возрастает

    Значит, уравнение имеет не более одного корня. Ответ: х=6.

    ОДЗ: → →х≥5

    Ответ:х≥5, х≤-6.

    │х+14│=2-2х ОДЗ:2-2х≥0, х≤1

    х=-4, х=16, 16 не принадлежит ОДЗ

    Убывает, -возрастает

    Уравнение имеет не более одного корня. Ответ: корней нет.

    0, ОДЗ: х≥3,х≤2

    Ответ: х≥3,х≤2

    8х+ = -32, ОДЗ: х≠-4.

    Ответ: корней нет.

    х=7, х=1. Ответ: решений нет

    Возрастает, - убывает

    Ответ: х=2.

    0 ОДЗ: х≠15

    Ответ: х- любое число, кроме х=15.

    │3-х│=1-3х, ОДЗ: 1-3х≥0, х≤

    х=-1, х=1 не принадлежит ОДЗ.

    Ответ: х=-1.

    Научный руководитель:

    1. Введение 3

    2. Исторический очерк 4

    3. «Место» ОДЗ при решении уравнений и неравенств 5-6

    4. Особенности и опасность ОДЗ 7

    5. ОДЗ – есть решение 8-9

    6. Нахождение ОДЗ – лишняя работа. Равносильность переходов 10-14

    7. ОДЗ в ЕГЭ 15-16

    8. Заключение 17

    9. Литература 18

    1. Введение

    Проблема: уравнения и неравенства, в которых нужно находить ОДЗ, не нашли места в курсе алгебры систематического изложения, возможно поэтому я и мои сверстники часто делаем ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об ОДЗ.

    Цель: уметь анализировать ситуацию и делать логически корректные выводы в примерах, где нужно учесть ОДЗ.

    Задачи:

    1. Изучить теоретический материал;

    2. Прорешать множество уравнений, неравенств: а) дробно-рациональных; б) иррациональных; в) логарифмических; г) содержащих обратные тригонометрические функции;

    3. Применить изученные материалы в ситуации, которая отличается от стандартной;

    4. Создать работу по теме «Область допустимых значений: теория и практика»

    Работа над проектом: работу над проектом я начала с повторения известных мне функций. Область определения многих из них имеет ограничения.

    ОДЗ встречается:

    1. При решении дробно-рациональных уравнений и неравенств

    2. При решении иррациональных уравнений и неравенств

    3. При решении логарифмических уравнений и неравенств

    4. При решении уравнений и неравенств, содержащих обратные тригонометрические функции

    Прорешав множество примеров из различных источников (пособий по ЕГЭ, учебников, справочников), я систематизировала решение примеров по следующим принципам:

    · можно решить пример и учесть ОДЗ (самый распространённый способ)

    · можно решить пример, не учитывая ОДЗ

    · можно только учитывая ОДЗ прийти к правильному решению.

    Методы, использованные в работе: 1) анализ; 2) статистический анализ; 3) дедукция; 4) классификация; 5) прогнозирование.

    Изучила анализ результатов ЕГЭ за прошедшие годы. Много ошибок было допущено в примерах, в которых нужно учитывать ОДЗ. Это ещё раз подчёркивает актуальность моей темы.

    2. Исторический очерк

    Как и остальные понятия математики, понятие функции сложилось не сразу, а прошло долгий путь развития. В работе П. Ферма «Введение и изучение плоских и телесных мест» (1636, опубл. 1679) говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости двух переменных величин. У И. Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако термин «функция» впервые появляется лишь в 1692 у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696) термин «функция» не употребляется.

    Первое определение функции в смысле, близком к современному, встречается у И. Бернулли (1718): «Функция - это величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания функции аналитической формулой. Та же идея выступает и в определении Л. Эйлера, данном им во «Введении в анализ бесконечных» (1748): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств». Впрочем, уже Л. Эйлеру не чуждо и современное понимание функции, которое не связывает понятие функции с каким-либо аналитическим её выражением. В его «Дифференциальном исчислении» (1755) говорится: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функциями вторых».

    С начала XIX века уже всё чаще и чаще определяют понятие функции без упоминания об её аналитическом изображении. В «Трактате по дифференциальному и интегральному исчислению» (1797-1802) С. Лакруа говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних». В «Аналитической теории тепла» Ж. Фурье (1822) имеется фраза: «Функция f(x) обозначает функцию совершенно произвольную, то есть последовательность данных значений, подчинённых или нет общему закону и соответствующих всем значениям x , содержащимся между 0 и какой-либо величиной x ». Близко к современному и определение Н. И. Лобачевского: «…Общее понятие функции требует, чтобы функцией от x называть число, которое даётся для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подаёт средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной». Там же немного ниже сказано: «Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи понимать как бы данными вместе». Таким образом, современное определение функции, свободное от упоминаний об аналитическом задании, обычно приписываемое П. Дирихле (1837), неоднократно предлагалось и до него.

    Областью определения (допустимых значений) функции у называется совокупность значений независимой переменной х, при которых эта функция определена, т. е. область изменения независимой переменной (аргумента).

    3. «Место» области допустимых значений при решении уравнений и неравенств

    1. При решении дробно-рациональных уравнений и неравенств знаменатель не должен равняться нулю.

    2. Решение иррациональных уравнений и неравенств.

    2.1..gif" width="212" height="51"> .

    В данном случае нет необходимости находить ОДЗ: из первого уравнения следует, что при полученных значения х выполняется неравенство: https://pandia.ru/text/78/083/images/image004_33.gif" width="107" height="27 src="> является система:

    Поскольку в уравнение и входят равноправно, то вместо неравенства , можно включить неравенство https://pandia.ru/text/78/083/images/image009_18.gif" width="220" height="49">

    https://pandia.ru/text/78/083/images/image014_11.gif" width="239" height="51">

    3. Решение логарифмических уравнений и неравенств.

    3.1. Схема решения логарифмического уравнения

    Но проверить достаточно только одно условие ОДЗ.

    3.2..gif" width="115" height="48 src=">.gif" width="115" height="48 src=">

    4. Тригонометрические уравнения вида равносильны системе (вместо неравенства в систему можно включить неравенство https://pandia.ru/text/78/083/images/image024_5.gif" width="377" height="23"> равносильны уравнению

    4. Особенности и опасность области допустимых значений

    На уроках математики от нас требуют нахождения ОДЗ в каждом примере. В то же время по математической сути дела нахождение ОДЗ вовсе не является обязательным, часто не нужно, а иногда и невозможно - и все это без какого бы то ни бы­ло ущерба для решения примера. С другой стороны, часто случается такое, что решив пример, школьники забывают учесть ОДЗ, записывают её как конечный ответ, учитывают лишь некоторые условия. Обстоятельство это хорошо из­вестно, но «война» продолжается каждый год и, похоже, будет идти еще долго.

    Рассмотрим, к примеру, такое неравенство:

    Здесь ищется ОДЗ, и неравенство решается. Однако при реше­нии этого неравенства школьники иногда считают, что вполне можно обойтись без поиска ОДЗ, точнее, можно обойтись и без условия

    В самом деле, для получения верного ответа необходимо учесть и неравенство , и .

    А вот, например, решение уравнения: https://pandia.ru/text/78/083/images/image032_4.gif" width="79 height=75" height="75">

    что равносильно работе с ОДЗ. Однако и в этом примере такая работа излишняя - достаточно проверить выполнение только двух из этих неравенств, причем любых двух.

    Напомню, что всякое уравнение (неравенство) может быть сведено к виду . ОДЗ - это просто область определения функции в левой части. То, что за этой об­ластью надо следить, вытекает уже из определения корня как числа из области определения данной функции, тем самым - из ОДЗ. Вот забавный пример на эту тему..gif" width="20" height="21 src="> имеет областью опреде­ления множество положительных чисел (это, конечно, договоренность - рассматривать функцию при, , но разум­ная), а тогда -1 не является корнем.

    5. Область допустимых значений – есть решение

    И наконец, в массе примеров нахождение ОДЗ позволяет получить ответ без громоздких выкладок, а то и вовсе устно.

    1. ОД3 представляет собой пустое множество, а значит, исход­ный пример не имеет решений.

    1) 2) 3)

    2. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

    1) , х=3

    2) Здесь в ОДЗ находится только число 1, и после подстановки видно, что оно не является корнем.

    3) В ОДЗ находятся два числа: 2 и 3, и оба подходят.

    4) > В ОДЗ находятся два числа 0 и 1, и подходит только 1.

    Эффективно может использоваться ОДЗ в сочетании с анали­зом самого выражения.

    5) < ОДЗ: Но в правой части неравенства могут быть только положительные числа, поэтому оставляем х=2. Тогда в неравенство подставим 2.

    6) Из ОДЗ следует, что, откуда имеем ..gif" width="143" height="24"> Из ОДЗ имеем: . Но тогда и . Так как, то решений нет.

    Из ОДЗ имеем:https://pandia.ru/text/78/083/images/image060_0.gif" width="48" height="24">>, а значит, . Решая по­следнее неравенство, получим х<- 4, что не входит в ОДЗ. По­этому решения нет.

    3) ОДЗ: . Так как, то

    С другой стороны,https://pandia.ru/text/78/083/images/image068_0.gif" width="160" height="24">

    ОДЗ:. Рассмотрим уравнение на промежутке [-1; 0).

    На нем выполняются такие неравенства https://pandia.ru/text/78/083/images/image071_0.gif" width="68" height="24 src=">.gif" width="123" height="24 src="> и решений нет. При функции и https://pandia.ru/text/78/083/images/image076_0.gif" width="179" height="25">. ОДЗ: х>2..gif" width="233" height="45 src="> Найдём ОДЗ:

    Целочисленное решение возможно лишь при х=3 и х=5. Проверкой находим, что корень х=3 не подходит, а значит ответ: х=5.

    6. Нахождение области допустимых значений – лишняя работа. Равносильность переходов.

    Можно привести примеры, где ситуация ясна и без нахож­дения ОДЗ.

    1.

    Равенство невозможно, ибо при вычитании из меньшего выраже­ния большее должно получатся отрицательное число.

    2. .

    Сумма двух неотрицательных функций не может быть отрицатель­ной.

    Приведу также примеры, где нахождение ОДЗ затруднено, а иногда просто невозможно.

    И, наконец, поиски ОДЗ являются очень часто просто лишней работой, без которой прекрасно можно обойтись, доказав тем са­мым понимание происходящего. Тут можно привести громадное число примеров, поэтому я выберу только наиболее типичные. Главным приемом решения являются в этом случае равносиль­ные преобразования при переходе от одного уравнения (нера­венства, системы) к другому.

    1.. ОДЗ не нужна, ибо, найдя те значения х, при которых х2=1, мы не можем получить х=0.

    2. . ОДЗ не нужна, ибо мы выясняем, когда выполняется равенство подкоренного выражения положи­тельному числу.

    3. . ОДЗ не нужна по тем же сооб­ражениям, что и в предыдущем примере.

    4.

    ОДЗ не нуж­на, ибо подкоренное выражение равно квадрату некоторой функ­ции, а потому не может быть отрицательным.

    5.

    6. ..gif" width="271" height="51"> Для решения до­статочно только одного ограничения для подкоренного выражения. В самом деле, из записанной смешанной системы следует, что и другое подкоренное выражение неотрицательно.

    8. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

    9. ОДЗ не нужна, так как достаточно, чтобы были положительны два из трех выражений под знаками логарифма, чтобы обеспечить положительность третьего.

    10. .gif" width="357" height="51"> ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

    Стоит, однако, заметить, что при решении способом равно­сильных преобразований помогает знание ОДЗ (и свойств функ­ций).

    Вот несколько примеров.

    1. . ОД3 , откуда следует положительность выражения в правой части, и возможно записать уравнение, рав­носильное данному, в таком виде https://pandia.ru/text/78/083/images/image101_0.gif" width="112" height="27"> ОДЗ: . Но тогда , и при решении этого неравенства не надо рассматривать случай, когда правая часть меньше 0.

    3. . Из ОДЗ следует, что , а потому случай, когда https://pandia.ru/text/78/083/images/image106_0.gif" width="303" height="48"> Переход в общем виде выглядит так:

    https://pandia.ru/text/78/083/images/image108_0.gif" width="303" height="24">

    Возможны два случая: 0>1.

    Значит, исходное неравенство равносильно следующей совокупности систем неравенств:

    Первая система не имеет решений, а из второй получаем: x<-1 – решение неравенства.

    Понимание условий равносильности требует знания некоторых тонкостей. Например, почему равносильны такие уравнения:

    Или

    И наконец, возможно, самое существенное. Дело в том, что равносильность гарантирует правильность ответа, если совер­шаются какие-то преобразования самого уравнения, но не исполь­зуется при преобразованиях только в одной из частей. Сокращение, использование различных формул в одной из частей не попадают под действие теорем о равносильности. Некоторые примеры такого вида я уже приводила. Рассмотрим еще примеры.

    1. Такое решение естественно. В ле­вой части по свойству логарифмической функции перейдём к выражению ..gif" width="111" height="48">

    Решив эту систему, мы получим результат (-2 и 2), который, однако, не является ответом, так как число -2 не входит в ОДЗ. Так что же, нам необходимо установить ОДЗ? Нет, конечно. Но раз мы в решении использовали некое свойство логарифмической функции, то мы обязаны обеспечить те условия, при кото­рых оно выполняется. Таким условием является положительность выражений под знаком логарифма..gif" width="65" height="48">.

    2. ..gif" width="143" height="27 src="> таким способом подстановке подлежат числа . Кому охота делать такие нудные выкладки?.gif" width="12" height="23 src="> добавить условие , и сразу видно, что этому условию отвечает только число https://pandia.ru/text/78/083/images/image128_0.gif" width="117" height="27 src=">) продемонстрировали 52% сдающих. Одной из причин таких низких показателей является тот факт, что многие выпускники не произвели отбор корней, полученных из уравнения после его возведения в квадрат.

    3) Рассмотрим, например, решение одной из задач С1: "Найдите все значения x, для которых точки графика функции лежат выше соответствующих точек графика функции ". Задание сводится к решению дробного неравенства, содержащего логарифмическое выражение. Приемы решения таких неравенств нам известны. Самым распространенным из них является метод интервалов. Однако при его применении сдающие допускают разнообразные ошибки. Рассмотрим наиболее распространенные ошибки на примере неравенства:

    X < 10. Они отмечают, что в первом случае решений нет, а во втором – корнями являются числа –1 и . При этом выпускники не учитывают условие x < 10.

    8. Заключение

    Подводя некоторый итог, можно сказать, что уни­версального метода решения уравнения и неравенств нет. Каждый раз, если хочешь понять, что делаешь, а не действовать механически, возникает дилемма: а какой способ решения выбрать, в частности искать ОДЗ или не надо? Я думаю, что полученный мною опыт поможет мне решить эту дилемму. Я перестану делать ошибки, научившись правильно использовать ОДЗ. Получится ли у меня это, покажет время, точнее ЕГЭ.

    9. Литература

    И др. «Алгебра и начала анализа 10-11» задачник и учебник, М.: «Просвещение», 2002. «Справочник по элементарной математике». М.: «Наука», 1966. Газета «Математика» №46,Газета «Математика» №Газета «Математика» № «История математики в школе VII-VIII классы». М.: «Просвещение», 1982. и др. «Самое полное издание вариантов реальных заданий ЕГЭ: 2009/ФИПИ» - М.: «Астрель», 2009. и др. «ЕГЭ. Математика. Универсальные материалы для подготовки учащихся/ФИПИ» - М.: «Интеллект-центр», 2009. и др. «Алгебра и начала анализа 10-11». М.: «Просвещение», 2007. , «Практикум по решению задач школьной математики (практикум по алгебре)». М.: Просвещение, 1976. «25000 уроков математики». М.: «Просвещение», 1993. «Готовимся к олимпиадам по математике». М.: «Экзамен», 2006. «Энциклопедия для детей «МАТЕМАТИКА»» том 11, М.: Аванта +; 2002. Материалы сайтов www. *****, www. *****.