Полисахарид - это что? Применение полисахаридов и их значение. Полисахариды Полисахариды состоят из остатков чего

(молекулярный вес от нескольких тысяч до миллионов), молекулы которых состоят из остатков моносахаридов (см.). Это бесцветные, аморфные вещества, большинство которых легко набухает в воде, образуя вязкие коллоидные растворы . Полисахариды широко распространены в природе (наибольшее распространение имеет целлюлоза - составная часть древесины). Крахмал и некоторые другие полисахариды образуются в растениях в процессе фотосинтеза. При кислотном или ферментативном гидролизе полисахариды распадаются на простые сахара - моносахариды.

В живых организмах полисахариды служат энергетическим резервом (гликоген у животных, крахмал у растений), выполняют функции опорных элементов (хитин у насекомых и ракообразных, целлюлоза у растений). Такие полисахариды, как мукополисахариды (см.), являются природными антикоагулянтами (см.) (например, гепарин) или выполняют некоторые специальные функции. Полисахариды, особенно крахмал, являются важными составными частями пищевых продуктов. Многие полисахариды служат сырьем: крахмал - в пищевой, фармацевтической промышленности и др., целлюлоза - для производства волокон. Физиологически активные полисахариды - гепарин (см.), декстрины , камеди - используют в медицине.

См. также Мукополисахариды, Углеводы.

Полисахариды (синоним: сложные сахара, полиозы, гликаны) - углеводы, молекулы которых состоят из нескольких остатков (от двух до нескольких тысяч) одинаковых или разных моносахаридов или близких к ним веществ (дезоксисахаров, аминосахаров, уроновых кислот и т. д.).

Общая формула наиболее распространенных полисахаридов: CnH2mOm

Все П. построены по типу гликозидов (см.): атом водорода в полуацетальном гидроксиле одной молекулы моносахарида замещается второй молекулой моносахарида, атом водорода в полуацетальном гидроксиле второй молекулы замещается третьей молекулой и т. д.

В результате при любом числе моносахаридных остатков в молекуле П. обычно остается лишь один свободный полуацетальный гидроксил («альдегидное», или восстанавливающее «начало» полигликозидной цепи).

Одна полигликозидная цепь может быть присоединена через кислород своего полуацетального гидроксила к какому-либо из промежуточных моносахаридных остатков другой полигликозидной цепи; таким образом возникают разветвленные П.

Разные полисахариды отличаются степенью полимеризации, т. е. числом моносахаридных остатков в молекуле; в зависимости от этого различают: а) олигосахариды, содержащие от 2 до 9 моносахаридных остатков (дисахариды, трисахариды и т. д.) с небольшим мол. весом, хорошо растворимые в воде, обладающие сладким вкусом - П. сахароподобные; б) высшие полиозы, содержащие обычно несколько сотен и даже тысяч остатков, высокомолекулярные вещества, плохо растворимые или не растворимые в воде, не имеющие сладкого вкуса.

Различаются полисахариды и наличием одинаковых или разных моносахаридных остатков [гомополисахариды (например, гликоген , клетчатка, иначе целлюлоза, амилоза состоят из остатков глюкозы; хитин - из глюкозамина; пектовая кислота - из галактуроновой кислоты) и гетерополисахариды (например, гемицеллюлозы, аравийская камедь, многие бактериальные полисахариды)].

Наличие прямой полигликозидной цепи (как в амилозе, целлюлозе) и в той или иной степени разветвленной (амилопектин, гликоген) также служит признаком различия П. Наконец, полисахариды различают по наличию пиранозных или фуранозных колец (в инулине), по наличию α-конфигурации моносахаридных остатков (амилоза), β-конфигурации (целлюлоза) или же тех и других конфигураций (гуаран) и по наличию тех или иных гликозидных связей, соединяющих первый углеродный атом одного остатка с четвертым или другими углеродными атомами другого остатка, например связей α-1,4 (амилоза), β-1,4 (целлюлоза), α-1,6 (декстран) и т. д.

Во многих случаях в молекулах П. имеются разные гликозидные связи. По происхождению полисахариды делят на растительные, животные и П. микроорганизмов (бактерий и грибков).

Являясь полигликозидами, П. подвергаются гидролизу - кислотному или ферментативному. Так как в каждом моносахаридном остатке остаются свободные спиртовые гидроксилы, полисахариды могут образовать соединения типа простых и сложных эфиров, имеющих значение для идентификации, установления строения (метиловые эфиры), а также как важные в практике вещества (например, эфиры клетчатки).

Такие высшие П., как крахмал и ряд олигосахаридов (сахароза, лактоза) имеют важное пищевое значение. Многие П. играют роль энергетических резервов организмов: гликоген (см.) у животных, крахмал и другие полисахариды у растений.

Ряд полисахаридов [целлюлоза (клетчатка) у растений и хитин у некоторых животных - ракообразных, насекомых] играет важную опорную роль. Многие П., особенно муко-полисахариды (см.), содержащие остатки аминосахаров и часто уроновых кислот, выполняют важные высокоспециализированные функции [например, гепарин является природным антикоагулянтом, гиалуроновая кислота (см.) несет барьерные функции, мукополисахариды группы крови (так называемые группоспецифические П.) и тканей определяют их специфичность]. Многие П. обладают антигенными (вызывающими иммунитет) свойствами (иммуноспецифические П.). Ряд полисахаридов используется в качестве мед . препаратов: декстран (см.), гепарин (см.) и др.

Многие П. имеют большое техническое значение, например целлюлоза, декстрины, пектиновые вещества, представляющие собой производные полигалактуроновой кислоты.

Для применения в медицинской практике К. Впоследствии при изучении растений перешли к анализу посредством извлечений. Алкалоиды - азотсодержащие органические вещества природного происхождения. В медицинской практике их используют как основу для приготовления различных мазей и получения масляных экстрактов из растительного сырья.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВВЕДЕНИ:

Заключение:

Список литературы:

ВВЕДЕНИЕ

С незапамятных времен ученые полагали, что растения содержат особые вещества, которые они назвали "действующими началами". Для применения в медицинской практике К. Гален извлекал из растений действующие начала с помощью вина, уксуса, меда или их водных растворов. Особенно остро ставил вопрос о действующих веществах Парацельс и рекомендовал извлекать их только этиловым спиртом (современные настойки и экстракты).

Стремясь получить действующие начала растений, ученые испробовали, самые разные методы. Впоследствии при изучении растений перешли к анализу посредством извлечений. Около 1665 г. И. Глаубер из многих ядовитых растений с помощью водных растворов азотной кислоты получил "улучшенные растительные начала" в форме порошков. Теперь эти вещества называют алкалоидами. Помимо алкалоидов были обнаружены и другие активные вещества, так или иначе воздействующие на организм человека.

Алкалоиды - азотсодержащие органические вещества природного происхождения. В растениях алкалоиды чаще находятся (смесь нескольких алкалоидов) в виде солей органических и неорганических кислот. Наиболее широко распространенными алкалоидами являются кофеин, атропин, эхинопсин, стрихнин, кокаин, берберин, папаверин и др.

Гликозиды - сложные безазотистые соединения, состоящие из сахаристой и несахаристой частей. Среди гликозидов выделяют сердечные гликозиды, антрагликозиды, сапонины и другие вещества. Гликозиды оказывают влияние на сердце, желудочно-кишечный тракт и др.

Флавоноиды - гетероциклические кислородсодержащие соединения желтого цвета, плохо растворимые в воде, обладающие различной биологической активностью. В организм человека они попадают только с растительной пищей.

Дубильные вещества - сложные вещества, производные многоатомных фенолов, обладают способностью коагулировать клеевые растворы и давать нерастворимые осадки с алкалоидами. Они широко распространены почти во всех растениях.

Эфирные масла - смесь летучих безазотистых веществ, обладающих сильным характерным запахом. Они обладают противомикробным, болеутоляющим, противокашлевым, противовоспалительным, желчегонным и мочегонным действием.

Витамины - органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Большинство из них поступают в организм с растительной и животной пищей.

Жирные масла - сложные эфиры глицерина и высокомолекулярных жирных кислот. В медицинской практике их используют как основу для приготовления различных мазей и получения масляных экстрактов из растительного сырья. Некоторые из них, например, касторовое масло, обладают слабительным действием.

Микроэлементы - вещества, которые совместно с витаминами участвуют в жизненно важных процессах, происходящих в организме. Их дисбаланс может привести к развитию тяжелых заболеваний.

Полисахариды - это сложные углеводы; многочисленная и широко распространенная группа органических соединений, которые наряду с белками и жирами необходимы для жизнедеятельности всех живых организмов

Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

1. Полисахариды. Их характеристика

Установлена многообразная биологическая активность полисахаридов растительного происхождения. Они обладают антибиотической, противовирусной, противоопухолевой, противоядной, антилипемической и антисклеротической активностью. Антилипемическая и антисклеротическая роль растительных полисахаридов обусловлена их способностью давать комплексы с белками и липопротеидами плазмы крови.

Некоторые советские фармакологи (А.Д. Турован, А.С. Гладких) считают, что наиболее перспективным направлением в изучении полисахаридов является исследование их влияния на вирусные заболевания, на течение язвенной болезни и гастрита.

К полисахаридам относятся: камеди, слизи, пектиновые вещества, инулин, крахмал, клетчатка.

Камеди - это густой слизистый сок, выступающий или произвольно или из надрезов и поранений на коре многих деревьев. В живом растении камеди образуются путем особого слизевого перерождения клетчатки оболочек клеток паренхимы, а также и крахмала, находящегося внутри клеток.

Во многих растениях камеди в небольших количествах образуются нормально, физиологически, но обильное образование камеди рассматривается уже как процесс патологический, возникающий вследствие поранения и ведущий к заполнению слизью образовавшейся раны.

В общий обмен веществ растений образовавшиеся камеди не вовлекаются. По внешнему виду препараты камеди представляют обычно округлые или плоские куски, для некоторых видов камеди весьма характерные, прозрачные или только просвечивающие, бесцветные или окрашенные до бурого цвета; запаха не имеют, без вкуса или слабого сладковато-слизистого.

В воде некоторые камеди растворяются, образуя коллоидные растворы, другие лишь набухают. В спирте, эфире и других органических растворителях нерастворимы. Химически исследованы недостаточно.

Состоят из полисахаридов с кальциевыми, магниевыми и калиевыми солями сахарокамедиевых кислот. Это - вишневый, абрикосовый, миндальный, сливовый клей, аравийская камедь, или гуммиарабик. Аравийская камедь обладает активностью, подобной АКТГ. Механизм их действия различен.

Слизи - это безазотистые вещества, близкие по химическому составу к пектинам и целлюлозе. Это вязкая жидкость, продуцируемая слизистыми железами растений и представляющая собой раствор гликопротеинов. Слизи образуются в растениях в результате физиологических нарушений или при различных болезнях, вследствие чего оболочки и клеточное содержимое отмирают. К ослизнению способны наружные слои клеток водорослей, семена подорожника, айвы, льна, горчицы, а также внутренние слои подземных органов - алтея, ятрышника (салеп). Полезное действие слизей состоит в том, что они предохраняют растение от пересыхания, способствуют прорастанию семян и их распространению.

Слизи имеют полужидкую консистенцию, извлекаются из сырья водой. Они относятся к группе нейтральных полисахаридов и представляют собой сложную смесь различного химического состава. Основу их составляют производные сахаров и частично калиевые, магниевые, кальциевые соли уроновых кислот.

Слизи и камеди настолько похожи, что не всегда удается их разграничить. Слизи в отличие от камеди получают не в твердом виде, а путем извлечения водой. Слизистые вещества способствуют замедлению всасывания лекарственных средств и более длительному действию их в организме, что имеет большое значение в терапии.

Пектины (от греч. pectos - сгущенный, свернувшийся) близки к камедям и слизям, входят в состав межклеточного склеивающего вещества. Широко распространены в растительном мире. Особую ценность представляют растворимые в воде пектины. Их водные растворы с сахаром в присутствии органических кислот образуют студни, обладающие адсорбирующим и противовоспалительным действием.

Пектиновые вещества - это группа высокомолекулярных соединений, входящих в состав клеточных стенок и межуточного вещества высших растений. Максимальное количество пектинов содержится в плодах и корнеплодах.

Пектиновые вещества были открыты Браконно в 1825 г. Однако не смотря на то, что их изучение продолжается более ста лет, химическое строение этих соединений выяснено лишь в во второй половине XX в. Причиной этого является трудность получения чистых препаратов пектиновых веществ в неизменном состоянии.

До XX в. считалось, что нейтральные сахара арабиноза и галактоза принимают участие в построении цепи пектиновых веществ, но в 1917 г. было установлено, что они имеют строение, подобное целлюлозе, то есть состоят из остатков галактуроновой кислоты, соединенных в длинные цепи при помощи гликозидных связей. C 1970-х гг. многие зарубежные ученые на основании проведенных исследований сделали вывод, что пектиновые вещества являются комплексной группой кислых полисахаридов, которые могут содержать значительное количество нейтральных сахарных компонентов (L-арабинозу, D-галактозу, L--рамнозу).

Пектины широко применяются в различных отраслях народного хозяйства, особенно в пищевой промышленности, где они используются в качестве загущающих веществ для производства джемов, желе, мармелада; в хлебопечении - для предотвращения черствления хлебобулочных изделий; при производстве соусов и мороженного - в качестве эмульгирующего агента; при консервировании - для предотвращения коррозии оловянных консервных банок и т.д.

Применение пектинов в медицине является чрезвычайно перспективным. Пектиновые (студенистые вещества растений) связывают стронций, кобальт, радиоактивные изотопы. Большая часть пектинов не переваривается и не всасывается организмом, а выводится из него вместе с вредными веществами. Особенно богаты пектинами ягоды земляники, шиповника, клюквы, черной смородины, яблоки, лимоны, апельсины, калины и др.

Инулин - полисахарид, образованный остатками фруктозы. Является запасным углеводом многих растений, главным образом сложноцветных (цикория, артишока и др.). Используется как заменитель крахмала и сахара при сахарном диабете, природный компонент, который получают из корней растений.

Инулин применяется в виде биологически активных добавок (капли, таблетки) для профилактики и лечения различных заболеваний. Он не имеет противопоказаний. Особенно ценны препараты с содержанием инулина для диабетиков. Природная фруктоза, которую содержит инулин, является уникальным сахаром, который полностью заменяет глюкозу в случаях, когда глюкоза не усваивается. Поэтому диетическая ценность инулина велика.

Крахмал - конечный продукт ассимиляции углекислоты растениями. Откладывается преимущественно в клубнях, плодах, семенах и сердцевине стебля. В организме из крахмала образуется глюкоза. Мы получаем крахмал из растений, где он находится в виде крошечных крупинок.

Растения накапливают крахмал маленькими крупинками в стволах и стеблях, корнях, листьях, плодах и семенах. Картофель, маис, рис и пшеница содержат большие количества крахмала. Растения вырабатывают крахмал для того, чтобы он служил пищей для молодых побегов и отростков, пока они не в состоянии самостоятельно вырабатывать себе питание.

Для людей и животных крахмал представляет энергоемкое питание. Как и сахар, он состоит из углерода, водорода и кислорода. Крахмал несладкий: обычно он безвкусен. Определенные химические вещества во рту, желудке и кишечнике преобразуют крахмалистую пищу в виноградный сахар, который легко усваивается. Человек получает крахмал из растений, измельчая те их части, где он накапливается. Затем крахмал вымывается водой и оседает на дно больших емкостей, после чего вода выжимается из сырого крахмала, масса высушивается и перетирается в порошок, в виде которого обычно и изготавливается крахмал. Крахмал не растворяется в холодной воде, а в горячей - образует вязкий раствор, при охлаждении превращающийся в студенообразную массу. В разведенном виде применяется как обволакивающее средство при желудочно-кишечных заболеваниях (картофельный сырой сок, кисели). Крахмалом богаты клубни, корни, корневища, кора, где он накапливается как депо питательного вещества. Поскольку в корнях цикория, одуванчика и в клубнях девясила, кроме крахмала, содержится инулин, эти растения применяются для лечения диабета.

Клетчатка или целлюлоза , является основной составной частью оболочек растительных клеток и представляет собой сложный углевод из группы несахароподобных полисахаридов. Прежде считалось, что клетчатка не переваривается в кишечнике. В последнее время установлено, что некоторые виды клетчатки частично усваиваются. Клетчатка - это самая грубая часть растения. Это сплетение растительных волокон, из которых состоят листья капусты, кожура бобовых, фруктов, овощей, а также семян. Диетическая клетчатка - сложная форма углеводов, расщепить которую наша пищеварительная система не в состоянии. Но это один из важнейших элементов питания человека. Диетическая клетчатка сокращает время пребывания пищи в желудочно-кишечном тракте. Чем дольше пища задерживается в пищеводе, тем больше времени требуется для ее выведения. Диетическая клетчатка ускоряет этот процесс и одновременно способствует очищению организма. Потребление достаточного количества клетчатки нормализует работу кишечника.

2. Механизм действия полисахаридов

Несмотря на различия в методах получения, химической структуре для полисахаридов свойственно близкое проявление физиологических эффектов: сорбции радионуклидов, тяжелых металлов, бактерий и бактериальных токсинов, нормализации липидного обмена при гиперлипидемии различной этиологии, активации секретирующей и моторной функции кишечника, регуляции иммунитета, модуляции эндокринной системы, оптимизации функционирования гепато-билиарной системы.

Полисахариды оказывают непосредственное влияние на структуру ткани и функции желудочно-кишечного тракта, печени, почек и других органов, что выявлено на биохимическом и морфологическом уровне. Кроме того, полисахариды влияют на ткани и системы органов, непосредственно с ними не контактирующих при пероральном, внутривенном, внутрибрюшинном, подкожном введении в организм.

Наиболее изучены физиологические и метаболические аспекты влияния полисахаридов на печень на фоне патологии. Необходимость раскрытия фундаментальных основ, связанных с физиологическим действием полисахаридов в условиях нормы и заболевания различной этилогии, актуальна для их применения в практической медицине.

Вот как описывает механизмы действия полисахаридов доктор С. Алешин: "К сожалению, иммунная система не работает идеально, как нам бы хотелось. Вирусы, особенно при гепатитах B и C, идут на различные ухищрения, чтобы усыпить бдительность иммунной системы. Так же коварны и раковые опухоли, которые прибегают к многочисленным приемам, чтобы обмануть иммунную систему. Поэтому очень часто при этих состояниях иммунная система напоминает дремлющего сторожа, не замечающего, как идет повреждение и разрушение организма. Грибные же полисахариды, попадая в организм, активируют иммунную систему, которая выходит из спящего состояния и начинает активно бороться, срывая маскировку со своих врагов".

Пектины и пектинсодержащие продукты попадая в пищеварительных тракт, образуют клейкую субстанцию, очень легко связывающуюся со многими металлами, прежде всего со свинцом, стронцием, кальцием, кобальтом, а также другими тяжелыми металлами, радиоактивными веществами, которые не способны всосаться в ток крови. Этим пектины защищают организм от радиоактивных веществ и солей тяжелых металлов, проникающих с пищей и водой в организм человека.

Полисахариды активизируют печеночно-кишечную циркуляцию и выводят из организма излишнее количество холестерина. Поэтому полисахариды играют важную роль в профилактике атеросклероза.

Слизистые вещества состава некоторых растений после приема внутрь образуют защитные покровы на поверхности слизистой оболочки желудочно-кишечного тракта и этим защищают их от раздражения токсинами, лекарственными веществами и др.

Пектины усиливают моторную функцию кишечника, предупреждают возникновение запоров.

Терапевтический эффект слизей обусловлен предохранением нервных окончаний слизистой оболочки желудочно-кишечного тракта от раздражающего влияния других веществ.

Полисахариды усиливают активность ресничек мерцательного эпителия дыхательных путей, что приводит к усилению секреции бронхиальной слизи, вследствие чего мокрота разжижается и облегчается ее отделение при кашле.

3. Медико-биологическое значение полисахаридов, содержащихся в растениях

Медико-биологическое значение полисахаридов разнообразно. Многие из них (крахмал, гликоген, инулин и др.) являются в растительных и животных организмах запасными питательными веществами. Некоторые полисахариды (например, хондроитинсерная кислота, капсулярные полисахариды и клетчатка) несут исключительно опорные и защитные функции.

Ряд полисахаридов (маннапы, галактаны и др.) используется и как строительный, и как питательный материал. Гиалуроновая кислота, составляющая межклеточное вещество тканей животных, наряду со струхтурной функцией регулирует распределение жизненно необходимых веществ в тканях. Гепарин предотвращает свертывание крови в организме человека и животных. Во многих случаях полисахариды дают очень прочные комплексы с белками, образуя гликопротеины, выполняющие в организме ряд ответственных функций.

В последнее время интерес к растительным полисахаридам возрос в связи с тем, что эти соединения, ранее считавшиеся инертными, обладают широким спектром фармакологической активности.

Используются лекарственные растения, содержащие полисахариды в качестве отхаркивающих, обволакивающих, потогонных, слабительных средств. Из полисахаридов получают лекарственные средства, применяемые как ранозаживляющие, противовоспалительные Подтверждена возможность использования полисахаридов в качестве кровезамещающих растворов.

Пектины винограда, смородины и черники обладают значительной антифибринолитической активностью. Выраженный гемостатический эффект дают также альгинаты.

Была установлена многообразная биологическая активность полисахаридов растительного происхождения: антибиотическая, противовирусная, противоопухолевая, антидотная. Полисахариды растительного происхождения выполняют большую роль в уменьшении липемии и атероматоза сосудов благодаря способности давать комплексы с белками и липопротеидами плазмы крови.

Инулин служит запасным углеводом, встречается во многих растениях, главным образом семейства сложноцветных, а также колокольчиковых, лилейных, лобелиевых и фиалковых.

В клубнях и корнях георгины, нарцисса, гиацинта, туберозы, цикория и земляной груши (топинамбура) , скорцонера и овсяного корня содержание инулина достигает 10-12% (до 60% от содержания сухих веществ).

Инулин снижает уровень сахара, предотвращает осложнения при сахарном диабете, также применяется при ожирении, болезнях почек, артрите и других видах заболеваний. Он положительным образом влияет на обмен веществ. Инулин выводит из организма массу вредных веществ (тяжелые металлы, токсины), снижает риск возникновения сердечно-сосудистых заболеваний, укрепляет иммунную систему.

Часть инулина расщепляется в организме, нерасщепленная часть выводится из организма, увлекая за собой массу ненужных организму веществ - от тяжелых металлов и холестерина до различных токсинов. При этом инулин способствует усвоению витаминов и минералов в организме.

Кроме того, инулин оказывает иммуномодулирующее и гепатопротекторное действие, противодействуя возникновению онкологических заболеваний. Для усиления действия инулина в биодобавках его сочетают с соками других природных целителей, таких как сельдерей, петрушка, облепиха, шиповник, калина, женьшень, солодка, элеутерококк.

Природными источниками инулина являются топинамбур, одуванчик, цикорий, лопух, девясил.

Крахмал также применяется в медицине. Он используется как наполнитель, в хирургии для приготовления неподвижных повязок, как обволакивающее при заболеваниях ЖКТ.

В фармации крахмал используют для приготовления мазей и присыпок. Установлено, что крахмал снижает содержание холестерина в печени и сыворотке крови, способствует синтезу рибофлавина кишечными бактериями. Рибофлавин же, входя в ферменты и коферменты, способствует превращению холестерина в желчные кислоты и выведению их из организма, что имеет большое значение для предотвращения атеросклероза. Крахмал способствует интенсификации обмена жирных кислот. В детской практике и при заболеваниях кожи крахмал применяют в качестве присыпок. Внутрь и в клизмах применяют отвар, как обволакивающее средство.

Растения накапливают крахмал маленькими крупинками в стволах и стеблях, корнях, листьях, плодах и семенах. Картофель, маис, рис и пшеница содержат большие количества крахмала. Применение крахмала в медицине:

Камеди применяют для приготовления масляных эмульсий, таблеток, пилюль - в качестве связующего вещества. В медицине сырье, содержащее слизь, используют как отхаркивающее, мягчительное, противовоспалительное средство. Также камеди используются как эмульгаторы, обволакивающие и клейкие вещества для приготовления пилюль и таблеток (пилюльная масса). В медицине камеди используются как вспомогательные вещества при приготовлении ряда лекарственных форм.

Слизи, и камеди используют как обволакивающие и мягчительные средства благодаря их способности образовывать студни и коллоидные растворы, создающие защитный покров нервных окончаний слизистой оболочки зева, желудочно-кишечного тракта, бронхиол и т.д.

Биологическая роль слизей заключается в следующем: в качестве запасных веществ, предохраняют растение от высыхания, способствуют распространению и закрепления семян растений.

Применяются при лечении гастритов, язвенной болезни, колитов, энтероколитов, при отравлении некоторыми ядами, при заболеваниях дыхательных путей. Слизистые вещества способствуют замедлению всасывания и, следовательно, более длительному действию лекарственных средств в организме. Наружно применяются в виде припарок. В качестве слизистых веществ используют льняное семя (5-12% слизи), клубни ятрышника, ромашку аптечную, корень алтея, салеп (до 50% слизи), коровяк скипетровидный, череду трехраздельную, семена подорожника большого, листья подорожника большого, ланцетовидного и среднего, цветы липы и др. Биологическая роль камедей:

Предохраняют растения от инфицирования микроорганизмами, заливая образовавшиеся трещины и другие повреждения стволов.

Растительные полисахариды, в частности пектины, проявляют биологическую активность в отношении основных функций пищеварительной системы и могут применяться в виде натуральных комплексов, на основе которых был создан ряд препаратов: "Плантаглюцид" из листьев подорожника большого, включающий низкомолекулярные пектины; "Ламинарид" из морской капусты как слабительное средство; пектин из свеклы, вошедший в комплексный противоязвенный препарат "Флакарбин".

В качестве перспективных лекарственных средств противоязвенного действия предложены полисахаридные препараты соцветий ромашки и пижмы. Полисахариды из стеблей видов шток-роза по противоязвенной активности в эксперименте превосходят действие препарата "Плантаглюцид".

Пектины, благодаря кислотному характеру проявляют антимикробное действие в отношении грамположительных и грамотрицательных бактерий.

Пектины улучшают пищеварение, снижают процессы гниения в кишечнике и выводят ядовитые продукты обмена, образующиеся в самом организме; способствуют выработке в кишечнике витаминов группы В, особенно В12, жизнедеятельности и росту полезных бактерий в кишечнике, выведению излишнего количества холестерина. Пектиновые вещества нашли широкое применение при лечении поносов. Пектин яблок задерживает размножение гриппозного вируса "А", уменьшает последствия ртутного и свинцового отравления, способствует выведению свинца из костной ткани. В настоящее время яблочная диета, пектин и пектиновые вещества широко применяются за рубежом для лечения поносов и дизентерий у детей.

Пектины используются в качестве кровоостанавливающего средства. В настоящее время гемостатические свойства пектинов с успехом используют за рубежом при легочных кровотечениях, при кровотечениях из пищевода, желудка и кишечника, а также при желтухе, циррозе печени, тромбофлебите, гинекологических заболеваниях, в стоматологии и при гемофилии.

Наиболее распространенным пектиносодержащим сырьем являются цитрусовые (отжимы), яблоки (выжимки), сахарная свекла (жом), кормовой арбуз, корзинки подсолнечника, клубни топинамбура и некоторое другое сельскохозяйственное сырье.

Клетчатка, механически действуя на нервные окончания стенок кишечника, стимулирует его моторную функцию, стимулирует секрецию пищеварительных соков, придает пористость пищевой массе, обеспечивая более полный доступ к ним пищеварительных соков, повышает биологическую ценность пищевых продуктов, нормализует жизнедеятельность полезных кишечных микробов, способствует выведению из организма токсических продуктов экзо - и эндогенного происхождения. И, таким образом, способствует предупреждению и лечению заболеваний печени, гипертонии, атеросклероза, нормализации бактериальной флоры кишечника, стимулирует синтез витаминов группы В, особенно В2, и витамина К.

Продукты богатые клетчаткой - это спаржа, брокколи, брюссельская капуста, цветная капуста, сельдерей, кабачки, огурцы, чеснок, зеленые бобы, зеленый перец, салат-латук. Лук-порей, грибы, горошек, шпинат, пророщенные семена, помидоры. Фрукты - тоже прекрасный источник клетчатки, но они содержат много сахара (фруктозы).

В настоящее время известно более 20 высших растений, содержащих иммуностимулирующие полисахариды. Среди них дудник остролопастный, элеутерококк колючий, женьшень, календула, сафлор красильный, ромашка аптечная, эхинацея пурпурная, посконник пронзеннолистный. золотарник обыкновенный, омела белая, василистник желтый, коровяк высокий, рис посевной, бамбук, крапива двудомная, софора японская, фитолакка американская, золототысячник зонтиковидный, щавель, клевер, юкка, синеголовник критский, лиственница сибирская, лопух обыкновенный, безвременник осенний, виды шток-розы, алтей и др.

Иммуностимулирующая, в том числе противоопухолевая активность обусловлена активацией макрофагов и клеток-киллеров, усилением продуцирования интерферона, усилением фагоцитоза, увеличением выработки антител, повышением уровня иммуноглобулинов, сильным противовоспалительным действием.

Полисахариды повышают защитные силы организма против инфекции, особенно вирусной, в первую очередь при всех гриппозных инфекциях. В настоящее время показана возможность использования растительных полисахаридов в качестве фармакосанирующих препаратов, способствующих повышению резистентности организма.

Была доказана антигипоксическая активность водорастворимых полисахаридов и пектиновых веществ из коровяка высокого, цикория обыкновенного, омелы белой, женьшеня, фитолакки американской, фирмианы простой. Полисахариды омелы белой оказывают выраженное радиопротекторное действие при воздействии г-радиации.

Под влиянием полисахаридов цикория обыкновенного и коровяка высокого в сыворотке крови нормализовался уровень общего холестерина, снижалось содержание щелочной фосфатазы, что свидетельствует о наличии у них выраженного гепатопротекторного действия, сопоставимого с "Силибором". Данные соединения оказывают выраженную желчегонную активность. Подобное действие обнаружено у полисахаридов лопуха, одуванчика. Таким образом, установленная разносторонняя фармакологическая активность полисахаридов позволяет рассматривать их как возможный источник новых лекарственных средств.

4. Растения содержащие полисахариды

4.1 Растения, содержащие камеди

Астрагал шерстистоцветковый (Astragalus dasyanthus) семейства бобовых (Leguminosae).

Ботаническое описание. Рыхловетвистый кустарник высотой до 16-40см, с рыжевато-мохнатыми ветвями. Листья сложные, состоящие из 12-14 пар ланцетных или ланцетопродолговатых листочков. Соцветие - плотные головчатые кисти из 10-20 цветков. Плод - волосистый, овальный боб длиной 10-11мм. Время цветения май-июль.

Распространение. В диком виде произрастает в степной части Преднепровья, Волжско-Донского бассейна и Причерноморья. Также растет в степной и лесостепной зоне России - Воронежская, Курская, Волгоградская области, Ставрополье, Украина и Молдавия. Предпочитает участки с сохранившейся степной растительностью. Растет на открытых местах, в степи, на курганах и старых кладбищах, на полянах и опушках. К влаге не требователен, не выдерживает увлажнения и затенения.

Заготовка и хранение. Используется надземная часть - трава астрагала. Траву срезают в фазе цветения на высоте 5-7 см от земли. Заготовки сырья астрагала шерстистоцветкового в природе должны быть предельно сокращены, так как растение включено в Красную книгу.

Сушка производится быстро на чердаках или в хорошо проветриваемых сараях, под навесами, траву раскладывают слоем 3-5 см на бумаге или ткани, часто переворачивая. Сушку продолжают 5-7 дней.

Сырье представляет собой прямые стебли, густо облиственные, рыжевато-мохнатые, с непарноперистыми листьями длинной до 20 см. Листья состоят из 11-17 пар продолговато-овальных шелковисто опушенных листочков. Цветки густо опушенные, с желтым венчиком, мотылькового строения, собраны по 10-20 в плотные округлые кисть.

Готовое сырье упаковывают в тюки или мешки. Можно сушить сырье астрагала также в сушилках при температуре 40 - 60° С. Хранят в упакованном виде в сухих, хорошо проветриваемых помещениях на стеллажах или на подтоварниках. Срок хранения 1,5 года.

Химический состав . Астрагал шерстистоцветковый содержит камедь (трагакант), которую получают из естественных трещин и надрезов ствола. В состав камеди входят: 60% бассорина и 3-10% арабина, относящихся к полисахаридам. Также содержится крахмал, сахара, слизистые вещества, красящие вещества, органические кислоты.

Фармакологические свойства . Фармакологическое исследование астрагала впервые провела Е.В. Попова, показавшая, что настой растения обладает седативными и гипотензивными свойствами. Наряду с этим астрагал расширяет коронарные сосуды и сосуды почек, усиливает диурез.

Применение. Наиболее эффективно применение астрагала шерстистоцветкового при недостаточности кровообращения I - II степени и при лечении острого нефрита. Также его применяют при гипертонический болезни и хронической сердечно-сосудистой недостаточности.

Препараты. Настой травы астрагала.10г травы (2 столовые ложки) помещают в эмалированную посуду, заливают 200 мл (1 стаканом) горячей кипяченой воды, нагревают на кипящей водяной бане 15 мин, охлаждают около 45 мин, процеживают, доливают кипяченой водой до первоначального объема - 200 мл. Принимают по 2 - 3 столовые ложки 2 - 3 раза в день. Хранят не более 2 дней в прохладном месте

4.2 Растения, содержащие слизи

Алтей лекарственный (Althaea officinalis) семейства мальвовых (Malvaceae ).

Ботаническое описание. Многолетнее бархатисто-шелковистое травянистое растение высотой 1-1,5м с коротким толстым многоглавым корневищем и ветвистыми корнями. Листья очередные, лопастные, по краю зубчатые. Цветки бледно-розовые, крупные, в кистевидно-метельчатом соцветии. Плод дробный из 15-25 плодиков. Семена почковидные, темно-бурые, 2-2,5мм длины. Цветет и плодоносит в июле-августе.

Распространение. Алтей лекарственный встречается в средней и южной полосах Европейской части России, на Кавказе, на всей территории Украины и немного в Средней Азии. Растет обычно в сырых местах, в поймах рек, среди кустарников.

Заготовка и хранение . Лекарственным сырьем является корень алтея. Корни собирают весной или осенью, причем, растению должно быть менее 2 лет. Корни быстро моют в проточной холодной воде, чтобы не было выделения слизи, и разрезают на куски. Корни очищают от пробкового слоя, чтобы получить очищенный корень. Высушивают корень сразу после сбора: сначала провяливают три дня на солнце, а затем досушивают в специальных сушилках при температуре около 40 °С. Если корни были высушены правильно, то они сохраняют беловатую окраску и не темнеют. Реже заготавливают цветки и листья.

Готовое сырье бывает очищенным и не очищенным от пробкового слоя, но обязательно должно сохранить свой светлый цвет. Сухой корень при разламывании должен пылить, а при попадании на него воды на корне должна появляться слизь. Запаху корня алтея слабый, на вкус он может быть сладковатым и слизистым .

Хранить корни алтея лекарственного нужно в хорошо проветриваемом помещении, так как при влажности корни могут отсыреть и заплесневеть. В аптеках корень хранят в закрытых ящиках, порошок из корня - в стеклянных банках. На складах его можно хранить в мешках по 50 или 25 кг. При правильном хранении корень алтея может быть пригодным для лечебных целей три года.

Химический состав . Сухие корни алтея содержат слизь (35%), крахмал (37%), аспарагин, сахара, жирное масло, каротин и минеральные вещества. В листьях и ветках содержится небольшое количество эфирного твердого масла.

Фармакологические свойства. Алтей оказывает противовоспалительное, отхаркивающее или обволакивающее действие. В корнях алтея содержится большое количество полисахаридов, поэтому они обладают свойством набухать в водных настоях и покрывать тонким слоем кожу и слизистые оболочки. Этот слой защищает кожу и слизистые оболочки от вредных факторов, таких, как высыхание, холодный или сухой воздух и др.

Алтей был известен еще с древнейших времен. Его применяли уже в VII в. до н.э. Тогда он был известен под названием "алцей", что в переводе с греческого означает "исцеляющий"

Применение. Корни алтея широко применяются в медицинской практике всего мира. В ряде стран применяют листья и цветки. Алтейный корень применяют внутрь при заболеваниях дыхательных путей: бронхитах, трахеитах. Корень находит также применение также при заболеваниях желудочно-кишечного тракта: язвенной болезни желудка и двенадцатиперстной кишки, гастритах, колитах. Также он действует, как закрепляющее средство при поносах.

Наружно применяют в сборах как противовоспалительное и мягчительное в виде припарок, в виде полосканий горла и т.д.

Препараты. Настой из корня алтея. Мелко нарезанный корень в количестве 6 грамм заливают 100 мл воды, настаивают около 1 ч. Готовый настой должен быть прозрачным, желтоватого цвета. На вкус он должен быть сладким, слизистым; имеет слабый своеобразный запах. Принимают настой по 1 ст. л. через 2 ч.

Холодный настой из корней алтея готовят так: столовую ложку измельченных корней, заливают на час холодной кипяченой водой, процеживают через марлю, для сладости прибавляют сахара или меда. Принимают каждые 2 часа по столовой ложке 3-4 раза в день перед едой. Пьют такой настой, в частности, при экземе и псориазе.

4.3 Растения, содержащие пектиновые вещества

Пектинами богаты плоды клюквы, черной смородины, яблони, боярышника, аронии черноплодной, рябины обыкновенной, барбариса, сливы, крыжовника,

Рябина черноплодная (Aronia melanocarpa) семейства розоцветных (Rosaceae).

Ботаническое описание. Листопадный кустарник высотой до 1,5-2,5м. листья простые, цельные, пильчатые, обратнояйцевидные, очередные. Корневая система мощная, поверхностная, мочковатая, состоит из вертикально и горизонтально расположенных корней. Цветки пятерного типа, белые или розовые в щитковидных соцветиях. Плоды яблокообразные диаметром 8-10см, черного цвета с сизоватым налетом. Кожица плода плотная, мякоть при созревании почти черного цвета, свежий сок темно-рубинового цвета, сильно красящий. Семена темно-коричневые, морщинистые, длиной 2мм. Арония - самоопыляемое растение, почти не подвержено болезням. Цветет в мае, плодоносит в сентябре.

Распространение. Рябину черноплодную выращивают в различных районах страны как ценный плодовый и декоративный кустарник. Родина аронии - лесные районы США. Благодаря своей неприхотливости и зимостойкости она интродуцирована почти во всех эколого-географических районах бывшего СНГ, даже в тех, где затруднено возделывание других плодово-ягодных культур.

Стабильные урожаи арония дает в северных районах европейской части СНГ, в суровых условиях Западной и Восточной Сибири, Восточного Казахстана и Урала. Затраты на создание промышленных плантаций аронии в разных хозяйствах страны быстро окупаются. Размножают аронию семенами, вертикальными и горизонтальными отводками, делением куста, корнеотпрысками, зелеными черенками и прививкой.

Заготовка и хранение . Используются зрелые плоды. Вкус у них приятный кисловато-сладкий, терпкий. Арония характеризуется рядом ценных признаков: ежегодным хорошим плодоношением, ранним наступлением плодоношения, длительным продуктивным периодом, сохранением плодов после созревания на кустах до заморозков, хорошей зимостойкостью, малой требовательностью к почвам, отзывчивостью на удобрения, хорошей способностью к размножению. Лучшие вкусовые качества плоды приобретают в сентябре.

Арония является исключительно светолюбивой культурой. При густом размещении кустов или сильном загущении куста и при отсутствии обрезки урожайность плодов аронии резко снижается. Плоды находятся в основном на хорошо освещенных периферийных ветвях. Собирают плоды аронии в один прием в тару вместимостью 10 - 12 кг. Садоводы-любители получают с отдельных кустов до 15 - 30 кг плодов аронии.

Плоды аронии должны соответствовать Фармакопейной статье ФС 42-66-72 "Плод аронии черноплодной (рябины черноплодной) свежий" и техническим условиям ТУ 64-4-27-80 "Плод аронии черноплодной (рябины черноплодной) сухой". Плоды аронии должны быть чистыми, свежими, с влажностью 70 - 83%; недозрелых плодов не более 2%; листьев и стеблевых частей не более 0,5%; поврежденных вредителями плодов не более 0,5%; минеральных примесей не более 0,5%; Р-витаминных веществ не менее 1,5%.

Свежие плоды транспортируют в плодово-овощных ящиках массой до 40 кг в рефрижераторах или в обычных вагонах и машинах, если нахождение в пути не превышает 3 суток. На приемных пунктах плоды хранят не более 3 суток со дня сбора. Срок хранения при температуре не выше 5°С до 2 месяцев.

В последние годы для удобства транспортировки и хранения плоды аронии стали сушить. Сухие плоды должны содержать не менее 25% экстрактивных веществ, извлекаемых 20% -ным спиртом; влаги не более 18%. Не допускается наличие плесени и гнили, а также устойчивого постороннего запаха. В сдаваемой партии разрешается содержание плодов несформировавшихся, недозрелых и поврежденных вредителями не более 5%; листьев и стеблевых частей не более 5%; минеральной примеси не более 0,5%. Срок хранения сухих плодов не более 2 лет.

Химический состав. В плодах аронии черноплодной найдены много витамина Р, аскорбиновой кислоты, сахара (до 9,5%), а также органические кислоты, каротин, много йода. Обнаружены флавоноиды, антацианы. По содержанию кислоты плоды рябины черноплодной значительно превосходят мандарины, землянику, малину, красную смородину. Витамина Р в ней больше, чем в других видах рябин.

Сорванные плоды рябины долго не портятся, так как в них содержатся вещества, подавляющие размножение микробов. Плоды аронии содержат сахара (до 10%), яблочную и другие органические кислоты (до 1,3%), пектины (до 0,75%) и дубильные вещества (до 0,6%). В мякоти плодов найдены также амигдалин, кумарин и другие соединения. Из микроэлементов особо выделяются железо - 1,2 мг, марганец - 0,5 и йод - 5 - 8 мг на 100 г мякоти плодов.

Фармакологические свойства. Плоды аронии черноплодной способствуют понижению кровяного давления, являются хорошим профилактическим и лечебным средством при гипертонии, кроме того, укрепляют стенки сосудов. Органические соединения йода, находящиеся в аронии в достаточном количестве, выводят из организма избыток холестерина, благотворно влияют на функцию щитовидной железы. В связи с большим количеством веществ, обладающих Р-витаминной активностью, и присутствием витамина К арония способствует нормализации свертываемости крови, что бывает важно при лечении целого ряда заболеваний.

Применение. В последние годы плоды черноплодной рябины стали использоваться для лечения (в виде экстракта и настоя), их назначают при гипертонической болезни и дефиците йода. Сок аронии черноплодной применяют в начальной стадии гипертонической болезни, при кровотечениях различного происхождения, при атеросклерозе, анацидных гастритах. Плоды аронии принимают при гипертонической болезни, гепатитах, аллергиях, отравлениях.

Препараты. Сок рябины черноплодной. Свежий натуральный сок рябины черноплодной получают из мезги путем прессования плодов. Он имеет бордовый цвет и кисловато-горький вяжущий вкус. Сок назначают по 50г на прием 3 раза в день за полчаса до еды.

Отвар из плодов аронии.1 столовую ложку сушеных ягод залить 1,5 стакана кипятка, настоять (суточная доза). Принимать отвар в течение суток 3 раза в день перед едой.

4.4 Растения, содержащие крахмал

Картофель (Solanum tuberosum) семейства пасленовых (Solanaceae).

Ботаническое описание. Однолетнее травянистое, кустистое растение с подземными побегами, образующими клубни. Стебли гранистые с прерывисто персторассеченными листьями. Цветки белые, фиолетовые, 2-4см в диаметре, с колесовидным венчиком. Соцветие состоит из 2-3 завитков. Плод - шаровидное многосеменная ягода. Семена желтого цвета, очень мелкие. Цвет клубней различный: красный, белый, фиолетовый.

Распространение. Картофель обыкновенный родом из Южной Америки. В Европу завезен в XVI в. Первоначально его возделывали как декоративное растение, а с конца XVII в. - как пищевое. В настоящее время культивируется много сортов картофеля, отличающихся по хозяйственным и пищевым качествам клубней.

Заготовка и хранение. Лекарственным сырьем служат клубни и цветки. Клубни выкапывают осенью, хранят в специальных хранилищах, в буртах, ямах, траншеях при температуре +2°С с колебаниями от 1 до 3°С, при влажности воздуха 90%.

Химический состав. В плодах картофеля найдены кумарин и паракумариновая кислота, в соцветиях - флавоноиды, в кожице клубней - фенольные кислоты. В клубнях содержатся белки и углеводы (20-40% крахмала), пектины, сахариды, клетчатка, почти все витамины группы В, а также витамины С, Р, К, РР и А, минеральные соли (особенно калия и фосфора), макро - и микроэлементы, органические кислоты и стерины. В ростках и листьях картофеля содержится шесть различных гликоалкалоидов вместо одного соланина, как полагали раньше. Соланин - кристаллическое вещество горького вкуса, плохо растворим в воде, но растворим в спиртах.

Фармакологические свойства. В последние десятилетия на картофель обращают всё более пристальное внимание химики и медики в связи с тем, что в различных органах растения, особенно в кожуре клубней, цветках, листьях и стеблях ботвы, выявлено высокое содержание нескольких глюкоалкалоидов, главными из которых являются соланин и чаконин.

В больших дозах эти вещества, близкие по химическому строению к сердечным гликозидам ландыша и наперстянки, вызывают тяжкие отравления даже у крупных животных, выражающиеся в оглушении, появлении шаткой походки, расширении зрачков, поражении желудочно-кишечного тракта, нарушении дыхания, сердечной деятельности и общего кровообращения. Однако в умеренных дозах, назначаемых врачом, соланин используется как лечебное средство. Он вызывает стойкое и длительное снижение артериального давления, увеличивает амплитуду, делает реже ритм сердечных сокращений, обладает выраженным противовоспалительным, болеутоляющим и противоаллергическим действием, оказывает положительное влияние на течение и исход ожогового шока и ряда других заболеваний.

Применение. В медицине сок свежего картофеля (особенно розового) используют как противокислотное средство при гастритах с повышенной секреторной активностью, язвенной болезни и запорах. Принимают его по 100-150 мл за 20 мин до еды. Сок умеренно стимулирует сердечно-сосудистую систему. Им полощут полость рта и глотки при воспалительных процессах. Кашицей тертого картофеля лечат ожоги, панариции и незаживающие раны. При этом не только уменьшаются боли и воспаление, но и улучшаются процессы очищения и заживления ран. Отварным картофелем проводят ингаляции, делают согревающие компрессы.

В народной медицине отвар цветов применяют для снижения артериального давления и стимуляции дыхания, что связано с наличием в них соланина.

4.5 Растения, содержащие инулин

Инулин - это природный полисахарид, получаемый из клубней и корней некоторых растений. Больше всего инулина содержит топинамбур, много его в цикории, чесноке, одуванчиках и в модной ныне эхинацее.

Цикорий обыкновенный (Cichorium intubus) семейства сложноцветных (Compositae) /

Ботаническое описание . Многолетнее травянистое растение с хорошо развитым стержневым, чаще ветвистым корнем и прямостоячим, шершавым, ребристым, с оттопыренными ветвями стеблем. Прикорневые листья, выемчато-перистораздельные, с окрашенной главной жилкой, собраны в розетку. Стеблевые листья ланцетные, острозубчатые, стеблеобъемлющие. Цветочные корзинки красивые, голубые, состоят из язычковых цветков. Плод - трех-пятигранная семянка с короткой пленчатой коронкой. Цветет цикорий с конца июня до сентября.

Распространение. Широко распространен в средней полосе и на юге европейской части СНГ, на Кавказе и в Средней Азии, растет по пустырям, канавам, вдоль дорог, около посевов как сорное растение.

Заготовка и хранение . Корни цикория собирают осенью - в сентябре, октябре. Соцветия - во время цветения растения.

Химический состав . Корни содержат белковые вещества, алкалоиды, полисахарид инулин, гликозид интибин, сахарозу, пентозаны, витамины группы В, горечи, пектин, смолы. Цветки-гликозид цикориин, листья - инулин, млечный сок - горечи.

Фармакологические свойства. Согласно экспериментальным данным, настой цветков дикорастущего цикория оказывает успокаивающее действие, тонизирует работу сердца, имеет желчегонную активность. Цикорий усиливает мочеотделение и желчеобразование, работу пищеварительных желез, регулирует обмен веществ, обладает противомикробными, противовоспалительными и вяжущими свойствами. В народной медицине применяется в виде водного настоя и жидкого экстракта при сахарном диабете.

Применение . Цикорий - один из наиболее используемых источников инулина. Еще древние египтяне употребляют цикорий в пищу. Наибольшее признание цикорий завоевал при лечении заболеваний желудочно-кишечного тракта и печени. Растение используется как желудочное, желчегонное, слабительное средство и применяется для лечения заболеваний печени, селезенки, почек, кожных болезней. Отвары корней и соцветий обладают бактерицидным и вяжущим эффектом.

В народной медицине цикорий издавна применяли для лечения заболеваний желудка, кишечника, печени, при воспалении мочевого пузыря и затрудненном мочеиспускании, малокровии, опухолях селезенки, кровохарканье, общей слабости, как кровоочистительное при кожных заболеваниях и успокаивающее при истерии. Отвар семян применяли как жаропонижающее, потогонное и обезболивающее средство. Настой цветков - при повышенной возбудимости и болях в сердце. Сок цикория рекомендуют при малокровии, общей слабости, малярии.

Ванны из отвара травы считают действенными при золотухе, диатезе, различных поражениях суставов, припарки из травы - при нарывах. Золу травы, смешанную со сметаной, втирали в пораженные экземой участки кожи.

Препараты. Настой всего растения цикория. Заварить 1 л кипятка 40 г растения, настоять в теплом месте 3 ч, процедить. Пить по 0,5 стакана 3 раза в день для удаления излишней желчи при желтухе, при циррозе печени, для очищения печени и селезенки, при опухолях селезенки, засорении желудка, болях в желудочно-кишечном тракте. При отравлений желудка принимать ежедневно в течение 3-4 дней перед завтраком и вечером по 1 стакану.

Отвар из травы цикория. Заварить 1 стаканом кипятка 1 ст. л. измельченной сухой или свежей травы, греть на малом огне 10 мин, настоять 15 мин, процедить. Пить как чай при поносе. Наружно отвар используют в виде примочек, обмываний, ванн для лечения кожных сыпей, угрей, фурункулов, гнойных ран, гнойничковых заболеваний кожи, экзем, диатеза у детей. Отвар корня цикория. Заварить 1 стаканом кипятка 1 ст. л. корня, греть на малом огне 20 мин, процедить. Пить по 1 ст. л.5-6 раз в день или без дозировки как чай.

Заключение:

В настоящее время интерес к полисахаридам существенно возрос. Если ранее полисахариды, в основном, применялись в качестве вспомогательных веществ в производстве различных лекарственных форм, то в последние годы их в большей степени рассматривают как биологически активные вещества. В технологии лекарственных средств полисахариды природного и синтетического происхождения применяются преимущественно в качестве формообразователей, загустителей и стабилизаторов в мазях и линиментах.

Лекарственные растения и фитоэкстракты, содержащие полисахариды, используются в качестве лекарственных и профилактических средств. Применение целебных трав в традиционной медицине сейчас особенно актуально. У растений есть масса преимуществ по сравнению с химическими медикаментозными препаратами. Основные плюсы их применения - отсутствие побочных эффектов и комплексное воздействие на организм. Проблема здоровья людей считается наиболее актуальной проблемой современной медицины, поэтому фитопрепараты играют весомую роль в охране, а также улучшении и укреплении здоровья миллионов людей.

В настоящее время в медицине широкое применение нашли препараты на основе полисахаридов, полученных из высших (пектины) и низших растений (альгинаты, каррагинаны), вторичного сырья животного происхождения (хитозан), грибов (крестин) и др. Полисахариды оказывают самое разнообразное действие на организм человека. За последние годы во многих лабораториях мира из состава различных растений стали выделять весьма ценные полисахариды, обладающие противоядными, ранозаживляющими, иммуностимулирующими, общеукрепляющими, противомикробными, а также противоопухолевыми свойствами. Ученые разных стран мира неустанно работают в данном направлении, раскрывают глубоко спрятанные тайны растительного мира.

Список литературы:

1. Виноградов Т.А., Гажев Б.Н. Практическая фитотерапия. - М.: Эксмо-Пресс, 2001.

2. Войс Р.Ф., Финтельманн Ф. Фитотерапия / пер. с нем. - М., 2004.

3. Георгиевский В.П., Комисаренко Н.Ф., Дмитрук С.Е. Биологически активные вещества лекарственных растений. - Новосибирск, 1990.

4. Действие полисахаридов - http://www.ilonacat.ru/zbk454. shtml

5. Куркин В.А. Фармакогнозия. - Самара: ООО "Офорт", ГОУВПО СамГМУ, 2004.

6. Оводов Ю.С. Полисахариды цветковых растений: структура и физиологическая активность // Биоорганическая химия. 1998. Т.24, № 7. С.483-501.

7. Павлов М. Энциклопедия лекарственных растений. - М., 1998.

8. Пронченко Г.Е. Лекарственное растительное сырье. - М., 2002.

Другие похожие работы, которые могут вас заинтересовать.вшм>

Существует четыре основных класса сложных биоорганических веществ: белки, жиры, нуклеиновые кислоты и углеводы. Полисахариды принадлежат к последней группе. Несмотря на "сладкое" название, большинство из них выполняет совсем не кулинарные функции.

Полисахарид - это что?

Вещества группы также называют гликанами. Полисахарид - это сложная полимерная молекула. Она составлена из отдельных мономеров - моносахаридных остатков, которые объединены с помощью гликозидной связи. Проще говоря, полисахарид - это молекула, построенная из объединенных остатков более Количество мономеров в полисахариде может варьироваться от нескольких десятков до ста и больше. Строение полисахаридов может быть как линейным, так и разветвленным.

Физические свойства

Большинство полисахаридов нерастворимы или плохо растворимы в воде. Чаще всего они бесцветные или желтоватые. В большинстве своем полисахариды не обладают запахом и вкусом, но иногда он может быть сладковатым.

Основные химические свойства

Среди особых химических свойств полисахаридов можно выделить гидролиз и образование производных.

  • Гидролиз - это процесс, который происходит при взаимодействии углевода с водой при участии ферментов или катализаторов, таких как кислоты. Во время такой реакции полисахарид распадается на моносахариды. Таким образом, можно сказать, что гидролиз - процесс, обратный полимеризации.

Гликолиз крахмала можно выразить следующим уравнением:

  • (С 6 Н 10 О 5) n + n Н 2 О = n С 6 Н 12 О 6

Так, при реакции крахмала с водой под действием катализаторов мы получаем глюкозу. Количество ее молекул будет равно количеству мономеров, образовывавших молекулу крахмала.

  • Образование производных может происходить при реакциях полисахаридов с кислотами. В таком случае углеводы присоединяют к себе остатки кислот, вследствие чего образуются сульфаты, ацетаты, фосфаты и т. д. Кроме того, может происходить присоединение остатков метанола, что приводит к образованию

Биологическая роль

Полисахариды в клетке и организме могут выполнять следующие функции:

  • защитную;
  • структурную;
  • запасающую;
  • энергетическую.

Защитная функция заключается прежде всего в том, что из полисахаридов состоят клеточные стенки живых организмов. Так, растений состоит из целлюлозы, грибов - из хитина, бактерий - из муреина.

Кроме того, защитная функция полисахаридов в организме человека выражается в том, что железами выделяются секреты, обогащенные этими углеводами, которые защищают стенки таких органов как желудок, кишечник, пищевод, бронхи и т. д. от механических повреждений и проникновения болезнетворных бактерий.

Структурная функция полисахаридов в клетке заключается в том, что они входят в состав плазматической мембраны. Также они являются компонентами мембран органоидов.

Следующая функция заключается в том, что основные запасные вещества организмов являются именно полисахаридами. Для животных и грибов это гликоген. У растений запасным полисахаридом является крахмал.

Последняя функция выражается в том, что полисахарид - это важный источник энергии для клетки. Получить ее из такого углевода клетка может путем его расщепления на моносахариды и дальнейшего окисления до углекислого газа и воды. В среднем при расщеплении одного грамма полисахаридов клетка получает 17,6 кДж энергии.

Применение полисахаридов

Эти вещества широко используются в промышленности и медицине. Большинство из них добываются в лабораториях путем полимеризации простых углеводов.

Наиболее широко используемыми полисахаридами являются крахмал, целлюлоза, декстрин, агар-агар.

Применение полисахаридов в промышленности
Название вещества Использование Источник
Крахмал Находит применение в пищевой промышленности. Также служит сырьем для спирта. Применяется для изготовления клея, пластмасс. Кроме того, используется и в текстильной промышленности Получают из клубней картофеля, а также из семян кукурузы, рисовой сечки, пшеницы и других богатых крахмалом растений
Целлюлоза Используется в целлюлозно-бумажной и текстильной промышленности: из нее изготавливают картон, бумагу, вискозу. Производные целлюлозы (нитро-, метил-, ацетилцеллюлоза и др.) находят широкое применение в химической промышленности. Из них же производят синтетические волокна и ткани, искусственную кожу, краски, лаки, пластмассы, взрывчатку и многое другое Добывают это вещество из древесины, в основном хвойных растений. Также есть возможность получения целлюлозы из конопли и хлопка
Декстрин Является пищевой добавкой Е1400. Также применяется при изготовлении клеящих веществ Получают из крахмала путем термической обработки
Агар-агар Это вещество и его в качестве стабилизаторов при изготовлении продуктов питания (например, мороженого и мармелада), лаков, красок Добывают из бурых водорослей, так как он является одним из компонентов их клеточной оболочки

Теперь вы знаете, что такое полисахариды, для чего они используются, какова их роль в организме, какими физическими и химическими свойствами они обладают.

Полисахариды. Крахмал, Целлюлоза.

На этой странице мы рассмотрим несахароподобные полисахариды .


Полисахариды - общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов .


Важнейшие представители несахароподобных полисахаридов крахмал и целлюлоза (клетчатка).


Эти углеводы во многом отличаются от моно- и олигосахаридов . Они не имеют сладкого вкуса, большинство из них не растворимо в воде. По этой причине их называют несахароподобными (в отличие от сахароподобных олигосахаридов, которые также относятся к полисахаридам).


Олигосахариды имеют знаительно меньший размер молекул и свойства, близкие к моносахаридам.


Несахароподобные полисахариды представляют собой высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов , затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов .

Химическое строение полисахаридов.

По химической природе полисахариды стоит рассматривать как полигликозиды (полиацетали). Каждое звено моносахарида связано гликозидными связями с предыдущим и последующим звеньями.


При этом для связи с последующим звеном предоставляется полуацетальная (гликозидная) гидроксильная группа , а с предыдущим – спиртовая гидроксильная группа .

На конце цепи находится остаток восстанавливающегося моносахарида. Но поскольку доля концевого остатка относительно всей макромолекулы весьма невелика, то полисахариды проявляют очень слабые восстановительные свойства .


Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и высокую устойчивость в щелочной средах.


Полисахариды имеют большую молекулярную массу. Им присущ характерный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул.


Наряду с первичной структурой , т.е. определённой последовательностью мономерных остатков, важную роль играет вторичная структура , определяемая пространственным расположением молекулярной цепи.

Классификация полисахаридов.

Полисахариды можно классифицировать по разным признакам.


Полисахаридные цепи могут быть:

  • разветвлёнными или
  • неразветвлёнными (линейными).

Также, различают:

  • гомополисахаридами - полисахариды, состоящие из остатков одного моносахарида,
  • гетерополисахариды - полисахариды, состоящие из остатков разных моносахаридов.

Наиболее изучены гомополисахариды .


Их можно разделить по их происхождению:

  • гомополисахариды растительного происхождения
  • - Крахмалл,
    - Целюлоза,
    - Пектиновые вещества и т.д.
  • гомополисахариды животного происхождения
  • - Гликоген,
    - Хитин и т.д.
  • гомополисахариды бактериального происхождения
  • - Гекстраны.

Гетерополисахариды , к числу которых относятся многие животные и бактериальные полисахариды, изучены меньше, однако они играют важную биологическую роль.


Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы.


Для полисахаридов используется общее название гликаны .


Гликаны могут быть:

  • гексозанами (состоят из гексоз),
  • пентозанами , (состоят из пентоз).

В зависимости от природы моносахарида различают:

  • глюканы (в основе – моносахарид глюкоза ),
  • маннаны (в основе – моносахарид манноза ),
  • галактаны (в основе – моносахарид галактоза ) и т.п.

Крахмал

Крахмал (С 6 Н 10 О 5)n – белый (под микроскопом зернисый) порошок, нерастворимый в холодной воде. В горячей воде крахмал набухает, образуя коллоидный раствор (крахмальный клейстер). С раствором йода даёт синее окрашивание (характерная реакция).


Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.

Химическое строение крахмала

Крахмал представляет собой смесь двух полисахаридов, построенных из глюкозы (D-глюкопиранозы): амилозы (10-20%) и амилопектина (80-90%).


Дисахаридным фрагментом амилозы является мальтоза . В амилозе D-глюкопиранозные остатки связаны альфа(1-4) гликозидными связями.


По данным рентгеноструктурного анализа макромолекула амилозы свёрнута в спираль . На каждый виток спирали приходится 6 моносахаридных звеньев.


Амилопектин в отличие от амилозы имеет разветвлённое строение .

В цепи D-глюкопиранозные остатки связаны альфа(1-4)-гликозидными связями, а в точках разветвления - бета(1-6)-гликозидными связями. Между точками разветвления располагается 20-25 глюкозидных остатков.


Цепь амилозы включает от 200 до 1000 глюкозных остатков, молекулярная масса
160 000. Молекулярная масса амилопектина достигает 1-6 млн.

Гидролитическое расщепление крахмала.

В пищеварительном тракте человека и животных крахмал подвергается гидролизу и превращается в глюкозу , которая усваивается организмом.


В технике превращение крахмала в глюкозу (процесс осахаривания) осуществляется путём кипячения его в течение нескольких часов с разбавленной серной кислотой. Впоследствии серную кислоту удаляют. Получается густая сладкая масса, так называемая крахмальная патока , содержащая, кроме глюкозы, значительное количество других продуктов гидролиза крахмала. Патока применяется для приготовления кондитерских изделий и различных технических целей.


Если требуется получить чистую глюкозу , то кипячение крахмала ведут дольше. Этим достигается более высокая степень гидролиза крахмала .


При нагревании сухого крахмала до 200-500 град. С происходит частичное разложение его и получается смесь менее сложных, чем крахмал полисахаридов, называемых декстринами .


Разложением крахмала на декстрины объясняется образование блестящей корки на печёном хлебе. Крахмал муки, превращённый в декстрины, легче усваивается вследствие большей растворимости.

Гликоген

В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала .


Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц).

Химическое строение гликогена.

По строению гликоген подобен амилопектину (структурную формулу см. выше). Но молекулы гликогена значительно больше молекул амилопектина и имеют более разветвленную структуру. Обычно между точками разветвления содержится 10-12 глюкозных звеньев, а иногда даже 6 .


Сильное разветвление способствует выполнению гликогеном энергетической функции , так как только при наличии большого числа концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы .


Молекулярная масса у гликогена необычайно велика. Измерения показали, что она равна 100 млн . Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остаётся внутри клетки, пока не возникнет потребность в энергии.

Функции гликогена в метаболизме.

Гликоген является основной формой хранения глюкозы в животных клетках.


Гликоген образует энергетический резерв , который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы .


Гликогеновый запас , однако, не столь ёмок в калориях на грамм, как запас триглицеридов (жиров ). Он имеет скорее локальное значение . Только гликоген, запасённый в клетках печени (гепатоциты) может быть переработан в глюкозу для питания всего организма.


Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы.


Аналогично гликогену в животных организмах, в растениях такую же роль резервного полисахарида выполняет амилопектин , имеющий менее разветвлённое строение. Меньшая разветвлённость связана с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза (клетчатка)

– наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений .


Наиболее чистая природная целлюлоза хлопковое волокно – содержит 85-90% целлюлозы . В древесине хвойных деревьев целлюлозы содержится около 50% .

Химическое строение целлюлозы

Структурной единицей целлюлозы является D-глюкопираноза , звенья которой связаны бета(1-4)-гликозидными связями.


Биозный фрагмент целлюлозы представляет собой целлобиозу . Макромолекулярная цепь не имеет разветвлений, в ней содержится от 2500 до 12 000 глюкозных остатков , что соответствует молекулярной массе от 400 000 до 1-2 млн .


Бета-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюлозы имеет строго линейное строение . Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.


Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений .


Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта , но она является необходимым для питания баластным веществом .

Использование целлюлозы

Значение целлюлозы очень велико. Достаточно указать, что огромное количество хлопкового волокна идёт для выработки хлопчатобумажных тканей.


Из целлюлозы получают бумагу и картон, а путём химической переработки – целый ряд разнообразных продуктов: искусственное волокно, пластические массы, лаки, этиловый спирт.


Большое практическое значение имеют эфирные производные целлюлозы : ацетаты (искусственный шёлк), ксантогенты (вискозное волокно, целлофан), нитраты (взрывчатые вещества, коллоксилин) и др.

Полисахариды 2-го порядка (полиозы). Большая часть углеводов, входящих в группу полисахаридов 2-го порядка, представляет собой вещества с большой молекулярной массой, дающие коллоидные растворы. При изучении химической природы высокомолекулярных полисахаридов очень трудным является получение их в чистом виде. Перегонка этих веществ с целью их очистки невозможна, а ряд других веществ, в частности минеральные соли и белки, присутствующие в растениях, затрудняют получение чистых препаратов этих углеводов. При изучении химического строения полисахаридов 2-го порядка очень большую роль сыграли методы введения в их молекулу различных органических радикалов, например метильного СН3- или ацетильного СНЗ-СО-. Метилирование и ацетилирование, проводимые в мягких условиях, позволяют получать препараты метильных и ацетильных производных высокомолекулярных полисахаридов большей чистоты, чем исходные вещества. Вместе с тем введение метильных или ацетильных радикалов в молекулу полисахарида сильно облегчает определение структуры входящих в его состав моносахаридов, а также химической природы связей, соединяющих остатки молекул отдельных моносахаридов. Весьма важным методом изучения высокомолекулярных полисахаридов является их частичный кислотный или ферментативный гидролиз; с помощью мягкого кислотного гидролиза было показано, что целлобиоза - основная структурная единица клетчатки. С помощью ферментов было установлено, что мальтоза представляет собой основной «строительный кирпичик» крахмала.

Высокомолекулярные углеводы чрезвычайно важны в обмене веществ у растений и животных, в питании животных и человека, в ряде отраслей промышленности. Так, крахмал является запасным углеводом растений, составляющим большую часть веществ, входящих в состав многих важнейших пищевых продуктов: муки, хлеба, картофеля и круп. Пектиновые вещества содержатся в большом количестве во фруктах, ягодах, стеблях (лен) и корнеплодах (сахарная свекла) и играют важную роль при промышленной переработке всех этих продуктов растительного происхождения. Клетчатка не усваивается желудочно-кишечным трактом человека, но она имеет огромное промышленное значение. Из клетчатки состоят хлопок, бумага, льняные ткани, она используется для изготовления искусственного шелка (вискозы) и взрывчатых веществ.

Полисахарид: крахмал

Не является химически индивидуальным веществом. В растениях он находится в виде крахмальных зерен, различающихся по своим свойствам и химическому составу как в одном и том же растении, так особенно в различных растениях.

Крахмальные зерна. Крахмальные зерна имеют овальную, сферическую или неправильную форму. Размеры (диаметр) крахмальных зерен колеблются в пределах от 0,002 до 0,15 мм. Наиболее крупные крахмальные зерна у картофеля, а самые мелкие - у риса и гречихи. Характерная форма крахмальных зерен дает возможность легко различать их под микроскопом, что используется для обнаружения примеси одного продукта к другому (например, кукурузной или овсяной муки к пшеничной). Крахмальные зерна разделяются на простые и сложные: простые зерна представляют собой однородные образования (крахмальные зерна картофеля, пшеницы, ржи); сложные зерна являются сочетанием более мелких частиц (крахмальные зерна овса и риса). Однако разделение зерновых культур на культуры, имеющие простые и сложные крахмальные зерна, весьма условно. Например, наряду с простыми крохмальными зернами у пшеницы попадаются также сложные и, наоборот, среди преобладающих сложных у овса попадаются и простые. Плотность крахмала равна в среднем 1,5. При исследовании крахмальных зерен в поляризационном микроскопе обнаруживается, что они имеют двойное лучепреломление, т. е. представляют собой кристаллическое тело. Действительно, рентгенографические исследования показали, что крахмальные зерна обладают кристаллической структурой.

Свойства крахмала. Характерным свойством крахмала является его способность окрашиваться в синий цвет при добавлении раствора йода в водном растворе иодистого калия. Пользуясь этим реактивом, можно обнаружить очень малые количества крахмала. Появление синего цвета при добавлении йода объясняется, по-видимому, образованием комплексных и адсорбционных соединений между иодом и крахмалом. В холодной воде крахмальные зерна только лишь набухают, но не растворяются. Если взвесь крахмальных зерен в воде постепенно нагревать, то они будут набухать все сильнее и, наконец, при определенной температуре крахмал образует вязкий коллоидный раствор, называемый крахмальным клейстером. Температура, при которой происходит это изменение крахмала, называется температурой клейстеризации. Крахмал на 96,1-97,6% состоит из полисахаридов, образующих при кислотном гидролизе глюкозу. Содержание минеральных веществ в крахмале от 0,2 до 0,7%, они представлены в основном фосфорной кислотой. В крахмале найдены также некоторые высокомолекулярныe жирные кислоты и пальмитиновая, стеариновая и др., содержание которых достигает 0,6%. Эти жирные кислоты адсорбированы на полисахаридной фракции крахмала; они могут быть удалены из него экстракцией нейтральными органическими растворителями, например метиловым спиртом. Фосфорная кислота в одних видах крахмала - кукурузном, пшеничном и рисовом - представляет собой примесь, удаляемую экстракцией теплой водой, спиртом или диоксаном, а в других, например в картофельном, она связана сложноэфирной связью с углеводной частью. Наличие такой прочной химической связи фосфорной кислоты в картофельном крахмале доказывается тем, что при его кислотном или ферментативном гидролизе получается глюкозо-6-фосфат. Heкоторые исследователи придают большое значение наличию в картофельном крахмале химически связанной фосфорной кислоты, полагая что именно от нее зависят многие физические и химические свойства крахмала. Однако взгляд этот в настоящее время не имеет надежных доказательств. Углеводная часть крахмала состоит из полисахаридов двух типов, различающихся по своим физическим и химическим свойствам, - амилозы и амилопектина. Амилоза легко растворяется в теплой воде и дает растворы со сравнительно невысокой вязкостью. Амилопектин растворяется в воде лишь при нагревании под давлением и дает очень вязкие растворы. Молекулярная масса амилозы -3х100 000-1000 000, а у амилопектина достигает сотен миллионов. Растворы амилозы весьма нестойки, и при стоянии из них выделяются кристаллические осадки. Амилопектин, наоборот, дает чрезвычайно стойкие растворы.

Амилоза окрашивается раствором йода в синий цвет, а амилопектин - в сине-фиолетовый. Установлена, что окрашивание амилозы иодом сопровождается образованием комплексного химического соединения. При этом молекулы иода располагаются внутри спирально изогнутых цепочек амилозы. Окрашивание амилопектина иодом, по-видимому, является результатом образования как комплексных, так и адсорбционных соединений. Содержание амилозы и амилопектина в крахмале разных растений определено лишь в последние годы после того, как были разработаны достаточно точные методы. Важнейшие из этих методов следующие: 1) экстрагирование амилозы горячей водой; 2) осаждение амилозы из растворов с помощью бутилового и других спиртов; 3) избирательная адсорбция амилозы на клетчатке; 4) потенциометрическое титрование иодом.

Анализы различных крахмалов, проведенные с помощью указанных методов, дали следующие результаты: картофельный крахмал содержит 19-22% амилозы и 78-81% амилопектина; пшеничный - 24% и 76% соответственно; кукурузный - 21-23% и 77-79% соответственно; рисовый крахмал - 17 и 83% соответственно. Крахмал яблок состоит только из амилозы.

Необходимо отметить, что содержание амилозы и амилопектина в крахмале может изменяться в зависимости от сорта растения и от того, из какой части растения он получен. Например, в этом смысле различаются крахмалы круглых и мозговых горохов, крахмал из листьев и клубней картофеля или же крахмал из зерна различных сортов кукурузы. Если содержание амилозы в крахмале из клубней картофеля составляет 22%, то в крахмале из молодых побегов картофеля оно равно 46%. Если в крахмале из зерна обычной кукурузы содержится 22% амилозы, то в крахмале так называемой восковидной кукурузы (Zea mays carina) амилоза отсутствует полностью, вследствие чего крахмал из зерен этого растения окрашивается иодом в красно-коричневый цвет. С другой стороны, выведены сорта кукурузы, крахмал которых содержит до 82% амилозы. Соотношение амилозы и амилопектина в крахмале изменяется также во время созревания кукурузного зерна. При кипячении с кислотами крахмал превращается в глюкозу. При более слабом воздействии кислот образуется так называемый «растворимый крахмал», часто применяемый в лабораториях. Под действием фермента амилазы, содержащегося в особенно большом количестве в проросшем зерне, в слюне и в соке, выделяемом поджелудочной железой, происходит ферментативное осахаривание крахмала - он расщепляется с образованием в конечном счете мальтозы.

Полисахариды: декстрины

В качестве промежуточного продукта при гидролизе крахмала в большем или меньшем количестве образуются полисахариды разной молекулярной массы - декстрины. На первых стадиях гидролиза получаются декстрины, мало отличающиеся от крахмала по размерам молекулы и по свойствам. С иодом они дают синюю или фиолетовую окраску. По мере дальнейшего гидролиза молекулярная масса декстринов понижается, увеличивается их способность восстанавливать фелингову жидкость, и они от иода начинают окрашиваться в темно-бурый, затем в красный цвет и, наконец, перестают давать реакцию с иодом. В соответствии со свойствами различают следующие виды декстринов: 1) амилодекстрины, окрашивающиеся раствором иода в фиолетово-синий цвет и представляющие собой белые порошки, растворимые в 25% спирте, но осаждаемые 40% спиртом; удельное вращение амилодекстринов колеблется от + 190 до + 196 С; 2) эритродекстрины, окрашивающиеся иодом в красно-бурый цвет; растворяются в 55% этиловом алкоголе, но осаждаются при концентрации его, равной 65%; удельное вращение эритродекстринов D = + 194 С; из теплых алкогольных растворов они кристаллизуются в виде сферокристаллов; 3) ахроодекстрины, не окрашивающиеся иодом, растворимые в 70% спирте, при выпаривании горячих спиртовых растворов образуют сферокристаллы; удельное вращение + 192 С; 4) мальтодекстрины не дают реакции с иодом и не осаждаются спиртом, удельное вращение от + 181 до + 183 С.

Полисахарид: инулин

Высокомолекулярный углевод, растворимый в воде, осаждающийся из водных растворов при добавлении спирта. При гидролизе с помощью кислот образует фруктофуранозу и небольшое количество глюкопиранозы. Содержится в большом количестве в клубнях земляной груши и георгина, в корнях одуванчика, кок-сагыза и цикория, в артишоках, в корнях, листьях и стеблях каучуконосного растения гваюлы (Parthenium argentatum). В этих растениях инулин заменяет крахмал. В клубнях георгина и артишока инулин составляет более 50% от сырой массы ткани. Биосинтез и превращение инулина и инулиноподобных полифруктозидов особенно хорошо изучены на примере земляной груши и артишока (д. Эделььман, Р. Дедонер). Растения, содержащие инулин, используются для получения фруктозы. Поскольку все фруктозиды, в том числе и инулин, очень легко гидролизуются кислотами, получение фруктозы из инулинсодержащего сырья, осуществляется именно путем кислотного гидролиза. Количество остатков фруктозы, связанных в молекуле инулина гликозидными связями между l-м и 2-м углеродными атомами равно 34. В растениях, плесневых грибах и дрожжах содержится особый фермент - и нулаза, который гидролизует инулин с образованием фруктозы.

Полисахариды: полифруктозиды

Во многих растениях содержатся различные другие полисахариды, дающие при кислотном гидролизе фруктофуранозу. Таковы, например, ирисин из корневищ ириса, аспарагозин из корней спаржи, полифруктозиды из стеблей, листьев и корневищ многих злаков, секалин из ржи и т.д. В созревающих зернах злаков ржи, пшеницы, овса и ячменя - эти полисахариды содержатся в очень большом количестве. На ранних стадиях созревания ржаного зерна их содержится до 30% на сухое вещество. По мере созревания зерна эти полисахариды постепенно превращаются в крахмал, что указывает на легкость превращения в растениях фруктозы в глюкозу. Полифруктозиды, содержащиеся в листьях, стеблях и зернах злаков, различаются по своим молекулярным массам, растворимости и другим свойствам. Часть из них представляет собой полисахариды l-го порядка. Так, бета-левулин, найденный в стеблях ржи, является кристаллическим веществом, соответствующим формуле С12Н22ОН, и содержит, следовательно, два фруктозных остатка; секалин, выделенный из листьев и стеблей ржи, имеет молекулярную массу 663, что соответствует содержанию в его молекуле четырех фруктозных остатков. Содержащийся в зрелых зернах ржи коллоидный полифруктозид граминин содержит в молекуле 10 фруктозных остатков. Таким образом, в растении ржи имеют место переходы от фруктозидов с небольшой молеекулярно:1 массой к полифруктозидам большой молекулярной массы. Аналогичные переходы от низкомолекулярных кристаллических полифруктозидов к более высокомолекулярным соединениям, вплоть до инулина, имеют место в растении земляной груши. Таким образом, полифруктозиды образуют в растениях гомологический ряд веществ с возрастающей величиной молекулы. Крайними членами этого ряда являются дифруктозид бета-левулин и инулин, в молекуле которого содержится 34 остатка фруктозы. Полифруктозиды, подобно инулину, обычно содержат очень небольшое количество глюкопиранозы и очень легко гидролизуются под действием разбавленных кислот.

Полисахарид: Гликоген

Полисахарид, содержащийся в тканях тела человека и животных, в грибах и дрожжах, в зерне сахарной кукурузы. Играет важную роль в превращениях углеводов в животном организме и в дрожжах при спиртовом брожении. При кипячении с кислотами образует глюкозу. Гликоген растворяется в горячей воде, образуя опалесцирующие растворы. От иода окрашивается в красный, коричневый, реже фиолетовый цвет. По строению гликоген сходен с амилопектином, хотя и отличается от него большей молекулярной массой. Молекулы обоих полисахаридов имеют разветвленную структуру, но гликоген отличается большей «компактностью» молекулы.

Полисахарид: Каллоза

Каллоза . Полисахарид, содержащийся в ситовидных трубках растений. Представляет собой глюкан, молекула которого состоит приблизительно из 100 остатков глюкозы, соединенных между собой бета-1-3 связями. По-видимому, каллоза играет в растениях какую-то важную физиологическую роль, так как легко образуется и с такой же легкостью расходуется.

Полисахарид: Лихенин

Лихенин . Полисахарид, содержащийся в лишайниках. Особенно много лихенина содержится в лишайнике, называемом «исландским мхом» (Cetraria islandica), а также в лишайниках из рода алектория (Alectoria ochroleuca). В этих лишайниках лихенина содержится до 45-50% на сухое вещество. Лихенин растворяется в горячей воде и в разбавленных водных растворах щелочей, при гидролизе кислотами образует 98-99% D-глюкозы. По-видимому, лихенин - смесь гомологических полимеров разной молекулярной массы. Остатки глюкозы связаны в лихенине двояким образом - на 73% глюкозидными связями между 1-м и 4-м углеродными атомами (как в амилозе) и на 27% - глюкозидными связями между 1-м и 3-м углеродными атомами. Желудочно-кишечный тракт северных оленей, для которых лишайники являются основным кормом, переваривает лихенин на 78%. При этом сами по себе пищеварительные соки северного оленя не переваривают лихенин; его переваривание осуществляют бактерии пищеварительного тракта оленей. Организмом человека лихенин не усваивается. Лихенин может быть использован в качестве желирующего вещества в кондитерской промышленности; жители Севера применяют лишайники для приготовления ягодных киселей и желе.

Полисахарид: Клетчатка

(целлюлоза) - полисахарид, составляющий главную массу клеточных стенок растений. Клетчатка нерастворима в воде, она лишь набухает в ней. Клетчатка составляет более 50% древесины. В волокнах хлопка она составляет более 90%. При кипячении с крепкой серной кислотой клетчатка нацело превращается в глюкозу. При более слабом гидролизе из клетчатки получается целлобиоза. В молекуле клетчатки остатки целлобиозы связаны гликозидными связями в виде длинной цепочки. Молекулярная масса клетчатки точно не установлена. Полагают, что клетчатка не является индивидуальным веществом, а представляет собой смесь гомологичных веществ. Молекулярные массы клетчатки, полученной из различных источников, весьма сильно колеблются: хлопок - 330 000 (в цепочке 2020 гликозидных остатков); рами - 430 000 (2660 остатков), еловая древесина - 220 000 (1360 остатков). С помощью рентгеноструктурного анализа установлено, что молекулы клетчатки имеют нитевидную форму. Эти нитевидные молекулы соединяются в пучки - мицеллы. Каждая мицелла состоит приблизительно из 40-60 молекул клетчатки. Соединение отдельных молекул клетчатки в мицеллы происходит благодаря водородным связям, которые осуществляются как за счет водородных атомов гидроксильных групп клетчатки, так и за счет адсорбированных клетчаткой молекул воды. В клеточных стенках растений мицеллы клетчатки связаны водородными связями с различными гетерополисахаридами. Например, у белого клена ими являются соединенные между собой гликозидными связями ксилоглюкан, состоящий из остатков глюкозы, ксилозы, галактозы и фукозы; арабиногалактан, построенный из остатков арабинозы и галактозы; рамногалактуронан, образованный остатками галактуроновой кислоты и рамнозы. Кроме того, имеются данные о том, что в построении клеточной стенки растений, особенно на ранних этапах ее образования, принимает участие также особый, богатый оксипролином гликопротеид экстензин. При одревеснении клеточных стенок в них накапливается также лигнин. Клетчатка не переваривается в желудочно-кишечном тракте человека. Она, переваривается лишь жвачными животными, в желудке которых имеются особые бактерии, гидролизующие клетчатку с помощью выделяемого ими фермента целлюлазы. Гемицеллюлозы (полуклетчатки). Под этим названием объединяют большую группу высокомолекулярных полисахаридов, не растворяющихся в воде, но растворимых в щелочных растворах. Гемицеллюлозы содержатся в значительном количестве в одревесневших частях растений: соломе, семенах, орехах, древесине, кукурузных початках. Большое количество гемицеллюлоз содержится в отрубях. Гемицеллюлозы гидролизуются кислотами легче, чем клетчатка. При этом они образуют маннозу, галактозу, арабинозу или ксилозу и поэтому соответственно носят названия - маннаны, галактаны и пентозаны (арабан или ксилан).

Маннан , содержащий от 200 до 400 остатков маннозы в молекуле, найден в дрожжах. Некоторое количество маннанов содержится в древесине хвойных деревьев (от 2 до 7%). Водорастворимые маннан и галактан выделяются мицелием плесневых грибов, принадлежащих к роду Penicillium. Галактаны широко распространены в растениях и входят в состав клеточных стенок соломы, древесины и многих семян. Типичным представителем этой группы полисахаридов является галактан, содержащийся в семенах люпина. Ксиланы содержатся в значительных количествах в соломе (до 28%), древесине (в дубовой до 25%) и растительных волокнах. Обычно ксилан, содержащийся в каком-либо растительном объекте, представляет собой смесь различных полисахаридов с близкими молекулярными массами (обычно от 50 до 200 ксилозных остатков), но отличающихся природой сахарного остатка в «ответвлениях» молекулы.

Полисахариды: слизи и гумми

Слизи и гумми. К этой группе коллоидных полисахаридов принадлежат растворимые в воде углеводы, образующие чрезвычайно вязкие и клейкие раствоpы. Типичными представителями этой группы являются гумми, выделяемые в виде наплывов вишневыми, сливовыми или миндальными деревьями в местах повреждения ветвей и стволов. Слизи содержатся в большом количестве в льняных семенах и в зерне ржи. Их наличие объясняет высокую вязкость употребляемого в медицине отвара из льняных сеян или же водной болтушки ржаной муки. Полисахариды вишневого клея состоят из остатков галактозы, маннозы, арабинозы, D-глюкуроновой кислоты и незначительного количества ксилозы. Слизи ржаного зерна почти на 90% состоят из пентозанов. Они сильно набухают в воде и дают весьма вязкие растворы. Их вязкость значительно выше вязкости растворов желатины, крахмального клейстера или белка. При кислотном гидролизе слизи ржаного зерна образуют ксилозу, арабинозу и незначительное количество галактозы.

Полисахариды: Пектины

Высокомолекулярные соединения углеводной природы, содержащиеся в большом количестве в ягодах, фруктах, клубнях и стеблях растений. В растениях пектины присутствуют в виде нерастворимого протопектина, представляющего собой соединение метоксилированной полигалактуроновой кислоты с галактаном и арабаном клеточной стенки. Протопектин переходит в растворимый пектин лишь после обработки разбавленными кислотами или под действием особого фермента протопектиназы. Из водного раствора растворимый пектин осаждается спиртом или 50% ацетоном. Характерным и важным свойством пектина является его способность давать студни в присутствии кислоты и сахара. Это свойство широко используется в кондитерской промышленности при производстве желе, джема, мармелада, пастилы и фруктовых карамельных начинок. Образование пектинового студня происходит в присутствии 65-70% сахара (сахарозы или гексозы); такая концентрация приблизительно соответствует насыщенному раствору сахарозы. В образующемся студне содержится от 0,2 до 1,5% пектина. Лучше всего образование пектиновых студней происходит при рН 3,1-3,5. Пектины различного происхождения различаются по способности к желированию, по содержанию золы и метоксильных групп СН3О-.

При действии на растворимый пектин разбавленных щелочей или фермента пектазы метоксильные группы легко отщепляются - образуются метиловый спирт и свободная пектиновая кислота, которая представляет собой полигалактуроновую кислоту. Пектиновая кислота легко дает соли - пектаты. В виде пектата кальция она легко осаждается из раствора; этим пользуются для количественного определения пектиновых веществ. Пектиновая кислота в присутствии сахара не способна образовывать студни подобно растворимому пектину. Поэтому при промышленном получении пектина стараются по возможности избежать его щелочного или ферментативного гидролиза, вызывающего снижение желирующей способности пектина. Пектины играют важную роль при созревании, хранении и промышленной переработке различных плодов и овощей. Во время развития плодов протопектин отлагается в клеточных стенках и может накапливаться в плодах в значительных количествах (например, в грушах, яблоках и плодах цитрусовых культур). Созревание плодов характеризуется превращением протопектина в растворимый пектин. Так, у яблок содержание пектинов достигает максимума приблизительно к периоду уборки плодов. При последующем хранении плодов при температурах, близких к 1 С, содержание протопектина постепенно понижается и происходит накопление растворимого пектина. Содержание пектина в плодах и овощах, % Яблоки - 0,82-1,29, Абрикосы - 1,03, Слива - 0,96-1,14, Черная смородина - 1,52, Клюква - 0,5-1,30, Морковь - 2,5, Сахарная свекла - 2,5. Пектины играют также важную роль при обработке растительных волокон, например льна. Процесс мочки льна основан на том, что под действием особых микроорганизмов, выделяющих ферменты, гидролизующие пектиновые вещества, происходит мацерация стеблей льна и отделение волокон друг от друга.

Полисахариды: Агар-агар

Агар-агар . Высокомолекулярный полисахарид, содержащийся в некоторых морских водорослях, принадлежащих к родам Gelidium, Gracilaria, Pterocladia и Ahnfeltia. В СССР агар-агар добывали из багряной водоросли анфельции, произрастающей в Белом, Баренцевом и Балтийском морях, а также в водоемах Дальнего Востока. В холодной воде агар-агар нерастворим, но растворяется в ней при нагревании. Водные растворы его при охлаждении застывают в виде студня. Агар-агар применяется в бактериологии для приготовления твердых питательных сред, в кондитерской промышленности для изготовления различных желе, пастилы, мармелада, джемов. Агар-агар - смесь по крайней мере двух полисахаридов - агарозы и агаропектина. Агароза, по всей вероятности, состоит из остатков D-галактозы и 3,6L-галактозы, соединенных между собой aльфа-1,3- и бета-1,4-гликозидными связями. Гораздо меньше известно о структуре агаропектина, который, по-видимому, состоит из цепочек, образуемых остатками D-галактопиранозы, некоторые из которых связаны сложноэфирной связью с остатками серной кислоты. В багряной водоросли филлофоре, произрастающей в больших количествах в Черном море, содержатся агароид и агароидин - желирующие вещества углеводной природы, отличающиеся от агара по своей химической природе. Из багряной водоросли Chondrus получают желеобразное вещество каррагинин. Химическое строение агароида, агароидина и каррагинина недостаточно выяснено. Каррагинин - полисахарид, состоящий, главным образом, из остатков галактопиранозы, соединенных aльфа-1,3- и бета-1,4-гликозидными связями; большая часть остатков галактопиранозы при четвертом углеродном атоме связана сложноэфирной связью с остатком серной кислоты. Каррагинин имеет, по-видимому, разветвленную структуру и состоит из компонентов с различной молекулярной массой - от 358000 до 700000.

Альгиновая кислота. Этот полисахарид является составной частью клеточных стенок многих водорослей, принадлежащих к родам Macrocystis, Laminaria и Fucus. Альгиновая кислота кислота, по видимому, аналог пектиновой кислоты, но состоит из остатков D-маннуроновой и L-гулуроновой кислот, связанных бета-гликозидными связями, расположенными между l-м углеродным атомом одного остатка маннуроновой или гулуроновой кислот и 4-м углеродным атомом другого. В водорослях альгиновая кислота присутствует в виде солей и содержится в них в количестве 30% от сухой массы водорослей. Альгиновая кислота и ее соли, главным образом натриевая, широко применяются в качестве эмульгирующих средств; особенно широко они применяются как стабилизаторы при производстве мороженого и различных технических эмульсий.

Полисахариды бактерий

Полисахариды бактерий . Бактерии образуют значительные количества полисахаридов, которые содержатся в цитоплазме или отлагаются в виде запасов питательных веществ, либо находятся на поверхности клетки, образуя слизистый защитный слой (капсулу). Часто капсулы растворяются в жидкости, в которой развиваются бактерии. У патогенных бактерий капсула является, в первую очередь, средством защиты клетки от фагоцитов. У почвенных бактерий, подобных некоторым азотфиксирующим бактериям, вещества, образующие капсулу, по-видимому, в какой-то мере защищают клетки от почвенных простейших. Типичные представители бактериальных полисахаридов - декстраны - группа полиглюкозидов, образуемых из тростникового сахара различными видами Leuconostoc. Некоторые непатогенные микроорганизмы при развитии на растворах сахарозы образуют полифруктозиды, называемые леванами. Значительные количества леванов образуют, например, некоторые виды стрептококка и сенная палочка Bacillus subtilis, вызывающая так называемую тягучую болезнь хлеба. Многие леваны образуются бактериями, патогенными для растений, например Bacillus pruni, однако возможная роль этих полисахаридов в развитии заболевания неясна. Слизистые полисахариды, подобные леванам и декстранам, образуют также почвенные бактерии, причем, по-видимому, эти углеводы играют определенную роль в агрегировании почвы и сохранении в ней влаги. Своеобразное строение имеют капсульные полисахариды азотфиксирующих бактерий например, клубеньковых Rhizobium sp: Эти полисахариды наряду с остатками глюкопиранозы содержат остатки глюкуроновой кислоты. Некоторые специфические полисахариды бактерий играют чрезвычайно важную роль в явлениях иммунитета животных и человека.