Системы распознавания образов в мировых информационных ресурсах. Обзор существующих методов распознавания образов. Примеры задач распознавания образов

Глава 3: Системы распознавания образов (идентификации)

  • Понятие образа. Проблема обучения распознаванию образов. Геометрический и структурный подходы. Гипотеза компактности. Обучение и самообучение. Адаптация и обучение.
  • Методы обучения распознаванию образов - перцептроны, нейронные сети, метод потенциальных функций, метод группового учета аргументов, метод предельных упрощений, коллективы решающих правил.
  • Методы и алгоритмы анализа структуры многомерных данных - кластерный анализ, иерархическое группирование.

Понятие образа

Образ, класс - классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку.

Образное восприятие мира - одно из загадочных свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в океане разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию воспринимаемых ощущений, т. е. разбиваем их на группы похожих, но не тождественных явлений. Например, несмотря на существенное различие, к одной группе относятся все буквы А, написанные различными почерками, или все звуки, соответствующие одной и той же ноте, взятой в любой октаве и на любом инструменте, а оператор, управляющий техническим объектом, на целое множество состояний объекта реагирует одной и той же реакцией. Характерно, что для составления понятия о группе восприятий определенного класса достаточно ознакомиться с незначительным количеством ее представителей. Ребенку можно показать всего один раз какую-либо букву, чтобы он смог найти эту букву в тексте, написанном различными шрифтами, или узнать ее, даже если она написана в умышленно искаженном виде. Это свойство мозга позволяет сформулировать такое понятие, как образ.

Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Примерами образов могут быть: река, море, жидкость, музыка Чайковского, стихи Маяковского и т. д. В качестве образа можно рассматривать и некоторую совокупность состояний объекта управления, причем вся эта совокупность состояний характеризуется тем, что для достижения заданной цели требуется одинаковое воздействие на объект. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. Именно эта объективность образов позволяет людям всего мира понимать друг друга.

Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания. Будучи отражением объективной реальности, понятие образа столь же объективно, как и сама реальность, а поэтому это понятие может быть само по себе объектом специального исследования.

В литературе, посвященной проблеме обучения распознавания образов (ОРО), часто вместо понятия образа вводится понятие класса.

Проблема обучения распознаванию образов (ОРО)

Одним из самых интересных свойств человеческого мозга является способность отвечать на бесконечное множество состояний внешней среды конечным числом реакций. Может быть, именно это свойство позволило человеку достигнуть высшей формы существования живой материи, выражающейся в способности к мышлению, т. е. активному отражению объективного мира в виде образов, понятий, суждений и т. д. Поэтому проблема ОРО возникла при изучении физиологических свойств мозга.

Рассмотрим пример задач из области ОРО.


Рис. 1

Здесь представлены 12 задач, в которых следует отобрать признаки, при помощи которых можно отличить левую триаду картинок от правой. Решение данных задач требует моделирования логического мышления в полном объеме.

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все объекты различных образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо картинки, либо другие визуальные изображения (буквы), либо различные явления внешнего мира, например звуки, состояния организма при медицинском диагнозе, состояние технического объекта в системах управления и др. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.

Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы тесно связано с вопросом, который все чаще возникает в связи с развитием идей кибернетики: что может и что принципиально не может делать машина? В какой мере возможности машины могут быть приближены к возможностям живого мозга? В частности, может ли машина развить в себе способность перенять у человека умение производить определенные действия в зависимости от ситуаций, возникающих в окружающей среде? Пока стало ясно только то, что если человек может сначала сам осознать свое умение, а потом его описать, т. е. указать, почему он производит действия в ответ на каждое состояние внешней среды или как (по какому правилу) он объединяет отдельные объекты в образы, то такое умение без принципиальных трудностей может быть передано машине. Если же человек обладает умением, но не может объяснить его, то остается только один путь передачи умения машине - обучение примерами.

Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями. В каждой из таких задач анализируются некоторые явления, процессы, состояния внешнего мира, всюду далее называемые объектами наблюдения. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную информацию. Такая информация представляет собой характеристику объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Например, какая-либо буква, даже одинаково написанная, может в принципе как угодно смещаться относительно воспринимающих органов. Кроме того, объекты одного и того же образа могут достаточно сильно отличаться друг от друга и, естественно, по-разному воздействовать на воспринимающие органы.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.

При решении задач управления методами распознавания образов вместо термина "изображение" применяют термин "состояние". Состояние - это определенной формы отображение измеряемых текущих (или мгновенных) характеристик наблюдаемого объекта. Совокупность состояний определяет ситуацию. Понятие "ситуация" является аналогом понятия "образ". Но эта аналогия не полная, так как не всякий образ можно назвать ситуацией, хотя всякую ситуацию можно назвать образом.

Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждая из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является военная игра, то ситуация объединяет все состояния игры, которые требуют, например, мощного танкового удара при поддержке авиации.

Выбор исходного описания объектов является одной из центральных задач проблемы ОРО. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной и, наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения. Например, если решается задача распознавания объектов, отличающихся по цвету, а в качестве исходного описания выбраны сигналы, получаемые от датчиков веса, то задача распознавания в принципе не может быть решена.

Геометрический и структурный подходы.

Каждый раз, когда сталкиваются с незнакомыми задачами, появляется естественное желание представить их в виде некоторой легко понимаемой модели, которая позволяла бы осмыслить задачу в таких терминах, которые легко воспроизводятся нашим воображением. А так как мы существуем в пространстве и во времени, наиболее понятной для нас является пространственно-временная интерпретация задач.

Любое изображение, которое возникает в результате наблюдения какого-либо объекта в процессе обучения или экзамена, можно представить в виде вектора, а значит и в виде точки некоторого пространства признаков. Если утверждается, что при показе изображений возможно однозначно отнести их к одному из двух (или нескольких) образов, то тем самым утверждается, что в некотором пространстве существует две (или несколько) области, не имеющие общих точек, и что изображения - точки из этих областей. Каждой такой области можно приписать наименование, т. е. дать название, соответствующее образу.

Проинтерпретируем теперь в терминах геометрической картины процесс обучения распознаванию образов, ограничившись пока случаем распознавания только двух образов. Заранее считается известным лишь только то, что требуется разделить две области в некотором пространстве и что показываются точки только из этих областей. Сами эти области заранее не определены, т. е. нет каких-либо сведений о расположении их границ или правил определения принадлежности точки к той или иной области.

В ходе обучения предъявляются точки, случайно выбранные из этих областей, и сообщается информация о том, к какой области принадлежат предъявляемые точки. Никакой дополнительной информации об этих областях, т. е. о расположении их границ, в ходе обучения не сообщается. Цель обучения состоит либо в построении поверхности, которая разделяла бы не только показанные в процессе обучения точки, но и все остальные точки, принадлежащие этим областям, либо в построении поверхностей, ограничивающих эти области так, чтобы в каждой из них находились только точки одного образа. Иначе говоря, цель обучения состоит в построении таких функций от векторов-изображений, которые были бы, например, положительны на всех точках одного и отрицательны на всех точках другого образа. В связи с тем, что области не имеют общих точек, всегда существует целое множество таких разделяющих функций, а в результате обучения должна быть построена одна из них.

Если предъявляемые изображения принадлежат не двум, а большему числу образов, то задача состоит в построении по показанным в ходе обучения точкам поверхности, разделяющей все области, соответствующие этим образам, друг от друга. Задача эта может быть решена, например, путем построения функции, принимающей над точками каждой из областей одинаковое значение, а над точками из разных областей значение этой функции должно быть различно.



Рис. 2 - Два образа.

На первый взгляд кажется, что знание всего лишь некоторого количества точек из области недостаточно, чтобы отделить всю область. Действительно, можно указать бесчисленное количество различных областей, которые содержат эти точки, и как бы ни была построена по ним поверхность, выделяющая область, всегда можно указать другую область, которая пересекает поверхность и вместе с тем содержит показанные точки. Однако известно, что задача о приближении функции по информации о ней в ограниченном множестве точек, существенно более узкой, чем все множество, на котором функция задана, является обычной математической задачей об аппроксимации функций. Разумеется, решение таких задач требует введения определенных ограничений на классе рассматриваемых функций, а выбор этих ограничений зависит от характера информации, которую может добавить учитель в процессе обучения. Одной из таких подсказок является гипотеза о компактности образов. Интуитивно ясно, что аппроксимация разделяющей функции будет задачей тем более легкой, чем более компактны и чем более разнесены в пространстве области, подлежащие разделению. Так, например, в случае, показанном на Рис. 2а, разделение заведомо более просто, чем в случае, показанном на Рис. 2б. Действительно, в случае, изображенном на Рис. 2а, области могут быть разделены плоскостью, и даже при больших погрешностях в определении разделяющей функции она все же будет продолжать разделять области. В случае же на Рис. 2б, разделение осуществляется замысловатой поверхностью и даже незначительные отклонения в ее форме приводят к ошибкам разделения. Именно это интуитивное представление о сравнительно легко разделимых областях привело к гипотезе компактности.

Наряду с геометрической интерпретацией проблемы обучения распознаванию образов существует и иной подход, который назван структурным, или лингвистическим. Поясним лингвистический подход на примере распознавания зрительных изображений. Сначала выделяется набор исходных понятий - типичных фрагментов, встречающихся на изображениях, и характеристик взаимного расположения фрагментов - "слева", "снизу", "внутри" и т. д. Эти исходные понятия образуют словарь, позволяющий строить различные логические высказывания, иногда называемые предположениями. Задача состоит в том, чтобы из большого количества высказываний, которые могли бы быть построены с использованием этих понятий, отобрать наиболее существенные для данного конкретного случая.

Далее, просматривая конечное и по возможности небольшое число объектов из каждого образа, нужно построить описание этих образов. Построенные описания должны быть столь полными, чтобы решить вопрос о том, к какому образу принадлежит данный объект. При реализации лингвистического подхода возникают две задачи: задача построения исходного словаря, т. е. набор типичных фрагментов, и задача построения правил описания из элементов заданного словаря.

В рамках лингвистической интерпретации проводится аналогия между структурой изображений и синтаксисом языка. Стремление к этой аналогии было вызвано возможностью использовать аппарат математической лингвистики, т. е. методы по своей природе являются синтаксическими. Использование аппарата математической лингвистики для описания структуры изображений можно применять только после того, как произведена сегментация изображений на составные части, т. е. выработаны слова для описания типичных фрагментов и методы их поиска. После предварительной работы, обеспечивающей выделение слов, возникают собственно лингвистические задачи, состоящие из задач автоматического грамматического разбора описаний для распознавания изображений. При этом проявляется самостоятельная область исследований, которая требует не только знания основ математической лингвистики, но и овладения приемами, которые разработаны специально для лингвистической обработки изображений.

Гипотеза компактности

Если предположить, что в процессе обучения пространство признаков формируется исходя из задуманной классификации, то тогда можно надеяться, что задание пространства признаков само по себе задает свойство, под действием которого образы в этом пространстве легко разделяются. Именно эти надежды по мере развития работ в области распознавания образов стимулировали появление гипотезы компактности, которая гласит: образам соответствуют компактные множества в пространстве признаков. Под компактным множеством пока будем понимать некие "сгустки" точек в пространстве изображений, предполагая, что между этими сгустками существуют разделяющие их разряжения.

Однако эту гипотезу не всегда удавалось подтвердить экспериментально, но, что самое главное, те задачи, в рамках которых гипотеза компактности хорошо выполнялась (Рис. 2а), все без исключения находили простое решение. И наоборот, те задачи, для которых гипотеза не подтверждалась (Рис. 2б), либо совсем не решались, либо решались с большим трудом с привлечением дополнительных ухищрений. Этот факт заставил по меньшей мере усомниться в справедливости гипотезы компактности, так как для опровержения любой гипотезы достаточно одного отрицающего ее примера. Вместе с этим, выполнение гипотезы всюду там, где удавалось хорошо решить задачу обучения распознаванию образов, сохраняло к этой гипотезе интерес. Сама гипотеза компактности превратилась в признак возможности удовлетворительного решения задач распознавания.

Формулировка гипотезы компактности подводит вплотную к понятию абстрактного образа. Если координаты пространства выбирать случайно, то и изображения в нем будут распределены случайно. Они будут в некоторых частях пространства располагаться более плотно, чем в других. Назовем некоторое случайно выбранное пространство абстрактным изображением. В этом абстрактном пространстве почти наверняка будут существовать компактные множества точек. Поэтому в соответствии с гипотезой компактности множества объектов, которым в абстрактном пространстве соответствуют компактные множества точек, разумно назвать абстрактными образами данного пространства.

Обучение и самообучение. Адаптация и обучение

Все картинки, представленные на Рис. 1, характеризуют задачу обучения. В каждой из этих задач задается несколько примеров (обучающая последовательность) правильно решенных задач. Если бы удалось подметить некое всеобщее свойство, не зависящее ни от природы образов, ни от их изображений, а определяющее лишь их способность к разделимости, то наряду с обычной задачей обучения распознаванию, с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу можно было бы поставить иную классификационную задачу - так называемую задачу обучения без учителя. Задачу такого рода на описательном уровне можно сформулировать следующим образом: системе одновременно или последовательно предъявляются объекты без каких-либо указаний об их принадлежности к образам. Входное устройство системы отображает множество объектов на множество изображений и, используя некоторое заложенное в нее заранее свойство разделимости образов, производит самостоятельную классификацию этих объектов. После такого процесса самообучения система должна приобрести способность к распознаванию не только уже знакомых объектов (объектов из обучающей последовательности), но и тех, которые ранее не предъявлялись. Процессом самообучения некоторой системы называется такой процесс, в результате которого эта система без подсказки учителя приобретает способность к выработке одинаковых реакций на изображения объектов одного и того же образа и различных реакций на изображения различных образов. Роль учителя при этом состоит лишь в подсказке системе некоторого объективного свойства, одинакового для всех образов и определяющего способность к разделению множества объектов на образы.

Оказывается, таким объективным свойством является свойство компактности образов. Взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить множество точек. Эта информация и определяет то свойство разделимости образов, которое оказывается достаточным для самообучения системы распознаванию образов.

Большинство известных алгоритмов самообучения способны выделять только абстрактные образы, т. е. компактные множества в заданных пространствах. Различие между ними состоит, по-видимому, в формализации понятия компактности. Однако это не снижает, а иногда и повышает ценность алгоритмов самообучения, так как часто сами образы заранее никем не определены, а задача состоит в том, чтобы определить, какие подмножества изображений в заданном пространстве представляют собой образы. Хорошим примером такой постановки задачи являются социологические исследования, когда по набору вопросов выделяются группы людей. В таком понимании задачи алгоритмы самообучения генерируют заранее не известную информацию о существовании в заданном пространстве образов, о которых ранее никто не имел никакого представления.

Кроме того, результат самообучения характеризует пригодность выбранного пространства для конкретной задачи обучения распознаванию. Если абстрактные образы, выделяемые в процессе самообучения, совпадают с реальными, то пространство выбрано удачно. Чем сильнее абстрактные образы отличаются от реальных, тем "неудобнее" выбранное пространство для конкретной задачи.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть "поощрениями" и "наказаниями". Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация - это процесс изменения параметров и структуры системы, а возможно, и управляющих воздействий на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Обучение - это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация - это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.

И признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу в данный момент.

В процессе биологической эволюции многие животные с помощью зрительного и слухового аппарата решили задачи распознавания образов достаточно хорошо. Создание искусственных систем распознавания образов остаётся сложной теоретической и технической проблемой. Необходимость в таком распознавании возникает в самых разных областях - от военного дела и систем безопасности до оцифровки всевозможных аналоговых сигналов.

Традиционно задачи распознавания образов включают в круг задач искусственного интеллекта .

Направления в распознавании образов

Можно выделить два основных направления :

  • Изучение способностей к распознованию, которыми обладают живые существа, объяснение и моделирование их;
  • Развитие теории и методов построения устройств, предназначенных для решения отдельных задач в прикладных задачах.

Формальная постановка задачи

Распознавание образов - это отнесение исходных данных к определенному классу с помощью выделения существенных признаков, характеризующих эти данные из общей массы несущественных данных.

При постановке задач распознования стараются пользоваться математическим языком, стараясь в отличии от теории искусственных нейронных сетей , где основой является получение результата путем эксперимента, заменить эксперимент логическими рассуждениями и математическими доказательствами .

Наиболее часто в задачах распознования образов рассматриваются монохромные изображения , что дает возможность рассматривать изображение как функцию на плоскости. Если рассмотреть точечное множество на плоскости T , где функция x (x ,y ) выражает в каждой точке изображения его характеристику - яркость, прозрачность, оптическую плотность, то такая функция есть формальная запись изображения.

Множество же всех возможных функций x (x ,y ) на плоскости T - есть модель множества всех изображений X . Вводя понятие сходства между образами можно поставить задачу распознавания. Конкретный вид такой постановки сильно зависит от последующих этапов при распозновании в соответствии с тем или иным подходом.

Методы распознавания образов

Для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д.

Второй подход - найти контур объекта и исследовать его свойства (связность, наличие углов и т. д.)

Еще один подход - использовать искусственные нейронные сети . Этот метод требует либо большого количества примеров задачи распознавания (с правильными ответами), либо специальной структуры нейронной сети, учитывающей специфику данной задачи.

Перцептрон как метод распознавания образов

Ф. Розенблатт вводя понятие о модели мозга , задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления - описал простейшие эксперименты по различению . Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого экперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением перцептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем перцептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  • 1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением , но включает в себя и элементы обобщения .
  • 2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения .

Перцептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых перцептрон уже накопил определенный опыт.

Примеры задач распознавания образов

  • Распознавание букв.
  • Распознавание штрих-кодов.
  • Распознавание автомобильных номеров.
  • Распознавание лиц.
  • Распознавание речи.
  • Распознавание изображений.
  • Распознавание локальных участков земной коры, в которых находятся месторождения полезных ископаемых.

Программы распознавания образов

См. также

Примечания

Ссылки

  • Юрий Лифшиц. Курс «Современные задачи теоретической информатики» - лекции по статистическим методам распознавания образов, распознаванию лиц, классификации текстов
  • Journal of Pattern Recognition Research (Журнал исследования распознавания образов)

Литература

  • Дэвид А. Форсайт, Джин Понс Компьютерное зрение. Современный подход = Computer Vision: A Modern Approach. - М.: «Вильямс» , 2004. - С. 928. - ISBN 0-13-085198-1
  • Джордж Стокман, Линда Шапиро Компьютерное зрение = Computer Vision. - М.: Бином. Лаборатория знаний, 2006. - С. 752. - ISBN 5947743841
  • А.Л.Горелик, В.А.Скрипкин , Методы распознавания, М.: Высшая школа, 1989.
  • Ш.-К. Чэн , Принципы проектирования систем визуальной информации, М.: Мир, 1994.

Wikimedia Foundation . 2010 .

В технике научно техническое направление, связанное с разработкой методов и построением систем (в т. ч. на базе ЭВМ) для установления принадлежности некоторого объекта (предмета, процесса, явления, ситуации, сигнала) к одному из заранее… … Большой Энциклопедический словарь

Одна из новых обл. кибернетики. Содержанием теории Р. о. является экстраполирование свойств объектов (образов), принадлежащих к нескольким классам, на объекты, близкие к ним в некотором смысле. Обычно при обучении автомата Р. о. имеется… … Геологическая энциклопедия

Англ. recognition, image; нем. Gestalt alterkennung. Раздел математической кибернетики, разрабатывающий принципы и методы классификации и идентификации объектов, описываемых конечным набором признаков, характеризующих их. Antinazi. Энциклопедия… … Энциклопедия социологии

Распознавание образов - метод исследования сложных объектов с помощью ЭВМ; заключается в отборе признаков и разработке алгоритмов и программ, позволяющих ЭВМ по этим признакам автоматически классифицировать объекты. Например определять, к какому… … Экономико-математический словарь

- (техн.), научно техническое направление, связанное с разработкой методов и построением систем (в том числе на базе ЭВМ) для установления принадлежности некоторого объекта (предмета, процесса, явления, ситуации, сигнала) к одному из заранее… … Энциклопедический словарь

РАСПОЗНАВАНИЕ ОБРАЗОВ - раздел математической кибернетики, разрабатывающий и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций всех тех объектов, к рые могут быть описаны конечным набором нек рых признаков или свойств,… … Российская социологическая энциклопедия

распознавание образов - 160 распознавание образов: Идентификация форм представлений и конфигураций с помощью автоматических средств

Под образом понимается структурированное описание изучаемого объекта или явления, представленное вектором признаков, каждый элемент которого представляет числовое значение одного из признаков, характеризующих соответствующий объект.

Общая структура системы распознавания имеет следующий вид:

Смысл задачи распознавания – установить, обладают ли изучаемые объекты фиксированным конечным набором признаков, позволяющих отнести их к определенному классу. Задачи распознавания имеют следующие характерные черты:

1. Это информационные задачи, состоящие из двух этапов:

a. Приведение исходных данных к виду, удобному для распознавания.

b. Собственно распознавание – указание принадлежности объекта определенному классу.

2. В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объектов в один и тот же класс или разные классы.

3. В этих задачах можно оперировать набором прецедентов – примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.

4. Для этих задач трудно строить формальные теории и применять классические математические методы: часто информация для точной математической модели или выигрыш от использования модели и математических методов несоизмерим с затратами.

5. В этих задачах возможна «плохая информация» - информация с пропусками, разнородная, косвенная, нечеткая, неоднозначная, вероятностная.

Целесообразно выделять следующие типы задач распознавания:

1. Задача распознавания, то есть отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем).

2. Задача автоматической классификации – разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, обучение без учителя).

3. Задача выбора информативного набора признаков при распознавании.

4. Задача приведения исходных данных к виду, удобному для распознавания.

5. Динамическое распознавание и динамическая классификация – задачи 1 и 2 для динамических объектов.

6. Задача прогнозирования – задачи 5, в которых решение должно относиться к некоторому моменту в будущем.

Понятие образа.

Образ, класс – классификационная группировка в системе, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образы обладают рядом характерных свойств, проявляющихся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.


В качестве образа можно рассматривать и некоторую совокупность состояний объекта управления, причем вся эта совокупность состояний характеризуется тем, что для достижения заданной цели требуется одинаковое воздействие на объект. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты.

В целом, проблема распознавания образов состоит из двух частей: обучение и распознавание.

Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными – на все объекты различных образов.

Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо визуальные изображения, либо различные явления внешнего мира и другие.

За обучением следует процесс распознавания новых объектов, который характеризует действие уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает ЭВМ правила классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.

Проблема обучения распознаванию образов интересна как с прикладной, так и с принципиальной точки зрения. С прикладной точки зрения, решение этой проблемы важно прежде всего потому, что оно открывает возможность автоматизировать многие процессы, которые до сих пор связывали лишь с деятельностью живого мозга. Принципиальное значение проблемы связано с вопросом, что может и что принципиально не может делать ЭВМ.

При решении задач управления методами распознавания образов вместо термина «образ» применяется термин «состояние». Состояние – определенные формы отображения измеряемых текущих (мгновенных) характеристик наблюдаемого объекта, совокупность состояний определяет ситуацию.

Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждое из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является игра, то ситуация объединяет все состояния игры.

Выбор исходного описания объектов является одной из центральных задач проблемы обучения распознаванию образов. При удачном выборе исходного описания (пространство признаков) задача распознавания может оказаться тривиальной. И наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Геометрический и структурный подходы.

Любое изображение, которое возникает в результате наблюдения какого-либо объекта в процессе обучения или экзамена, можно представить в виде вектора, а значит, и в виде точки некоторого пространства признаков.

Если утверждается, что при показе изображений возможно однозначно отнести их к одному из двух (или нескольких) образов, то тем самым утверждается, что в некотором пространстве существуют две или несколько областей, не имеющих общих точек, и что изображение точки из этих областей. Каждой точки такой области можно приписать наименование, то есть дать название, соответствующее образу.

Проинтерпретируем в терминах геометрической картины процесс обучения распознаванию образов, ограничившись пока случаем распознавания только двух образов. Заранее считается известным лишь то, что требуется разделить две области в некотором пространстве и что показываются точки только их этих областей. Сами эти области заранее не определены, то есть нет каких-либо сведений о расположении их границ или правил определения принадлежности точки к той или иной области.

В ходе обучения предъявляются точки, случайно выбранные из этих областей, и сообщается информация о том, к какой области принадлежат предъявляемые точки. Никакой дополнительной информации об этих областях, то есть о расположении их границ в ходе обучения не сообщается.

Цель обучения состоит либо в построении поверхности, которая разделяла бы не только показанные в процессе обучения точки, но и все остальные точки, принадлежащие этим областям, либо в построении поверхностей, ограничивающих эти области так, чтобы в каждой из них находились только точки одного образа. Иначе говоря, цель обучения состоит в построении таких функций от векторов-изображений, которые были бы, например, положительны на всех точках одного и отрицательны на всех точках другого образа.

В связи с тем, что области не имеют общих точек, всегда существует целое множество таких разделяющих функций, а в результате обучения должна быть построена одна из них. Если предъявляемые изображения принадлежат не двум, а большему числу образов, то задача состоит в построении по показанным в ходе обучения точкам поверхности, разделяющей все области, соответствующие этим образам, друг от друга.

Эта задача может быть решена, например, путем построения функции, принимающей над точками каждой из областей одинаковое значение, а над точками из разных областей значение этой функции должно быть различно.

Может показаться, что знания всего лишь некоторого количества точек из области недостаточно, чтобы отделить всю область. Действительно можно указать бесчисленное количество различных областей, которые содержат эти точки, и как бы ни была построена по ним поверхность, выделяющая область, всегда можно указать другую область, которая пересекает поверхность и вместе с тем содержит показанные точки.

Однако известно, что задача о приближении функции по информации о ней в ограниченном множестве точек является существенно более узкой, чем все множество, на котором функция задана, и является обычной математической задачей об аппроксимации функций. Разумеется, решение таких задач требует введения определенных ограничений на классе рассматриваемых функций, а выбор этих ограничений зависит от характера информации, которую может добавить учитель в процесс обучения.

Одной из таких подсказок является гипотеза о компактности образов.

Наряду с геометрической интерпретацией проблемы обучения распознаванию образов, существует и иной подход, который назван структурным, или лингвистическим. Рассмотрим лингвистический подход на примере распознавания зрительных изображений.

Сначала выделяется набор исходных понятий – типичных фрагментов, встречающихся на изображении, и характеристик взаимного расположения фрагментов (слева, снизу, внутри и т.д.). Эти исходные понятия образуют словарь, позволяющий строить различные логические высказывания, иногда называемые предложениями.

Задача состоит в том, чтобы из большого количества высказываний, которые могли бы быть построены с использованием этих понятий, отобрать наиболее существенные для данного конкретного случая. Далее, просматривая конечное и по возможности небольшое число объектов из каждого образа, нужно построить описание этих образов.

Построенные описания должны быть столь полными, чтобы решить вопрос о том, к какому образу принадлежит данный объект. При реализации лингвистического подхода возникают две задачи: задача построения исходного словаря, то есть набора типичных фрагментов, и задача построения правил описания из элементов заданного словаря.

В рамках лингвистической интерпретации проводится аналогия между структурой изображений и синтаксисом языка. Стремление к этой аналогии было вызвано возможностью использовать аппарат математической лингвистики, то есть методы по своей природе являются синтаксическими. Использование аппарата математической лингвистики для описания структуры изображений можно применять только после того, как произведена сегментация изображений на составные части, то есть выработаны слова для описания типичных фрагментов и методы их поиска.

После предварительной работы, обеспечивающей выделение слов, возникают собственно лингвистические задачи, состоящие из задач автоматического грамматического разбора описаний для распознавания изображений.

Гипотеза компактности.

Если предположить, что в процессе обучения пространство признаков формируется исходя из задуманной классификации, то тогда можно надеяться, что задание пространства признаков само по себе задает свойство, под действием которого образы в этом пространстве легко разделяются. Именно эти надежды по мере развития работ в области распознавания образов стимулировали появление гипотезы компактности, которая гласит: образам соответствуют компактные множества в пространстве признаков.

Под компактным множеством будем понимать некие сгустки точек в пространстве изображений, предполагая, что между этими сгустками существуют разделяющие их разряжения. Однако эту гипотезу не всегда удавалось подтвердить экспериментально. Но те задачи, в рамках которых гипотеза компактности хорошо выполнялась, всегда находили простое решение и наоборот, те задачи, для которых гипотеза не подтверждалась, либо совсем не решались, либо решались с большим трудом и привлечением дополнительной информации.

Сама гипотеза компактности превратилась в признак возможности удовлетворительно решения задач распознавания.

Формулировка гипотеза компактности подводит вплотную к понятию абстрактного образа. Если координаты пространства выбирать случайно, то и изображения в нем будут распределены случайно. Они будут в некоторых частях пространства располагаться более плотно, чем в других.

Назовем некоторое случайно выбранное пространство абстрактным изображением. В этом абстрактном пространстве почти наверняка будут существовать компактные множества точек. Поэтому, в соответствии с гипотезой компактности, множество объектов, которым в абстрактном пространстве соответствуют компактные множества точек, принято называть абстрактными образами заданного пространства.

Обучение и самообучение, адаптация и обучение.

Если бы удалось подметить некое всеобщее свойство, не зависящее ни от природы образов, ни от их изображений, а определяющее лишь способность к разделимости, то наряду с обычной задачей обучения распознаванию с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу, можно было бы поставить иную классификационную задачу – так называемую задачу обучения без учителя.

Задачу такого рода на описательном уровне можно сформулировать следующим образом: системе одновременно или последовательно предъявляются объекты без каких-либо указаний об их принадлежности к образам. Входное устройство системы отображает множество объектов на множество изображений и, используя некоторое заложенное в нем заранее свойство разделимости образов, производит самостоятельную классификацию этих объектов.

После такого процесса самообучения система должна приобрести способность к распознаванию не только уже знакомых объектов (объектов из обучающей последовательности), но и тех, которые ранее не предъявлялись. Процессом самообучения некоторой системы называется такой процесс, в результате которого эта система без подсказки учителя приобретает способность к выработке одинаковых реакций на изображения объектов одного и того же образа и различных реакций на изображения различных образов.

Роль учителя при этом состоит лишь в подсказке системе некоторого объективного свойства, одинакового для всех образов и определяющего способность к разделению множества объектов на образы.

Оказывается, таким объективным свойством является свойство компактности образов. Взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить множество точек. Эта информация и определяет то свойство разделимости образов, которое оказывается достаточным для самообучения системы распознаванию образов.

Большинство известных алгоритмов самообучения способны выделять только абстрактные образы, то есть компактные множества в заданных пространствах. Различие между ними состоит в формализации понятия компактности. Однако это не снижает, а иногда и повышает ценность алгоритмов самообучения, так как часто сами образы заранее никем не определены, а задача состоит в том, чтобы определить, какие подмножества изображений в заданном пространстве представляют собой образы.

Примером такой постановки задачи являются социологические исследования, когда по набору вопросов выделяются группы людей. В таком понимании задачи алгоритмы самообучения генерируют заранее неизвестную информацию о существовании в заданном пространстве образов, о которых ранее никто не имел никакого представления.

Кроме того, результат самообучения характеризует пригодность выбранного пространства для конкретной задачи обучения распознаванию. Если абстрактные образы, выделяемые в пространстве самообучения, совпадают с реальными, то пространство выбрано удачно. Чем сильнее абстрактные образы отличаются от реальных, тем неудобнее выбранное пространство для конкретной задачи.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Механизм генерации этой корректировки практически полностью определяет алгоритм обучения.

Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация – процесс изменения параметров и структуры системы, а возможно, и управляющих воздействий, на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Обучение – процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация – подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.


Системы распознавания речи.

Речь выступает в роли основного средства коммуникации между людьми и поэтому речевое общение считается одним из важнейших компонентов системы искусственного интеллекта. Распознавание речи представляет собой процесс преобразования акустического сигнала, формируемого на выходе микрофона или телефона, в последовательность слов.

Более сложной задачей является задача понимания речи, которая сопряжена с выявлением смысла акустического сигнала. В этом случае выход подсистемы распознавания речи служит входом подсистемы понимания высказываний. Автоматическое распознавание речи (системы АРР) является одним из направлений технологий обработки естественного языка.

Автоматическое распознавание речи применяется при автоматизации ввода текстов в ЭВМ, при формировании устных запросов к базам данных или информационно-поисковым системам при формировании устных команд различным интеллектуальным устройствам.

Основные понятия систем распознавания речи.

Системы распознавания речи характеризуются многими параметрами.

Одним из основных параметров является ошибка распознавания слов (ОРС). Этот параметр представляет собой отношение количества нераспознанных слов к общему количеству произнесенных слов.

Другими параметрами, характеризующими системы автоматического распознавания речи, являются:

1) размер словаря,

2) режим речи,

3) стиль речи,

4) предметная область,

5) дикторозависимость,

6) уровень акустических шумов,

7) качество входного канала.

В зависимости от размера словаря системы АРР подразделяются на три группы:

С малым размером словаря (до 100 слов),

Со средним размером словаря (от 100 слов до нескольких тысяч слов),

С большим размером словаря (более 10 000 слов).

Режим речи характеризует способ произнесения слов и фраз. Выделяют системы распознавания слитной речи и системы, позволяющие распознавать только изолированные слова речи. В режиме распознавания изолированных слов требуется, чтобы диктор делал краткие паузы между словами.

По стилю речи системы АРР подразделяются на две группы: системы детерминированной речи и системы спонтанной речи.

В системах распознавания детерминированной речи диктор воспроизводит речь, следуя грамматическим правилам языка. Спонтанная речь характеризуется нарушениями грамматических правил и ее сложнее распознавать.

В зависимости от предметной области выделяют системы АРР, ориентированные на применение в узкоспециальных областях (например, доступ к базам данных) и системы АРР с неограниченной областью применения. Последние требуют наличия большого объема словаря и должны обеспечивать распознавание спонтанной речи.

Многие системы автоматического распознавания речи являются дикторозависимыми. Это предполагает предварительную настройку системы на особенности произношения конкретного диктора.

Сложность решения задачи распознавания речи объясняется большой изменчивостью акустических сигналов. Эта изменчивость объясняется несколькими причинами:

Во-первых, различной реализацией фонем – основных единиц звукового строя языка. Изменчивость реализации фонем вызвана влиянием соседних звуков в потоке речи. Оттенки реализации фонем, обусловленные звуковым окружением, называют аллофонами.

Во-вторых, положением и характеристиками акустических приемников.

В-третьих, изменениями параметрами речи одного и того же диктора, которые обусловлены различным эмоциональным состоянием диктора, темпом его речи.

На рисунке представлены основные компоненты системы распознавания речи:

Оцифрованный речевой сигнал поступает на блок предварительной обработки, где осуществляется выделение признаков, необходимых для распознавания звуков. Распознавание звуков часто осуществляется с помощью моделей искусственных нейронных сетей. Выделенные звуковые единицы используют в дальнейшем для поиска последовательности слов, в наибольшей степени соответствующей входному речевому сигналу.

Поиск последовательности слов выполняется с помощью акустической, лексической и языковой моделей. Параметры моделей определяют по обучающим данным на основе соответствующих алгоритмов обучения.

Синтез речи по тексту. Основные понятия

Во многих случаях создание систем искусственного интеллекта с элементами ея-общения требуют вывода сообщений в речевой форме. На рисунке представлена структурная схема интеллектуальной вопросно-ответной системы с речевым интерфейсом:

Рисунок 1.

Кусок лекций взять у Олега

Рассмотрим особенности эмпирического подхода на примере распознавания частей речи. Задача состоит в присвоении словам предложения меток: существительное, глагол, предлог, прилагательное и тому подобное. Кроме этого, необходимо определять некоторые дополнительные признаки существительных и глаголов. Например, для существительного – число, а для глагола – форму. Формализуем задачу.

Представим предложение в виде последовательности слов: W=w1 w2…wn, где wn – случайные переменные, каждая из которых получает одно из возможных значений, принадлежащих словарю языка. Последовательность меток, назначаемых словам предложения, представим последовательностью X=x1 x2 … xn, где xn – случайные переменные, значения которых определены на множестве возможных меток.

Тогда задача распознавания частей речи состоит в поиске наиболее вероятной последовательности меток x1, x2, …, xn по заданной последовательности слов w1, w2, …, wn. Иными словами, необходимо найти такую последовательность меток X*=x1 x2 … xn, которая обеспечивает максимум условной вероятности P(x1, x2, …, xn| w1 w2.. wn).

Перепишем условную вероятность P(X| W) в следующем виде P(X| W)=P(X,W) / P(W). Так как требуется найти максимум условной вероятности P(X,W) по переменной X, получим X*=arg x max P(X,W). Совместную вероятность P(X,W) можно записать в виде произведения условных вероятностей: P(X,W)=произведение по и-1 до н от P(x i |x1,…,x i -1 , w1,…,w i -1) P(w i |x1,…,x i -1 , w1,…,w i -1). Непосредственный поиск максимума данного выражения представляет собой сложную задачу, так как при больших значениях n поисковое пространство становится очень большим. Поэтому вероятности, которые записаны в этом произведении, аппроксимируют более простыми условными вероятностями: P(x i |x i -1) P(w i |w i -1). В этом случае полагают, что значение метки x i связано только с предыдущей меткой x i -1 и не зависит от более ранних меток, а также что вероятность слова w i определяется только текущей меткой x i . Указанные предположения называют марковскими, а для решения задачи привлекают теорию марковских моделей. С учетом марковских предположений можно записать:

X*= arg x1, …, xn max П i =1 n P(x i |x i -1) P(wi|wi-1)

Где условные вероятности оцениваются на множестве обучающих данных

Поиск последовательности меток Х* осуществляют с помощью алгоритма динамического программирования Витерби. Алгоритм Витерби может рассматриваться как вариант алгоритма поиска на графе состояний, где вершинам соответствуют метки слов.

Характерно, что для любой текущей вершины множество дочерних меток всегда одно и то же. Более того, для каждой дочерней вершины множества родительских вершин тоже совпадают. Это объясняется тем, что на графе состояний осуществляются переходы с учетом всех возможных сочетаний меток. Предположение Маркова обеспечивают существенное упрощение задачи распознавания частей речи при сохранении высокой точности назначения меток словам.

Так, при наличии 200 меток точность назначения примерно равна 97%. Долгое время имперический анализ выполнялся с помощью стохастических контекстно-свободных грамматик. Однако для них характерен существенный недостаток. Он заключается в том, что различным грамматическим разборам могут назначаться одинаковые вероятности. Это происходит из-за того, что вероятность грамматического разбора представляется в виде произведения вероятностей правил, участвующих в разборе. Если в ходе разбора используются различные правила, характеризуемые одинаковыми вероятностями, то это и порождает указанную проблему. Лучшие результаты дает грамматика, учитывающая лексику языка.

В этом случае в правила включаются необходимые лексические сведения, которые обеспечивают различные значения вероятности для одного и того же правила в разных лексических окружениях. Имперический синтаксический анализ в большей степени соответствует распознаванию образов, чем традиционному грамматическому разбору в его классическом понимании.

Сравнительные исследования показали, что правильность имперического грамматического разбора приложений естественного языка оказывается выше по сравнению с традиционным грамматическим разбором.

Методы автоматического распознавания образов и их реализация в системах оптического распознавания текстов (Optical Character Recognition - OCR-системы) - одна из самых прогрессивных технологий искусственного интеллекта. В развитии этой технологии российские ученые занимают ведущие позиции в мире.

OCR-система понимается как система автоматического распознавания образов с помощью специальных программ изображений символов печатного или рукописного текста (например, введенного в компьютер посредством сканера) и преобразование его в формат, пригодный для обработки текстовыми процессорами, редакторами текстов и т. д.

Аббревиатура OCR иногда расшифровывается как Optical Character Reader - устройство оптического распознавания символов или автоматического чтения текста. В настоящее время такие устройства в промышленном использовании обрабатывают до 100 тыс. документов в сутки.

Промышленное использование предполагает ввод документов хорошего и среднего качества - это обработка бланков переписи населения, налоговых деклараций и т. д.

Перечислим особенности предметной области, существенные с точки зрения OCR-систем:

  • шрифтовое и размерное разнообразие символов;
  • искажения в изображениях символов (разрывы образов символов);
  • перекосы при сканировании;
  • посторонние включения в изображениях;
  • сочетание фрагментов текста на разных языках;
  • большое разнообразие классов символов, которые могут быть распознаны только при наличии дополнительной контекстной информации.

Автоматическое чтение печатных и рукописных текстов является частным случаем автоматического визуального восприятия сложных изображений. Многочисленные исследования показали, что для полного решения этой задачи необходимо интеллектуальное распознавание, т. е. «распознавание с пониманием».

Выделяются три принципа, на которых основаны все OCR-системы.

  • 1. Принцип целостности образа. В исследуемом объекте всегда есть значимые части, между которыми существуют отношения. Результаты локальных операций с частями образа интерпретируются только совместно в процессе интерпретации целостных фрагментов и всего образа в целом.
  • 2. Принцип целенаправленности. Распознавание является целенаправленным процессом выдвижения и проверки гипотез (поиска того, что ожидается от объекта).
  • 3. Принцип адаптивности. Распознающая система должна быть способна к самообучению.

Ведущие российские OCR-системы: FineReader; FineReader Рукопись; FormReader; CunieForm (Cognitive Technologies), Cognitive Forms (Cognitive Technologies) .

Система FineReader выпускается компанией ABBYY, которая была основана в 1989 г. Разработки компании ABBYY ведутся в двух направлениях: машинное зрение и прикладная лингвистика. Стратегическим направлением научных исследований и разработок является естественно-языковой аспект технологий в области машинного зрения, искусственного интеллекта и прикладной лингвистики.

CuneiForm GOLD for Windows является первой в мире само-обучаемой интеллектуальной OCR-системой, использующей новейшую технологию адаптивного распознавания текстов, поддерживает много языков. Для каждого языка поставляется словарь контекстной проверки и повышения качества результатов распознавания. Распознает любые полиграфические, машинописные гарнитуры и шрифты, получаемые с принтеров, за исключением декоративных и рукописных, а также очень низкокачественных текстов.

Характеристики систем распознавания образов. Среди ОСЯ-технологий большое значение имеют специальные технологии решения отдельных классов задач автоматического распознавания образов:

  • поиск людей по фотографиям;
  • поиск месторождений полезных ископаемых и прогнозирование погоды по данным аэрофотосъемки и снимкам со спутников в различных диапазонах светового излучения;
  • составление географических карт по исходной информации, используемой в предыдущей задаче;
  • анализ отпечатков пальцев и рисунков радужной оболочки глаза в криминалистике, охранных и медицинских системах.

На стадии подготовки и обработки информации, особенно при компьютеризации предприятия, автоматизации бухгалтерского учета, возникает задача ввода большого объема текстовой и графической информации в ПК. Основными устройствами для ввода графической информации являются: сканер, факс-модем и реже - цифровая фотокамера. Кроме того, используя программы оптического распознавания текстов, можно вводить в компьютер (оцифровывать) также и текстовую информацию. Современные программно-аппаратные системы позволяют автоматизировать ввод больших объемов информации в компьютер, применяя, например, сетевой сканер и параллельное распознавание текстов на нескольких компьютерах одновременно.

Большинство программ оптического распознавания текста работают с растровым изображением, которое получено через факс-модем, сканер, цифровую фотокамеру или другое устройство. На первом этапе ОСЯ-система должна разбить страницу на блоки текста, основываясь на особенностях правого и левого выравнивания и наличии нескольких колонок. Затем распознанный блок разбивается на строки. Несмотря на кажущуюся простоту, это не такая очевидная задача, так как на практике неизбежен перекос изображения страницы или ее фрагментов при сгибах. Даже небольшой наклон приводит к тому, что левый край одной строки становится ниже правого края следующей, особенно при маленьком межстрочном интервале. В результате возникает проблема определения строки, к которой относится тот или иной фрагмент изображения. Например, для букв

Потом строки разбиваются на непрерывные области изображения, которые соответствуют отдельным буквам; алгоритм распознавания выдвигает предположения относительно соответствия этих областей символам, а затем осуществляется выбор каждого символа, в результате чего страница восстанавливается в символах текста, причем, как правило, в заданном формате. ОСЯ-системы могут достигать наилучшей точности распознавания - свыше 99,9 % для чистых изображений, составленных из обычных шрифтов. На первый взгляд такая точность распознавания кажется идеальной, но уровень ошибок все же удручает, потому что, если имеется приблизительно 1500 символов на странице, то даже при коэффициенте успешного распознавания 99,9 % получается одна или две ошибки на страницу. В таких случаях следует воспользоваться методом проверки по словарю, т. е. если какого-то слова нет в словаре системы, то она по специальным правилам попытается найти похожее. Но это все равно не позволяет исправлять 100 % ошибок и требует контроля результатов человеком.

Встречающиеся в реальной жизни тексты обычно далеки от совершенства, и процент ошибок распознавания для «нечистых» текстов часто недопустимо велик. Грязные изображения - это наиболее очевидная проблема, потому что даже небольшие пятна могут затенять определяющие части символа или преобразовывать один в другой. Проблемой является и неаккуратное сканирование, связанное с «человеческим фактором», так как оператор, сидящий за сканером, просто не в состоянии разглаживать каждую сканируемую страницу и точно выравнивать ее по краям сканера. Если документ был ксерокопирован, нередко возникают разрывы и слияния символов. Любой из этих эффектов может заставлять систему ошибаться, потому что некоторые из ОСЯ-сис-тем предполагают, что непрерывная область изображения должна быть одиночным символом. Страница, расположенная с нарушением границ или перекосом, создает немного искаженные символьные изображения, которые могут быть перепутаны ОСЯ-сис-темой.

Программное обеспечение ОСЯ-системы обычно работает с большим растровым изображением страницы, полученной из сканера. Изображения со стандартной степенью разрешения достигаются сканированием с точностью 9600 п/д. Изображение листа формата A4 при этом разрешении занимает около 1 Мб памяти.

Основное назначение OCR-систем состоит в анализе растровой информации (отсканированного символа) и присвоении фрагменту изображения соответствующего символа. После завершения процесса распознавания OCR-системы должны уметь сохранять форматирование исходных документов, присваивать в нужном месте атрибут абзаца, сохранять таблицы, графику и т. д. Современные программы распознавания поддерживают все известные текстовые и графические форматы и форматы электронных таблиц, а также форматы HTML и PDF.

Работа с OCR-системами, как правило, не должна вызывать особых затруднений. Большинство таких систем имеют простейший автоматический режим «сканируй и распознавай» (Scan & Read), а также они поддерживают и режим распознавания изображений из файлов. Однако для того чтобы достигнуть лучших из возможных для данной системы результатов, желательно (а нередко и обязательно) предварительно вручную настроить ее на конкретный вид текста, макет бланка и качество бумаги. Страница, расположенная с нарушением границ или перекосом, создает немного искаженные символьные изображения, которые могут быть перепутаны OCR-системой.

Очень важным при работе с OCR-системой является выбор языка распознавания и типа распознаваемого материала (пишущая машинка, факс, матричный принтер, газета и т. д.), а также интуитивная понятность пользовательского интерфейса. При распознавании текстов, в которых использовано несколько языков, эффективность распознавания зависит от умения OCR-системы формировать группы языков. В то же время в некоторых системах уже имеются комбинации для наиболее часто применяемых языков, например русского и английского.

На данный момент существует огромное количество программ, поддерживающих распознавание текста как одну из возможностей. Лидером в этой области является система FineReader. Последняя версия программы (6.0) теперь имеет средства для разработки новых систем на базе технологии FineReader 6.0. В состав семейства FineReader 6.0 входят: система FineReader 6.0 Professional, FineReader 6.0 Corporate Edition, FineReader Scripting Edition 6.0 и FineReader Engine 6.0. Система FineReader 6.0, кроме того, что знает огромное количество форматов для сохранения, включая PDF, имеет возможность прямого распознавания из PDF-файлов. Новая технология Intelligent Background Filtering (интеллектуальная фильтрация фона) позволяет отсеять информацию о текстуре документа и фоновом шуме изображения: иногда для выделения текста в документе используется серый или цветной фон. Человеку это не мешает читать, но обычные алгоритмы распознавания текста испытывают серьезные затруднения при работе с буквами, расположенными поверх такого фона. Программа FineReader умеет определять зоны, содержащие подобный текст, отделяя текст от фона документа, находя точки, размер которых меньше определенной величины, и удаляя их. При этом контуры букв сохраняются, так что точки фона, близко расположенные к данным контурам, не вносят помех, способных ухудшить качество распознавания текста.

Используя возможности современных программ верстки, дизайнеры часто создают объекты сложной формы, такие как обтекание непрямоугольной картинки многоколоночным текстом. В системе FineReader 6.0 реализована поддержка распознавания таких объектов и их сохранение в файлах формата MS Word. Теперь документы сложной верстки будут точно воспроизведены в данном текстовом редакторе. Даже таблицы распознаются с максимальной точностью, сохраняя при этом все возможности для редактирования.

Система ABBYY FormReader - одна из программ распознавания от фирмы ABBYY, основанная на системе ABBYY FineReader Engine. Эта программа предназначена для распознавания и обработки форм, которые могут быть заполнены вручную. Программа ABBYY FormReader может обрабатывать формы с фиксированной схемой так же хорошо, как и формы, чья структура может меняться. Для распознавания была применена новая технология ABBYY FlexiForm technology.

Ведущие производители программного обеспечения лицензировали российскую информационную технологию для применения со своими продуктами. В популярные программные пакеты Corel Draw (Corel Corporation), FaxLine/OCR & Business Card Wizard (Inzer Corporation) и многие другие встроена OCR-библиотека CuneiForm. Эта программа стала первой в России OCR-системой, получившей MS Windows Compatible Logo.

Система Readiris Pro 7 - профессиональная программа распознавания текста. По словам производителей, данная OCR-система отличается от аналогов высочайшей точностью преобразования обычных (каждодневных) печатных документов, таких как письма, факсы, журнальные статьи, газетные вырезки, в объекты, доступные для редактирования (включая файлы формата PDF). Основными достоинствами программы являются: возможность более или менее точного распознавания картинок, сжатых «по максимуму» (с максимальной потерей качества) методом формата JPEG, поддержка цифровых камер и автоопределения ориентации страницы, поддержка до 92 языков (включая русский).

Система OmniPage 11 - продукт компании ScanSoft. Ограниченная версия этой программы (OmniPage 11 Limited Edition, OmniPage Lite) обычно поставляется в комплекте с новыми сканерами (на территории Европы и США). Разработчики утверждают, что их программа практически со 100%-ной точностью распознает печатные документы, восстанавливая их форматирование, включая столбцы, таблицы, переносы (в том числе переносы частей слов), заголовки, названия глав, подписи, номера страниц, сноски, параграфы, нумерованные списки, красные строки, графики и картинки. Есть возможность сохранения в форматы Microsoft Office, PDF и в 20 других форматов, распознавания из файлов формата PDF и редактирования в этом формате. Система искусственного интеллекта позволяет автоматически обнаруживать и исправлять ошибки после первого исправления вручную. Новый специально разработанный программный модуль «Dcspeckle» позволяет распознавать документы с ухудшенным качеством (факсы, копии, копии копий и т. д.). Преимуществом программы является возможность распознавания цветного текста и корректировки голосом. Версия OmniPage существует и для компьютеров фирмы Macintosh.

  • См.: Башмаков А. И., Башмаков И. А. Интеллектуальные информационные технологии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Новосибирский государственный университет экономики и управления «НИНХ»

Информационно-технический факультет

Кафедра прикладных информационных технологий

по дисциплине Нечеткая логика и нейронные сети

Распознавание образов

Направление: Бизнес-информатика (электронный бизнес)

Ф.И.О студента: Мазур Екатерина Витальевна

Проверил: Павлова Анна Илларионовна

Новосибирск 2016

  • Введение
  • 1. Понятие распознавания
    • 1.1 История развития
    • 1.2 Классификация методов распознавания образов
  • 2. Методы распознавания образов
  • 3. Общая характеристика задач распознавания образов и их типы
  • 4. Проблемы и перспективы развития распознавания образов
    • 4.1 Применение распознавания образов на практике
  • Заключение

Введение

Достаточно продолжительное время задача распознавания образов рассматривалась только с биологической точки зрения. При этом наблюдениям подвергались лишь качественные характеристики, которые не позволяли описать механизм функционирования.

Введённое Н.Винером в начале XX века понятие кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе), позволила в вопросах распознавания ввести количественные методы. То есть, представить данный процесс (по сути - природное явление) математическими методами.

Теория распознавания образов является одним из основных разделов кибернетики как в теоретическом, так и в прикладном плане. Так, автоматизация некоторых процессов предполагает создание устройств, способных реагировать на изменяющиеся характеристики внешней среды некоторым количеством положительных реакций.

Базой для решения задач такого уровня являются результаты классической теории статистических решений. В ее рамках строились алгоритмы определения класса, к которому может быть отнесен распознаваемый объект.

Цель данной работы - познакомиться с понятиями теории распознавания образов: раскрыть основные определения, изучить историю возникновения, выделить основные методы и принципы теории.

Актуальность темы заключается в том, что на данный момент распознавание образов - одно из ведущих направлений кибернетики. Так, в последние годы оно находит все большее применение: оно упрощает взаимодействие человека с компьютером и создает предпосылки для применения различных систем искусственного интеллекта.

распознавание образ применение

1. Понятие распознавания

Долгое время проблема распознавания привлекала внимание только ученых области прикладной математики. В результате, работы Р. Фишера, созданные в 20-х годах , привели к формированию дискриминантного анализа - одного из разделов теории и практики распознавания образов. В 40-х годах А. Н. Колмогоровым и А. Я. Хинчиным была поставлена цель о разделении смеси двух распределений. А в 50-60-е годы ХХ века на основе большого количества работ появилась теория статистических решений. В рамках кибернетики начало складываться новое направление, связанное с разработкой теоретических основ и практической реализацией механизмов, а также систем, предназначенных для распознавания объектов и процессов. Новая дисциплина получила название "Распознавание образов".

Распознавание образов (объектов) - это задача идентификации объекта по его изображению (оптическое распознавание), аудиозаписи (акустическое распознавание) или другим характеристикам. Образ - это классификационная группировка, которая позволяет объединить группу объектов по некоторым признакам. Образы обладают характерной чертой, проявляющейся в том, что ознакомление с конечным числом явлений из одного множества дает возможность узнать большое количество его представителей. В классической постановке задачи распознавания множество разбивается на части.

Одним из базовых определений также является и понятие множества. В компьютере множество - это набор неповторяющихся однотипных элементов. "Неповторяющихся" - значит, что элемент в множестве либо есть, либо нет. Универсальное множество включает все возможные элементы, пустое не содержит ни одного.

Методика отнесения элемента к какому-то образу называется решающим правилом. Еще одно важное понятие - метрика - определяет расстояние между элементами множества. Чем меньше это расстояние, тем больше схожи объекты (символы, звуки и др.), которые мы распознаем. Стандартно элементы задаются в виде набора чисел, а метрика - в виде какой-то функции. От выбора представления образов и реализации метрики зависит эффективность работы программы: одинаковый алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на факторы внешних похожих сигналов путем их многократного воздействия на систему. Самообучение отличается от обучения тем, что здесь дополнительная информация о реакции системе не сообщается.

Примерами задач распознавания образов являются:

Распознавание букв;

Распознавание штрих-кодов;

Распознавание автомобильных номеров;

Распознавание лиц и других биометрических данных;

Распознавание речи и др..

1.1 История развития

К середине 50-х годов Р. Пенроуз ставит под сомнение нейросетевую модель мозга, указывая на существенную роль в его функционировании квантово-механических эффектов. Отталкиваясь от этого, Ф.Розенблатт разработал модель обучения распознавания зрительных образов, названную персептроном.

Рисунок 1 - Схема Персептрона

Далее были придуманы различные обобщения персептрона, и функция нейронов была усложнена: нейроны смогли не только умножать входные числа и сравнивать результат с пороговыми значениями, но и применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений:

Рис. 2 Схема нейронной сети.

Кроме того, топология нейронной сети могла быть еще более усложненной. Например, такой:

Рисунок 3 - Схема нейронной сети Розенблатта.

Нейронные сети, будучи сложным объектом для математического анализа, при грамотном их использовании, позволяли находить весьма простые законы данных. Но это достоинство одновременно является и источником потенциальных ошибок. Трудность для анализа, в общем случае, объясняется только сложной структурой, но, как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей.

1.2 Классификация методов распознавания образов

Как мы уже отметили, распознаванием образов называются задачи установления отношений эквивалентности между определенными образами-моделями объектов реального или идеального мира.

Данные отношения определяют принадлежность распознаваемых объектов к каким-либо классам, которые рассматриваются как самостоятельные независимые единицы.

При построении алгоритмов распознавания эти классы могут задаваться исследователем, который пользуется собственными представлениями или использует дополнительную информацию о сходстве или различии объектов в контексте данной задачи. В данном случае говорят о "распознавании с учителем". В другом, т.е. когда автоматизированная система решает задачу классификации без привлечения дополнительной информации, говорят о "распознавании без учителя".

В работах В.А. Дюка дан академический обзор методов распознавания и используется два основных способа представления знаний:

Интенсиональное (в виде схемы связей между атрибутами);

Экстенсиональное с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над признаками объектов, приводящих к нужному результату. Интенсиональные представления реализуются через операции над значениями и не предполагают проведения операций над конкретными объектами.

В свою очередь экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как самостоятельные системы.

Таким образом, в основу классификации методов распознавания, предложенной В.А. Дюка, положены фундаментальные закономерности, которые лежат в основе человеческого способа познания в принципе. Это ставит данное деление на классы в особое положение по сравнению с другими менее известными классификациями, которые на этом фоне выглядят искусственными и неполными.

2. Методы распознавания образов

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций . В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания.Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом . Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей . Метод заключается в том, чтопри классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

3. Общая характеристика задач распознавания образов и их типы

Общая структура системы распознавания и ее этапы показаны на рисунке 4:

Рисунок 4 - Структура системы распознавания

Задачи распознавания имеют следующие характерные этапы:

Преобразование исходных данных к удобному виду для распознавания;

Распознавание (указание принадлежности объекта определенному классу).

В этих задачах можно вводить понятие подобия объектов и формулировать набор правил, на основании которых объект зачисляется в один или разные классы.

Так же можно оперировать набором примеров, классификация которых известна и которые в виде заданных описаний могут быть объявлены алгоритму распознавания для настройки на задачу в процессе обучения.

Трудности решения задач распознавания связаны с невозможностью применять без исправлений классические математические методы (часто в доступе нет информация для точной математической модели)

Выделяют следующие типы задач распознавания:

Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем);

Задача автоматической классификации - разбиение множества систему непересекающихся классов (таксономия, кластерный анализ, самообучение);

Задача выбора информативного набора атрибутов при распознавании;

Задача приведения исходных данных к удобному виду;

Динамическое распознавание и классификация;

Задача прогнозирования - то есть, решение должно относиться к определенному моменту в будущем.

В существующих системах распознавания есть две наиболее сложные проблемы:

Проблема «1001 класса» - добавление 1 класса к 1000 существующим вызывает трудности с переобучением системы и проверке данных, полученных до этого;

Проблема «соотношения словаря и источников» - наиболее сильно проявляется в распознавании речи. Текущие системы могут распознавать либо большое количество слов от небольшой группы лиц, либо мало слов от большой группы лиц. Так же трудно распознавать большое количество лиц с гримом или гримасами.

Нейронные сети не решают эти задачи напрямую, однако в силу своей природы они гораздо легче адаптируются к изменениям входных последовательностей.

4. Проблемы и перспективы развития распознавания образов

4.1 Применение распознавания образов на практике

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа независимых объектов с отнесением их к тому или другому классу. По итогу обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все другие. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему.

Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную, точную информацию. Такая информация представляет собой совокупность свойств объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Кроме того, объекты одного и того же образа могут сильно отличаться друг от друга.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться достаточно легкой и, наоборот, неудачно выбранное может привести к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Распознавание объектов, сигналов, ситуаций, явлений - самая часто встречающаяся задача, которую человеку необходимо решать ежесекундно. Для этого используются огромные ресурсы мозга, который оценивается таким показателем как число нейронов, равное 10 10 .

Также, распознавание постоянно встречается в технике. Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность и успел превратиться в инженерную дисциплину, связанную с производством коммерческих продуктов. В большом объеме ведутся работы по созданию элементной базы для нейровычислений.

Основной их характерной чертой является способность решать неформализованные проблемы, для которых в силу тех или иных причин не предполагается алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию получения алгоритмов путем обучения. В этом их основное преимущество. Поэтому нейрокомпьютинг оказывается актуальным именно сейчас - в период расцвета мультимедиа, когда глобальное развитие требует разработки новых технологий, тесно связанных с распознаванием образов.

Одной из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах распознавания. Дальнейшее развитие и проектирование компьютеров, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, нерешаемы без распознавания. Здесь уже встает вопрос о развитии робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Заключение

В результате работы был сделан краткий обзор основных определений понятий такого раздела кибернетики как распознавание образов, выделены методы распознавания, сформулированы задачи.

Безусловно, существует множество направлений по развитию данной науки. К тому же, как было сформулировано в одной из глав, распознавание - одно из ключевых направлений развития на данный момент. Так, программное обеспечение в ближайшие десятилетия может стать ещё более привлекательным для пользователя и конкурентоспособным на современном рынке, если приобретет коммерческий формат и начнет распространяться в рамках большого количества потребителей.

Дальнейшие исследования могут быть направлены на следующие аспекты: глубокий анализ основных методов обработки и разработка новых комбинированных или модифицированных методов для распознавания. На основании проведенных исследований можно будет разработать функциональную систему распознавания, с помощью которой возможно проверить выбранные методы распознавания на эффективность.

Список литературы

1. Дэвид Формайс, Жан Понс Компьютерное зрение. Современный подход, 2004

2. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин. - М.: Наука, 2004.

3. Журавлев Ю.И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. М.: Наука, 2005. - Вып. 33.

4. Мазуров В.Д. Комитеты систем неравенств и задача распознавания // Кибернетика, 2004, № 2.

5. Потапов А.С. Распознавание образов и машинное восприятие. - С-Пб.: Политехника, 2007.

6. Минский М., Пейперт С. Персептроны. - М.: Мир, 2007.

7. Растригин Л. А., Эренштейн Р. Х. Метод коллективного распознавания. М. Энергоиздат, 2006.

8. Рудаков К.В. Об алгебраической теории универсальных и локальных ограничений для задач классификации // Распознавание, классификация, прогноз. Математические методы и их применение. Вып. 1. - М.: Наука, 2007.

9. Фу К. Структурные методы в распознавании образов. - М.: Мир, 2005.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа , добавлен 15.01.2014

    Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация , добавлен 06.01.2014

    Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа , добавлен 13.10.2017

    Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.

    курсовая работа , добавлен 05.04.2015

    Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа , добавлен 15.08.2011

    Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа , добавлен 06.04.2014

    Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.

    реферат , добавлен 10.04.2010

    Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа , добавлен 21.06.2014

    Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа , добавлен 14.11.2013

    Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.