В системе не являющейся колебательной. Уравнение вынужденных колебаний и его решение. Резонанс. Примеры решения задач

Вынужденные колебания

колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше Затухание колебаний в этой системе.

В частности, в линейных колебательных системах (См. Колебательные системы) при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис. ). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает - наступает Резонанс . В нелинейных системах (См. Нелинейные системы) разделение на свободные и В. к. возможно не всегда.

Лит.: Хайкин С. Э., Физические основы механики, М., 1963.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Вынужденные колебания" в других словарях:

    Вынужденные колебания - Вынужденные колебания. Зависимость их амплитуды от частоты внешнего воздействия при различном затухании: 1 слабое затухание; 2 сильное затухание; 3 критическое затухание. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ, колебания, возникающие в какой либо системе в… … Иллюстрированный энциклопедический словарь

    вынужденные колебания - Колебания, происходящие под периодическим воздействием внешней обобщенной силы. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] вынужденные… … Справочник технического переводчика

    Вынужденные колебания колебания, происходящие под воздействием внешних сил, меняющихся во времени. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого … Википедия

    ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ, колебания, возникающие в какой либо системе в результате периодически изменяющегося внешнего воздействия: силы в механической системе, напряжения или тока в колебательном контуре. Вынужденные колебания всегда происходят с… … Современная энциклопедия

    Колебания, возникающие в к. л. системе под действием периодич. внеш. силы (напр., колебания мембраны телефона под действием перем. магн. поля, колебания механич. конструкции под действием перем. нагрузки). Хар р В. к. определяется как внеш. силой … Физическая энциклопедия

    Колебания, возникающие в к. л. системе под влиянием перем. внеш. воздействия (напр., колебания напряжения и силы тока в электрич. цепи, вызываемые перем. эдс; колебания механич. системы, вызываемые перем. нагрузкой). Характер В. к. определяется… … Большой энциклопедический политехнический словарь

    Возникают в системе под действием периодического внешнего воздействия (напр., вынужденные колебания маятника под действием периодической силы, вынужденные колебания в колебательном контуре под действием периодической электродвижущей силы). Если… … Большой Энциклопедический словарь

    Вынужденные колебания - (вибрация) – колебания (вибрация) системы, вызванные и поддерживаемые силовым и (или) кинематическим возбуждением. [ГОСТ 24346 80] Вынужденные колебания – колебания систем, вызванные действием переменных во времени нагрузок. [Отраслевой… … Энциклопедия терминов, определений и пояснений строительных материалов

    - (Constrained vibrations, forced vibrations) колебания тела, вызываемые периодически действующей внешней силой. В случае совпадения периода вынужденных колебаний с периодом собственных колебаний тела получается явление резонанса. Самойлов К. И.… … Морской словарь

    ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ - (см.), возникающие в какой либо системе под влиянием внешнего переменного воздействия; их характер определяется как свойствами внешнего воздействии, так и свойствами самой системы. С приближением частоты внешнего воздействия к частоте собственных … Большая политехническая энциклопедия

    Возникают в системе под действием периодического внешнего воздействия (например, вынужденные колебания маятника под действием периодической силы, вынужденные колебания в колебательном контуре под действием периодической эдс). Если частота… … Энциклопедический словарь

Книги

  • Вынужденные колебания кручения валов при учете затухания , А.П. Филиппов , Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство`Известия академии наук СССР`). В… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа ,
  • Вынужденные поперечные колебания стержней при учете затухания , А.П. Филиппов , Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство "Известия академии наук СССР")… Категория:

В отличие от свободных колебаний, когда система получает лишь один раз (при выведении системы из ), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно. Эта энергия восполняет потери, расходуемые на преодоление , и потому полная no-прежнему остается неизменной.

Вынужденные колебания в отличие от свободных могут происходить с любой частотой. совпадает с частотой внешней силы, действующей на колебательную систему. Таким образом, частота вынужденных колебаний определяется не свойствами самой системы, а частотой внешнего воздействия.

Примерами вынужденных колебаний являются колебания детских качелей, колебания иглы в швейной машине, поршня в цилиндре автомобильного двигателя, рессор автомобиля, движущегося по неровной дороге и т.д.

Резонанс

ОПРЕДЕЛЕНИЕ

Резонанс – это явление резкого возрастания вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте колебательной системы.

Резонанс возникает из-за того, что при внешняя сила, действуя в такт со свободными колебаниями, все время имеет одинаковое направление со колеблющегося тела и совершает положительную работу: энергия колеблющегося тела увеличивается, и становится большой. Если же внешняя сила действует «не в такт», то эта силы попеременно совершает то отрицательную, то положительную работу и вследствие этого энергия системы меняется незначительно.

На рис.1 показана зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы. Видно, что эта амплитуда достигает максимума при определенном значении частоты, т.е. при , где собственная частота колебательной системы. Кривые 1 и 2 отличаются величиной силы трения. При малом трении (кривая 1) резонансная кривая имеет резкий максимум, при большей силе трения (кривая 2) такого резкого максимума нет.

С явлением резонанса мы часто встречаемся в повседневной жизни. Если в комнате задрожали стекла при прохождении по улице тяжелого грузовика, это значит, что собственная частота колебаний стекол равна частоте колебаний машины. Если морские волны попадают в резонанс с периодом корабля, то качка становится особенно сильной.

Явление резонанса необходимо учитывать при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены. Однако резонанс также может быть полезен. Явление резонанса используется при настройке радиоприемника на определенную частоту радиовещания, а также во многих других случаях.

Примеры решения задач

ПРИМЕР 1

Задание На конец пружины горизонтального маятника, груз которого имеет массу 1 кг, действует переменная сила, частота колебаний которой равна 16 Гц. Будет ли при этом наблюдаться резонанс, если жесткость пружины 400 Н/м.
Решение Определим собственную частоту колебательной системы по формуле:

Гц

Так как частота внешней силы не равна собственной частоте системы, явление резонанса наблюдаться не будет.

Ответ Явление резонанса наблюдаться не будет.

ПРИМЕР 2

Задание Маленький шарик подвешен на нити длиной 1 м к потолку вагона. При какой скорости вагона шарик будет особенной сильно колебаться под действием ударов колес о стыки рельсов? Длина рельса 12,5 м.
Решение Шарик совершает вынужденные колебания с частотой , равной частоте ударов колес о стыки рельсов:

Если размеры шарика малы по сравнению с длиной нити, то систему можно считать , собственная частота колебаний которого:

амплитуда вынужденных незатухающих колебаний максимальна в случае резонанса, т.е. когда . Таким образом можно записать:

На этом уроке все желающие смогут изучить тему «Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания». На этом уроке мы рассмотрим, какое превращение энергии происходит при колебательном движении. Для этого мы проведем важный эксперимент с системой горизонтального пружинного маятника. Также мы обсудим вопросы, связанные с затухающими колебаниями и вынужденными колебаниями.

Урок посвящен теме «Превращение энергии при колебательном движении». Кроме этого, мы рассмотрим вопрос, связанный с затухающими и вынужденными колебаниями.

Приступим к знакомству с этим вопросом со следующего важного эксперимента. К пружине прикреплено тело, которое может совершать горизонтальные колебания. Такую систему называют горизонтальным пружинным маятником. В этом случае можно не учитывать действие силы тяжести.

Рис. 1. Горизонтальный пружинный маятник

Будем считать, что в системе сил трения, сил сопротивления нет. Когда эта система находится в равновесии и никакого колебания не происходит, скорость тела равна 0 и отсутствует деформация пружины. В этом случае энергии у данного маятника нет. Но стоит только тело сместить относительно точки равновесия в правую или в левую сторону, в этом случае мы совершим работу по сообщению энергии в данной колебательной системе. Что в этом случае происходит? Происходит следующее: пружина деформируется, изменяется ее длина. Мы сообщаем пружине потенциальную энергию. Если теперь отпустить груз, не удерживать его, то он начнет свое движение к положению равновесия, пружина начнет выпрямляться и деформация пружины будет уменьшаться. Скорость тела будет увеличиваться, и по закону сохранения энергии потенциальная энергия пружины будет превращаться в кинетическую энергию движения тела.

Рис. 2. Стадии колебаний пружинного маятника

Деформация ∆х пружины определяется следующим образом: ∆х = х 0 - х. Рассмотрев деформацию, мы можем сказать, что вся потенциальная энергия запасена именно в пружине: .

Во время колебаний потенциальная энергия постоянно превращается в кинетическую энергию бруска: .

Например, когда брусок проходит точку равновесия х 0 , деформация пружины равна 0, т.е. ∆х=0, стало быть, потенциальная энергия пружины равна 0 и вся энергия потенциальная пружины превратилась в кинетическую энергию бруска: Е п (в точке В) = Е к (в точке А) . Или .

В результате такого движения потенциальная энергия превращается в кинетическую. Потом вступает в действие так называемое явление инерции. Тело, которое обладает некоторой массой, по инерции проходит точку равновесия. Скорость тела начинает уменьшаться, а деформация, удлинение пружины увеличивается. Можно сделать вывод о том, что кинетическая энергия тела уменьшается, а потенциальная энергия пружины вновь начинает нарастать. Мы можем говорить о превращении кинетической энергии в потенциальную.

Когда тело остановится в итоге, скорость тела будет равна 0, а деформация пружины станет максимальной, в этом случае можно говорить, что вся кинетическая энергия тела превратилась в потенциальную энергию пружины. В дальнейшем все повторяется сначала. При выполнении одного условия такой процесс будет происходить непрерывно. Что это за условие? Это условие - отсутствие трения. Но сила трения, сила сопротивления присутствует в любой системе. Поэтому с каждым следующим движением маятника, происходят потери энергии. Совершается работа по преодолению силы трения. Сила трении закону Кулона - Амонтона: F ТР = μ . N .

Говоря о колебаниях, мы всегда должны помнить, что сила трения приводит к тому, что постепенно вся энергия, запасенная в данной колебательной системе, превращается во внутреннюю энергию. В результате колебания прекращаются, а раз колебания прекращаются, то такие колебания называются затухающими.

Затухающие колебания - колебания, амплитуда которых уменьшается вследствие того, что энергия колебательной системы расходуется на преодоление сил сопротивления и сил трения.

Рис. 3. График затухающих колебаний

Следующий вид колебаний, который мы рассмотрим, т.н. вынужденные колебания. Вынужденными колебаниями называют такие колебания, которые совершаются под действием периодической, внешней, действующей на данную колебательную систему силы.

Если маятник совершает колебания, то, чтобы эти колебания не прекращались, каждый раз на маятник необходимо действие внешней силы. Например, мы действуем на маятник собственной рукой, заставляем его двигаться, подталкиваем. Необходимо обязательно действовать с некоторой силой и восполнять потерю энергии. Итак, вынужденные колебания - те колебания, которые совершаются под действием внешней вынуждающей силы. Частота таких колебаний будет совпадать с частотой внешней действующей силы. Когда на маятник начинает действовать внешняя сила, происходит следующее: сначала колебания будут иметь маленькую амплитуду, но постепенно эта амплитуда будет возрастать. И когда амплитуда приобретет постоянное значение, частота колебаний приобретет тоже постоянное значение, говорят о том, что такие колебания установились. Вынужденные колебания установились.

Установившиеся вынужденные колебания восполняют потерю энергии именно благодаря работе внешней вынуждающей силы.

Резонанс

Существует очень важное явление, которое довольно часто наблюдается в природе и технике. Это явление называется резонанс. «Резонанс» - слово латинское и переводится на русский язык как «отклик». Резонанс (от лат. resono - «откликаюсь») - явление увеличения амплитуды вынужденных колебаний системы, которое наступает при приближении частоты внешнего воздействия силы к частоте собственного колебания маятника или данной колебательной системы.

Если есть маятник, у которого есть собственная длина, масса или жесткость пружины, то у этого маятника существуют свои колебания, которые характеризуются частотой. Если на этот маятник начинает действовать внешняя вынуждающая сила и частота действия этой силы начинает приближаться к собственной частоте маятника (совпадает с ней), то возникает резкое увеличение амплитуды колебаний. Это и есть явление резонанса.

В результате такого явления колебания могут быть настолько большими, что тело, сама колебательная система, будет разрушаться. Известен случай, когда строй солдат, шедший через мост, в результате такого явления просто-напросто обрушили мост. Еще один случай, когда в результате движения воздушных масс, достаточно мощных порывов ветра обрушился мост в США. Это тоже явление резонанса. Колебания моста, собственные колебания совпали с частотой порывов ветра, внешней вынуждающей силы. Это привело к тому, что амплитуда настолько увеличилась, что мост разрушился.

Это явление стараются учитывать при проектировании сооружений и механизмов. Например, при движении поезда может произойти следующее. Если едет вагон и этот вагон в такт своего движения начинает раскачиваться, то амплитуда колебаний может увеличиться на столько, что вагон может сойти с рельсов. Произойдет крушение. Для характеристики такого явления используют кривые, которые называются резонансными.

Рис. 4. Резонансная кривая. Пик кривой - максимальная амплитуда

Конечно, с резонансом не только борются, но и используют. Используют его по большей части в акустике. Там, где есть зрительный зал, театральный зал, концертный зал мы обязательно должны учитывать явление резонанса.

Список дополнительной литературы:

А так ли хорошо знаком вам резонанс? // Квант. — 2003. — № 1. — С. 32-33 Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. Элементарный учебник физики. Под ред. Г.С. Ландсберга, Т. 3. - М., 1974

Вынужденными колебаниями называют такие колебания, которые возникают в системе при действии на нее внешней вынуждающей периодически изменяющейся силы, называемой вынуждающей.

Характер (зависимость от времени) вынуждающей силы может быть различным. Это может сила, меняющаяся по гармоническому закону. Например, звуковая волна, источником которой является камертон, попадает на барабанную перепонку или мембрану микрофона. На перепонку начинает действовать гармонически меняющаяся сила давления воздуха.

Вынуждающая сила может носить характер толчков или коротких импульсов. Например, взрослый раскачивает ребенка на качелях, периодически толкая их в тот момент, когда качели приходят в одно из крайних положений.

Наша задача – выяснить, как реагирует колебательная система на воздействие периодически изменяющейся вынуждающей силы.

§ 1 Вынуждающая сила изменяется по гармоническому закону


F сопрх = - rv x и вынуждающая сила F вын = F 0 sin wt .

Второй закон Ньютона запишется в виде:


Решение уравнения (1) ищут в виде , где - это решение уравнения (1), если бы в нем не было правой части. Видно, что без правой части уравнение превращается в известное нам уравнение затухающих колебаний, решение которого мы уже знаем. За достаточно большое время свободные колебания, которые возникнут в системе при выведении ее из положения равновесия, практически затухнут, и в решении уравнения останется только второе слагаемое. Будем искать это решение в виде
Сгруппируем слагаемые иначе:

Это равенство должно выполняться в любой момент времени t, что возможно только, если коэффициенты при синусе и косинусе равны нулю.




Итак,тело, на которое действует вынуждающая сила, меняющаяся по гармоническому закону, совершает колебательное движение с частотой вынуждающей силы.

Разберем подробнее вопрос об амплитуде вынужденных колебаний:

1 Амплитуда установившихся вынужденных колебаний не меняется с течением времени. (Сравните с амплитудой свободных затухающих колебаний).

2 Амплитуда вынужденных колебаний прямо пропорциональна амплитуде вынуждающей силы.

3 Амплитуда зависит от трения в системе (А зависит от d, а коэффициент затухания d, в свою очередь, зависит от коэффициента сопротивления r). Чем больше трение в системе, тем амплитуда вынужденных колебаний меньше.

4 Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы w. Как? Исследуем функцию А(w).


При w = 0 (постоянная сила действует на колебательную систему) смещение тела неизменно с течением времени (надо иметь в виду то, что это относится к установившемуся состоянию, когда собственные колебания уже практически затухли).

· При w ® ¥, то, как нетрудно видеть, амплитуда А стремится к нулю.

· Очевидно, что при какой-то частоте вынуждающей силы амплитуда вынужденных колебаний примет наибольшее значение (для данного d). Явление резкого возрастания амплитуды вынужденных колебаний при определенном значении частоты вынуждающей силы носит название механического резонанса.



Интересно, что добротность колебательной системы в этом случае показывает во сколько раз резонансная амплитуда превышает смещение тела от положения равновесия под действием постоянной силы F 0 .

Мы видим, что и резонансная частота, и резонансная амплитуда зависят от коэффициента затухания d. С уменьшением d к нулю резонансная частота возрастает и стремится к частоте собственных колебаний системы w 0 . При этом резонансная амплитуда возрастает и при d = 0 обращается в бесконечность. Разумеется, на практике амплитуда колебаний бесконечной быть не может, так как в реальных колебательных системах всегда действуют силы сопротивления. Если система имеет малое затухание, то приближенно можно считать, что резонанс наступает при частоте собственных колебаний.:


где в рассматриваемом случае - это сдвиг по фазе между вынуждающей силой и смещением тела от положения равновесия.

Нетрудно видеть, что сдвиг по фазе между силой и смещением зависит от трения в системе и частоты внешней вынуждающей силы . Эта зависимость показана на рисунке. Видно, что при < тангенс принимает отрицательные значения, а при > - положительные.

Зная зависимость от угла , можно получить зависимость от частоты вынуждающей силы .

При частотах внешней силы, существенно меньших собственной, смещение отстает по фазе от вынуждающей силы незначительно. При увеличении частоты внешней силы это запаздывание по фазе растет. При резонансе (если невелико) сдвиг по фазе становится равным . При >> колебания смещения и силы происходят в противофазе. Такая зависимость может показаться на первый взгляд странной. Чтобы понять этот факт, обратимся к энергетическим преобразованиям в процессе вынужденных колебаний.

§ 2 Энергетические превращения

Как мы уже знаем, амплитуда колебаний определяется полной энергией колебательной системы. Ранее было показано, что амплитуда вынужденных колебаний остается неизменной с течением времени. Это значит, что полная механическая энергия колебательной системы с течением времени не меняется. Почему? Ведь система не замкнута! Две силы - внешняя периодически меняющаяся и сила сопротивления – совершают работу, которая должна менять полную энергию системы.

Попробуем разобраться, в чем дело. Мощность внешней вынуждающей силы может быть найдена следующим образом:

Видим, что мощность внешней силы , подпитывающей колебательную систему энергией, пропорциональна амплитуде колебаний .

Счет работы силы сопротивления энергия колебательной системы должна уменьшаться, переходя во внутреннюю. Мощность силы сопротивления:

Очевидно, что мощность силы сопротивления пропорциональна квадрату амплитуды . Изобразим обе зависимости на графике.

Чтобы колебания были установившимися (амплитуда не менялась с течением времени), работа внешней силы за период должна компенсировать потери энергии системой за счет работы силы сопротивления. Точка пересечения графиков мощностей как раз соответствует этому режиму. Представим, что в силу каких-то причин амплитуда вынужденных колебаний уменьшилась. Это приведет к тому, что мгновенная мощность внешней силы окажется больше мощности потерь. Это приведет к росту энергии колебательной системы, и амплитуда колебаний восстановит прежнее значение.

Аналогичным образом можно убедиться, что при случайном увеличении амплитуды колебаний мощность потерь превысит мощность внешней силы, что приведет к уменьшению энергии системы, и, следовательно, к уменьшению амплитуды.

Вернемся к вопросу о сдвиге по фазе между смещением и вынуждающей силой при резонансе. Мы уже показали, что смещение отстает, а, значит, сила опережает смещение, на . С другой стороны, проекция скорости в процессе гармонических колебаний всегда опережает координату на . Это означает, что при резонансе внешняя вынуждающая сила и скорость колеблются в одной фазе. А значит они сонаправлены в любой момент времени! Работа внешней силы в этом случае всегда положительна, она вся идет на пополнение колебательной системы энергией.

§ 3 Несинусоидальное периодическое воздействие

Вынужденные колебания осциллятора возможны при любом периодическом внешнем воздействии, а не только синусоидальном. При этом установившиеся колебания, вообще говоря, не будут синусоидальными, но они будут представлять собой периодическое движение с периодом, равным периоду внешнего воздействия.

Внешнее воздействие может представлять собой, например, последовательные толчки (вспомните, как взрослый человек «раскачивает» ребенка, сидящего на качелях). Если период внешних толчков совпадает с периодом собственных колебаний, то в системе может наступать резонанс. Колебания при этом будут почти синусоидальными. Сообщаемая системе при каждом толчке энергия идет пополнение полной энергии системы, теряемой за счет трения. Понятно, что при этом возможны варианты: если сообщаемая при толчке энергия равна или превышает потери на трение за период, то колебания будут либо установившимися, либо их размах будет возрастать. Это хорошо видно на фазовой диаграмме.

Очевидно, что резонанс возможен и в том случае, когда период следования толчков будет кратен периоду собственных колебаний. Такое невозможно при синусоидальном характере внешнего воздействия.

С другой стороны, даже при совпадении частоты толчков с собственной частотой резонанс может не наблюдаться. Если только потери на трение за период превышают энергию, полученную системой во время толчка, то полная энергия системы будет уменьшаться, а колебания будут затухать.

§ 4 Параметрический резонанс

Внешнее воздействие на колебательную систему может сводиться к периодическому изменению параметров самой колебательной системы. Возбуждаемые таким образом колебания называются параметрическими, а сам механизм – параметрическим резонансом .

Прежде всего, попытаемся ответить на вопрос: можно ли раскачать уже имеющиеся в системе малые колебания, периодически изменяя определенным образом какой-либо ее параметр.

В качестве примера рассмотрим раскачивание человека на качелях. Сгибая и выпрямляя ноги в «нужные» моменты, он фактически изменяет длину маятника. В крайних положениях человек приседает, тем самым чуть-чуть опускает центр тяжести колебательной системы, в среднем положении человек выпрямляется, поднимая центр тяжести системы.

Чтобы понять, почему при этом человек раскачивается, рассмотрим предельно упрощенную модель человека на качелях – обычный небольшой маятник, то есть небольшой грузик на легкой и длинной нити. Чтобы имитировать поднимание и опускание центра тяжести, пропустим верхний конец нити через маленькое отверстие и будем вытягивать нить в те моменты, когда маятник проходит положение равновесия, и настолько же опускать нить, когда маятник проходит крайнее положение.


Работа силы натяжения нити за период (с учетом того, что подъем груза и его опускание производится два раза за период и что Dl << l ):



Обратите внимание, что в скобках стоит не что иное, как утроенная энергия колебательной системы. Кстати, это величина положительная, следовательно, работа силы натяжения (наша работа) положительная, она приводит к увеличению полной энергии системы, а значит, к раскачке маятника.

Интересно, что относительное изменение энергии за период не зависит от того, слабо раскачивается маятник или сильно. Это очень важно, и вот почему. Если маятник «не подкачивать» энергией, то за каждый период он будет терять за счет силы трения определенную часть своей энергии, и колебания будут затухать. А чтобы размах колебаний увеличивался, необходимо, чтобы приобретаемая энергия превышала потерянную на преодоление трения. И это условие, оказывается, одно и то же – как при маленькой амплитуде, так и при большой.

Например, если за один период энергия свободных колебаний уменьшается на 6%, то для того, чтобы колебания маятника длиной 1 м не затухали, достаточно в среднем положении уменьшать его длину на 1 см, а в крайнем – на столько же увеличивать.

Возвращаясь к качелям: если вы начали раскачиваться, то нет необходимости приседать все глубже и глубже – приседайте все время одинаково, и будете взлетать все выше и выше!

*** Опять добротность!

Как мы уже сказали, для параметрической раскачки колебаний необходимо выполнение условия DЕ > А трения за период.

Найдем работу силы трения за период


Видно, что относительная величина подъема маятника для его раскачки определяется добротностью системы.

§ 5 Значение резонанса

Вынужденные колебания и резонанс широко используются в технике, особенно в акустике, электротехнике, радиотехнике. Резонанс, в первую очередь, используется тогда, когда из большого набора колебаний разной частоты хотят выделить колебания определенной частоты. Резонанс используется и при изучении очень слабых периодически повторяющихся величин.

Однако, в ряде случаев резонанс – нежелательное явление, так как может привести к большим деформациям и разрушениям конструкций.

§ 6 Примеры решения задач

Задача 1 Вынужденные колебания пружинного маятника под действием внешней синусоидальной силы.

К пружине жесткостью k = 10 Н/м подвесили груз массой m = 10 г и поместили систему в вязкую среду с коэффициентом сопротивления r = 0,1 кг/с. Сравните собственную и резонансную частоту системы. Определите амплитуду колебаний маятника при резонансе под действием синусоидальной силы с амплитудой F 0 = 20 мН.

Решение:

1 Собственная частота колебательной системы – это частота свободных колебаний в отсутствии трения. Собственная циклическая частота равна , частота колебаний .

2 Резонансная частота – это частота внешней вынуждающей силы, при которой амплитуда вынужденных колебаний резко возрастает. Резонансная циклическая частота равна , где - коэффициент затухания, равный .

Таким образом, резонансная частота равна . Нетрудно видеть, что резонансная частота меньше собственной! Также видно, что чем меньше трение в системе (r) , тем ближе резонансная частота к собственной.

3 Резонансная амплитуда равна

Задача 2 Резонансная амплитуда и добротность колебательной системы

К пружине жесткостью k = 10 Н/м подвесили груз массой m = 100 г и поместили систему в вязкую среду с коэффициентом сопротивления

r = 0,02 кг/с. Определите добротность колебательной системы и амплитуду колебаний маятника при резонансе под действием синусоидальной силы с амплитудой F 0 = 10 мН. Найдите отношение резонансной амплитуды к статическому смещению под действием постоянной силы F 0 = 20 мН и сравните это отношение с добротностью.

Решение:

1 Добротность колебательной системы равна , где - логарифмический декремент затухания.

Логарифмический декремент затухания равен .

Находим добротность колебательной системы .

2 Резонансная амплитуда равна

3 Статическое смещение под действием постоянной силы F 0 = 10 мН равно .

4 Отношение резонансной амплитуды к статическому смещению под действием постоянной силы F 0 равно

Нетрудно видеть, что это отношение совпадает с добротностью колебательной системы

Задача 3 Резонансные колебания балки

Под действием веса электромотора консольная бака, на которой он установлен, прогнулась на . При каком числе оборотов якоря мотора может возникнуть опасность резонанса?

Решение:

1 Корпус двигателя и балка, на которой он установлен, испытывают периодические толчки со стороны вращающегося якоря мотора и, следовательно, совершают вынужденные колебания с частотой следования толчков.

Резонанс будет наблюдаться при совпадении частоты следования толчков с собственной частотой колебания балки с мотором . Необходимо найти собственную частоту колебаний системы балка – мотор.

2 Аналогом колебательной системы балка – мотор может служить вертикальный пружинный маятник, масса которого равна массе мотора. Собственная частота колебаний пружинного маятника равна . Но жесткость пружины и масса мотора не известны! Как быть?

3 В положении равновесия пружинного маятника сила тяжести груза уравновешивается силой упругости пружины

4 Находим вращения якоря двигателя, т.е. частоту следования толчков

Задача 4 Вынужденные колебания пружинного маятника под действием периодических толчков.

Гиря массой m = 0,5 кг подвешена к спиральной пружине жесткостью k = 20 Н/м. Логарифмический декремент затухания колебательной системы равен . Гирю хотят раскачать короткими толчками, действуя на гирю силой F = 100 мН в течение времени τ = 0,01 с. Какой должна быть частота следования ударов, чтобы амплитуда гири была наибольшей? В какие моменты и в каком направлении следует толкать гирю? До какой амплитуды удастся раскачать гирю таким способом?

Решение:

1 Вынужденные колебания могут происходить при любом периодическом воздействии. При этом установившееся колебание будет происходить с частотой следования внешнего воздействия. Если период внешних толчков совпадает с частотой собственных колебаний, то в системе наступает резонанс – амплитуда колебаний становится наибольшей. В нашем случае для наступления резонанса период следования толчков должен совпасть с периодом колебаний пружинного маятника.

Логарифмический декремент затухания мал, следовательно, мало трение в системе, и период колебаний маятника в вязкой среде практически совпадает с периодом колебаний маятника в вакууме:

2 Очевидно, направление толчков должно совпадать со скоростью гири. В этом случае работа внешней силы, пополняющей систему энергией, будет положительной. И колебания будут раскачиваться. Энергия, получаемая системой в процессе удара

будет наибольшей при прохождении грузом положения равновесия, ибо в этом положении скорость маятника максимальна.

Итак, наиболее быстро система раскачается при действии толчков в направлении движения груза при прохождении им положения равновесия.

3 Амплитуда колебаний прекращает расти, когда энергия, сообщаемая системе в процессе удара, будет равна потерям энергии на трение за период: .

Энергию потерь за период найдем через добротность колебательной системы

где Е – полная энергия колебательной системы, которая может быть рассчитана как .

Подставляем вместо энергии потерь энергию, получаемую системой в процессе удара:

Максимальная скорость в процессе колебаний равна . С учетом этого получаем .

§7 Задания для самостоятельного решения

Тест «Вынужденные колебания»

1 Какие колебания называются вынужденными?

А) Колебания, происходящие под действием внешних периодически изменяющихся сил;

Б) Колебания, возникающие в системе после внешнего толчка;

2 Какие из перечисленных колебаний является вынужденным?

А) Колебание груза, подвешенного к пружине, после однократного его отклонения от положения равновесия;

Б) Колебание диффузора громкоговорителя во время работы приемника;

В) Колебание груза, подвешенного к пружине, после однократного удара по грузу в положении равновесия;

Г) Вибрация корпуса электрического двигателя в процессе его работы;

Д) Колебания барабанной перепонки человека, слушающего музыку.

3 На колебательную систему с собственной частотой действует внешняя вынуждающая сила, меняющаяся по закону . Коэффициент затухания в колебательной системе равен . По какому закону изменяется координата тела с течением времени?

В) Амплитуда вынужденных колебаний будет оставаться неизменной, так как потери энергии системой на трение будут восполняться прибылью энергии за счет работы внешней вынуждающей силы.

5 Система совершает вынужденные колебания под действием синусоидальной силы. Укажите все факторы, от которых зависит амплитуда этих колебаний.

А) От амплитуды внешней вынуждающей силы;

Б) Наличия у колебательной системы энергии в момент начала действия внешней силы;

В) Параметров самой колебательной системы;

Г) Трения в колебательной системе;

Д) Существования в системе собственных колебаний в момент начала действия внешней силы;

Е) Времени установления колебаний;

Ж) Частоты внешней вынуждающей силы.

6 Брусок массой m совершает вынужденные гармонические колебания по горизонтальной плоскости с периодом T и амплитудой A. Коэффициент трения μ. Какую работу совершает внешняя вынуждающая сила за время, равное периоду T?

А) 4μmgA; Б) 2μmgA; В) μmgA; Г) 0;

Д) Ответ дать не возможно, так как не известна величина внешней вынуждающей силы.

7 Составьте правильное утверждение

Резонансом называется явление…

А) Совпадения частоты внешней силы с собственной частотой колебательной системы;

Б) Резкое возрастание амплитуды вынужденных колебаний.

Резонанс наблюдается при условии

А) Уменьшении трения в колебательной системе;

Б) Увеличении амплитуды внешней вынуждающей силы;

В) Совпадении частоты внешней силы с собственной частотой колебательной системы;

Г) При совпадении частоты внешней силы с резонансной частотой.

8 Явление резонанса может наблюдаться в…

А) В любой колебательной системе;

Б) В системе, совершающей свободные колебания;

В) В автоколебательной системе;

Г) В системе, совершающей вынужденные колебания.

9 На рисунке представлен график зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы. Резонанс наступает на частоте…

10 Три одинаковых маятника, находящиеся в различных вязких средах, совершают вынужденные колебания. На рисунке показаны резонансные кривые для этих маятников. Какой из маятников испытывает наибольшее сопротивление со стороны вязкой среды в процессе колебаний?

А) 1; Б) 2; В) 3;

Г) Ответ дать не возможно, поскольку амплитуда вынужденных колебаний кроме частоты внешней силы зависит еще и от ее амплитуды. Об амплитуде внешней вынуждающей силы в условии ничего не говорится.

11 Период собственных колебаний колебательной системы равен Т 0 . Каким может быть период следования толчков, чтобы амплитуда колебаний резко увеличилась, то есть в системе возник резонанс?

А) Т 0 ; Б) Т 0 , 2 Т 0 , 3 Т 0 ,…;

В) Раскачать качели можно толчками любой частоты.

12 Ваш младший брат сидит на качелях, вы раскачиваете его кратковременными толчками. Каким должен быть период следования толчков, чтобы процесс происходил наиболее эффективно? Период собственных колебаний качелей Т 0 .

Г) Раскачать качели можно толчками любой частоты.

13 Ваш младший брат сидит на качелях, вы раскачиваете его кратковременными толчками. В каком положении качелей следует производить толчок и в каком направлении толкать, чтобы процесс происходил наиболее эффективно?

А) Толкать в крайнем верхнем положении качелей в направлении положения равновесия;

Б) Толкать в крайнем верхнем положении качелей в направлении от положения равновесия;

В) Толкать в положении равновесия в направлении движения качелей;

Г) Толкать можно в любом положении, но обязательно в направлении движения качелей.

14 Казалось бы, стреляя из рогатки в мост в такт его собственным колебаниям и сделав очень много выстрелов, его можно сильно раскачать, однако это вряд ли удастся. Почему?

А) Масса моста (его инертность) велика по сравнению с массой «пули» из рогатки, мост не сможет прийти в движение под действием таких ударов;

Б) Сила удара «пули» из рогатки настолько мала что, мост не сможет прийти в движение под действием таких ударов;

В) Энергия, сообщаемая мосту за один удар много меньше потерь энергии на трение за период.

15 Вы несете ведро с водой. Вода в ведре раскачивается и выплескивается. Что можно сделать, чтобы этого не происходило?

А) Размахивать рукой, в которой находится ведро, в такт с ходьбой;

Б) Изменить скорость движения, оставив неизменной длину шагов;

В) Периодически останавливаться и ждать, когда колебания воды успокоятся;

Г) Следить за тем, чтобы в процессе движения рука с ведром располагалась строго вертикально.

Задачи

1 Система совершает затухающие колебания с частотой 1000 Гц. Определите частоту v 0 собственных колебаний, если резонансная частота

2 Определите, на какую величину Dv резонансная частота отличается от собственной частоты v 0 = 1000 Гц колебательной системы, характеризующейся коэффициентом затухания d = 400с -1 .

3 Груз массы 100 г, подвешенный на пружине жесткости 10 Н/м, совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления r = 0,02 кг/с. Определите коэффициент затухания, резонансную частоту и амплитуду. Амплитудное значение вынуждающей силы 10 мН.

4 Амплитуды вынужденных гармонических колебаний при частотах w 1 = 400 с -1 и w 2 = 600 с -1 равны между собой. Определите резонансную частоту.

5 Грузовики въезжают по грунтовой дороге на зерновой склад с одной стороны, разгружаются и выезжают со склада с той же скоростью, но с другой стороны. С какой стороны склада выбоины на дороге идут чаще, чем с другой? Как по состоянию дороги определить, с какой стороны склада въезд, а какой выезд? Ответ обосновать

Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, периодически воздействующую на систему (такую силу будем называть вынуждающей , а колебания вынужденными).

ОПРЕДЕЛЕНИЕ : вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы.

Эта сила, как правило, выполняет двоякую роль:

Во-первых, она раскачивает систему и сообщает ей определенный запас энергии;

Во-вторых, она периодически восполняет потери энергии (расход энергии) на преодоление сил сопротивления и трения.

Пусть вынуждающая сила изменяется со временем по закону:

Составим уравнение движения для системы, колеблющейся под воздействием такой силы. Предполагаем, что на систему также действует квазиупругая сила и сила сопротивления среды (что справедливо в предположении малости колебаний).

Тогда уравнение движения системы будет иметь вид:

Или .

Проведя подстановки , , - собственная частота колебаний системы, получим неоднородное линейной дифференциальное уравнение 2 го порядка:

Из теории дифференциальных уравнений известно, что общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения.

Общее решение однородного уравнения известно:

,

где ; a 0 и a - произвольные const.

.

С помощью векторной диаграммы можно убедиться, что такое предположение справедливо, а также определить значения “a ” и “j ”.

Амплитуда колебаний определяется следующим выражением:

.

Значение “j ”, которое представляет собой величину отставания по фазе вынужденного колебания от обусловившей его вынуждающей силы , также определяется из векторной диаграммы и составляет:

.

Окончательно, частное решение неоднородного уравнения примет вид:


(8.18)

Эта функция в сумме с

(8.19)

дает общее решение неоднородного дифференциального уравнения, описывающего поведение системы при вынужденных колебаниях. Слагаемое (8.19) играет заметную роль в начальной стадии процесса, при так называемом установлении колебаний (рис. 8.10).

С течением времени из-за экспоненциального множителя роль второго слагаемого (8.19) все больше уменьшается, и по прошествии достаточного времени им можно пренебречь, сохраняя в решении лишь слагаемое (8.18).

Таким образом, функция (8.18) описывает установившиеся вынужденные колебания. Они представляют собой гармонические колебания с частотой равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (определенных w 0 и b) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания “j” также зависит от частоты вынуждающей силы.


Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом , а соответствующая частота - резонансной частотой .

ОПРЕДЕЛЕНИЕ : явление, при котором наблюдается резкое возрастание амплитуды вынужденных колебаний, называется резонансом .

Резонансная частота определяется из условия максимума для амплитуды вынужденных колебаний:

. (8.20)

Тогда, подставив это значение в выражение для амплитуды, получим:

. (8.21)

При отсутствии сопротивления среды амплитуда колебаний при резонансе обращалась бы в бесконечность; резонансная частота при тех же условиях (b = 0) совпадает с собственной частотой колебаний.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (или, что то же самое, от частоты колебаний) можно представить графически (рис. 8.11). Отдельные кривые соответствуют различным значениям “b”. Чем меньше “b”, тем выше и правее лежит максимум данной кривой (см. выражение для w рез.). При очень большом затухании резонанс не наблюдается - с увеличением частоты амплитуда вынужденных колебаний монотонно убывает (нижняя кривая на рис. 8.11).

Совокупность представленных графиков, соответствующих различным значениям b, называется резонансными кривыми .

Замечания по поводу резонансных кривых:

При стремлении w®0 все кривые приходят к одному, отличному от нуля значению, равному . Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы F 0 .

При w®¥ все кривые асимптотически стремятся к нулю, т.к. при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместится из положения равновесия.

Чем меньше b, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» максимум.

Примеры :

Явление резонанса часто оказывается полезным, особенно в акустике и радиотехнике.