Millise kiirusega lendab alakaliibriline laskemoon? “Kangkangi” vastu pole mingit nippi. Miks on soomust läbistavad alakaliibrilised kestad hirmutavad? Video alakaliibri laskemoona kohta

Soomust läbistav uimedega sabotimürsk (pühitud uimedega mürsk) – tünnrelvade mürsud, mis stabiliseeruvad lennu ajal aerodünaamiliste jõudude toimel (sarnaselt stabiliseerimisele noole lennu ajal). See asjaolu eristab seda tüüpi laskemoona mürskudest, mis on lendu stabiliseeritud güroskoopiliste jõudude mõjul pöörlemisel. Noolekujulisi sulgedega mürske saab kasutada nii jahi- ja sõjaväe käsirelvades kui ka püstolsuurtükiväes. Selliste mürskude peamine kasutusvaldkond on tugevalt soomustatud sõidukite (eriti tankide) hävitamine. Uimedega mürsud on tavaliselt kineetiline laskemoon, kuid võivad sisaldada ka lõhkelaengut.

120 mm kaadrid Iisraeli firmalt IMI. Esiplaanil on kaader M829 (USA), mille on tootnud IMI litsentsi alusel

Terminoloogia

Soomust läbistavad sulelised alakaliibriga kestad(noolekujuline) võib tähistada lühenditega BOPS, OBPS, OPS, BPS. Praegu kasutatakse lühendit BPS ka uimeliste noolekujuliste mürskude puhul, kuigi seda tuleks õigesti kasutada alamkaliibriliste soomust läbistavate mürskude tähistamiseks, mis on vint-suurtükimürskude tavaline laiend. Soomust läbistavate sulgede nimi noolekujuline laskemoon kohaldatakse vintpüssi- ja sileraudsete suurtükiväesüsteemidele.

Seade

Laskemoon seda tüüpi koosnevad noolekujulisest sulelisest mürsust, mille korpus (keha) (või kere sees olev südamik) on valmistatud vastupidavast ja suure tihedusega materjalist ning saba traditsioonilistest konstruktsioonisulamitest. Kere jaoks enim kasutatavad materjalid on rasked sulamid (nagu VNZH jne) ja ühendid (volframkarbiid), uraanisulamid (näiteks Ameerika sulam "Stabilloy" Stabilloy või kodumaine analoog nagu UC sulam). Saba on valmistatud alumiiniumisulamitest või terasest.

Rõngassoonte (stantsimise) abil ühendatakse BOPS-i korpus terasest või ülitugevast alumiiniumisulamist (tüüp V-95, V-96Ts1 jms) valmistatud sektoripanniga. Sektori kaubaalust nimetatakse ka põhiseadmeks (MU) ja see koosneb kolmest või enamast sektorist. Kaubaalused kinnitatakse üksteise külge metallist või plastist valmistatud juhtrihmadega ja sellisel kujul kinnitatakse lõpuks metallist hülsi või põleva muhvi korpusesse. Pärast püssitorust lahkumist eraldatakse sektoripann BOPS-i korpusest läheneva õhuvoolu mõjul, lõhkudes veorihmad, samal ajal kui mürsu keha ise jätkab sihtmärgi poole lendamist. Kõrge aerodünaamilise takistusega mahakukkunud sektorid aeglustuvad õhus ja kukuvad mõnel kaugusel (sadadest meetritest kuni rohkem kui kilomeetrini) relva koonust. Möödajätmise korral võib madala aerodünaamilise takistusega BOPS ise lennata püssitorust 30 kuni enam kui 50 km kaugusele.

Kaasaegsete BOPS-ide konstruktsioonid on äärmiselt mitmekesised: mürsu korpused võivad olla kas monoliitsed või komposiitmaterjalid (südamik või mitu südamikku kestas, samuti piki- ja põikisuunaliselt mitmekihilised), sabad võivad olla peaaegu võrdsed suurtükirelva kaliibriga. või alamkaliibriga, valmistatud terasest või kergsulamitest. Põhiseadmetel (MD) võivad gaasirõhu toimevektori sektoritesse jaotamiseks olla erinevad põhimõtted (MD "laienev" või "kinnitav" tüüpi), erinevad kogused sektori asukohad, valmistatud terasest, kergsulamitest, aga ka komposiitmaterjalidest – näiteks süsinikkomposiitidest või aramiidkomposiitidest. BOPS-i kerede peaosadesse saab paigaldada ballistilisi otsikuid ja amortisaatoreid. Volframisulamist südamike materjalile võib lisada lisandeid, et tõsta südamike pürofoorilisust. BOPS-i sabaosadesse saab paigaldada jäljendid.

Sabaga BOPS-i kerede mass ulatub vanemate mudelite 3,6 kg-st kuni 5-6 kg või enamani lubatavate 140-155 mm kaliibriga tankirelvade mudelite puhul.

Ilma ribideta BOPS-korpuste läbimõõt ulatub 40 mm-st vanade mudelite puhul kuni 22 mm-ni või alla selle uue, suure kuvasuhtega lootustandva BOPS-i puhul. BOPS-i pikenemine suureneb pidevalt ja jääb vahemikku 10–30 või rohkem.

aastal loodi NSV Liidus ja Venemaal mitut tüüpi BOPS-i erinevad ajad ja millel on pärisnimed, mis sai alguse nimetusest/šifreerimisest R&D. Allpool on loetletud BOPS-id kronoloogilises järjekorras vanast uueni. BOPS-i korpuse struktuur ja materjal on lühidalt näidatud:

  • “Juukseklamber” 3BM-23 - väike volframkarbiidist südamik teraskorpuse peaosas (1976);
  • "Nadfil-2" 3BM30 - uraanisulam (1982);
  • "Nadezhda" 3BM-27 - väike volframisulamist südamik teraskorpuse sabas (1983);
  • “Vant” 3BM-33 - uraanisulamist valmistatud monoliitne korpus (1985);
  • “Mango” 3BM-44 - kaks piklikku volframisulamist südamikku terasest korpuses (1986);
  • "Svinets" 3BM-48 - uraanisulamist valmistatud monoliitne korpus (1991);
  • "Anker" 3BM39 (1990ndad);
  • “Lekalo” 3BM44 M? - täiustatud sulam (detailid teadmata) (1997); võib-olla nimetatakse seda BOPS-i "suurenenud võimsusmürsuks";
  • “Svinets-2” - indeksi järgi otsustades uraanisüdamikuga modifitseeritud mürsk (üksikasjad teadmata).

Teistel BOPS-idel on ka pärisnimed. Näiteks 100 mm kaliibriga tankitõrje sileraudsel relval on laskemoon “Falštšik”, 115 mm tankirelval “Chamberlain” jne.

Soomuste läbitungimise indikaatorid

Soomuste läbitungimisnäitajate võrdlev hindamine on seotud märkimisväärsete raskustega. Soomuse läbitungimisnäitajate hindamine on üsna mõjutatud erinevaid tehnikaid BOPS testid sisse erinevad riigid, standardse soomustüübi puudumine katsetamiseks erinevates riikides, erinevad tingimused soomuse paigutamine (kompaktne või vahedega), samuti kõigi riikide arendajate pidevad manipulatsioonid testitava soomuki laskekauguste, soomuki paigaldusnurkade enne katsetamist ja testitulemuste töötlemise erinevate statistiliste meetodite abil. Venemaal ja NATO riikides aktsepteeritakse testimismaterjalina homogeenset valtsitud soomust, täpsemate tulemuste saamiseks kasutatakse liitsihtmärke. Näiteks Vene kestade testimiseks kasutatakse teraseuuringute instituudis välja töötatud mitmekihilist barjääri "P11", mis simuleerib tanki M1 Abrams eesmist soomust. Kuid komposiitsoomuse ja selle ekvivalendi tegelik soomuskindlus homogeenne soomus sellegipoolest on need mõnikord erinevad, mistõttu on raske konkreetse mürsu soomust läbitungimist täpselt hinnata. Lisaks on traditsiooniliselt klassifitseeritud soomuste läbitungimise omadused, aga ka soomusmasinate kaitseparameetrid.

Näitena võib võtta Empersa Nacional Santa Barbara 105 mm kaliibriga Hispaania püssi BOPS, mis kiirusega 1500 m/s 5000 m kauguselt läbistab NATO standardi sihtmärgi 60° nurga all. tuleliin, mis koosneb 120 mm paksusest soomusplaadist ja kümnest täiendavast 10 mm paksusest soomuslehest, mis asuvad üksteisest 10 mm kaugusel.

Avaldatud andmetel võimaldas lennuosa pikenemise suurendamine väärtuseni 30 suurendada RHA standardi läbinud valtsitud homogeense soomuse suhtelist paksust (soomuse paksuse ja relva kaliibri suhe). ) järgmistele väärtustele: 5,0 105 mm kaliibriga ja 6,8 120 mm kaliibriga.

Lugu

BOPS-i tekkimist seostati ebapiisava soomuse läbitungiga tavapärase soomuse läbistava ja alakaliibriga kestad vintpüssi suurtükkide eest II maailmasõja järgsetel aastatel. Katsed suurendada erikoormust (st pikendada nende südamikku) alakaliibriliste mürskude puhul ilmnesid pöörlemisstabilisatsiooni kadumise nähtusega, kui mürsu pikkus kasvas üle 6–8 kaliibri. Tugevus kaasaegsed materjalid ei võimaldanud mürskude pöörlemise nurkkiirust veelgi suurendada.

Pühkitud ja sulgedega mürsud ülipika laskekaugusega relvadele

Peenemünde polügooni raketi- ja suurtükiväe projekteerimisbüroos Peenemünde-Heeresversuchsanstalt Teise maailmasõja lõpuks konstrueeris Saksa disainer Hanns Gessner noolekujuliste sulgedega mürskude seeria indeksiga PPG (Peenemünder Pfeilgeschosse) firmade Krupp ja Hanomag sileraudsete 310 mm kaliibriga tünnide jaoks, mis paigaldati 28 cm ülipika raudtee paigaldus K5 (E). 310-millimeetrise plahvatusohtliku killustikuindeksi Sprenge-Granate 4861 pikkus oli 2012 mm ja mass 136 kg. Noolekorpuse läbimõõt oli 120 mm, stabilisaatorsulgede arv 4 tk. Mürsu algkiirus on 1420 m/s, lõhkelaengu mass 25 kg, laskeulatus 160 km. Mürske kasutati Bonni lahingutes angloameerika vägede vastu.

Poola linna Blizna lähedal asuval harjutusväljakul viidi disainer R. Hermani ( R. Hermann). On testitud õhutõrjerelvad kaliiber 103 mm tünni pikkusega kuni 50 kaliibrit. Katsetuste käigus selgus, et noolekujulised uimedega mürsud, mis saavutasid oma ebaolulise massi tõttu väga suure kiiruse, omasid ebapiisavat killustamisefekti, kuna nendesse ei olnud võimalik panna olulist lõhkelaengut. Lisaks näitasid nad ülimadalat täpsust, kuna suurtel kõrgustel oli hõre õhk ja sellest tulenevalt ebapiisav aerodünaamiline stabiliseerimine. Pärast seda, kui ilmnes, et pühitud uimedega mürsud ei sobi õhutõrjetuleks, püüti tankide vastu võitlemiseks kasutada suure kiirusega uimedega mürske. Töö peatati seetõttu, et seeriatankitõrje- ja tankirelvadel oli sel ajal piisav soomusläbivus ning Kolmas Reich elas oma viimaseid päevi.

Noolekujulised käsirelvade kuulid

Venemaal töötatakse välja noolekujulist (nõelakujulist) ilma uimedeta veealust laskemoona, mis on osa 4,5 mm kaliibriga SPS-padruneid (spetsiaalse veealuse püstoli jaoks SPP-1; SPP-1M) ja MPS-padruneid. 5,66 mm kaliibriga (spetsiaalne veealune ründerelv APS). Sulgedeta noolekujulised kuulid veealuste relvade jaoks, mis on stabiliseeritud vees kavitatsiooniõõnsusega, ei ole praktiliselt õhus stabiliseeritud ja nõuavad vee all kasutamiseks mitte standardset, vaid erirelvad.

Praegu on kõige lootustandvamateks veealuseks õhulaskemoonaks, millega saab võrdse efektiivsusega tulistada nii vee all kuni 50 m sügavusel kui ka õhus, tavaliste (seeria)kuulipildujate padrunid ja ründerelvad, mis on varustatud Polotnevi noolekujulise sulelise kuuliga, mis on välja töötatud föderaalses riiklikus ühtses ettevõttes "TsNIIKhM". Polotnevi kuulide stabiliseerimine vee all toimub kavitatsiooniõõnde abil ja õhus - kuuli saba abil.

Vahetult pärast sõjavarustuse soomuskaitse ilmumist asusid suurtükiväerelvade disainerid looma vahendeid, mis suudaksid seda tõhusalt hävitada.

Tavaline mürsk ei olnud selleks otstarbeks päris sobiv, selle kineetilisest energiast ei piisanud alati mangaanilisanditega tugevast terasest paksu barjääri ületamiseks. Terav ots purustati, keha hävis ja mõju oli minimaalne parimal juhul- sügav mõlk.

Vene insener-leiutaja S. O. Makarov töötas välja nüri esiosaga soomust läbistava mürsu disaini. See tehniline lahendus on ette nähtud kõrge tase rõhk metalli pinnale esialgsel kokkupuutehetkel, samal ajal kui kokkupuutepunkt allutati tugevale kuumutamisele. Sulasid nii ots ise kui ka löögi saanud soomuki osa. Ülejäänud osa mürsust tungis tekkinud fistulisse, põhjustades hävingu.

Seersantmajor Nazarovil ei olnud metalliteaduse ja füüsika teoreetilisi teadmisi, kuid ta jõudis intuitiivselt väga huvitava kujunduseni, millest sai tõhusa suurtükiväe relvade klassi prototüüp. Selle alakaliibriline mürsk erines tavapärasest soomust läbistavast mürsust oma sisemise struktuuri poolest.

1912. aastal tegi Nazarov ettepaneku võtta tavapärase laskemoona sees kasutusele tugev varras, mis ei jää oma kõvaduse poolest soomustele alla. Sõjaministeeriumi ametnikud lükkasid tüütu allohvitseri kõrvale, pidades silmas ilmselt, et kirjaoskamatu pensionär ei suuda midagi kasulikku välja mõelda. Hilisemad sündmused näitasid selgelt sellise ülbuse kahjulikkust.

Krupa firma sai patendi alamkaliibrilisele mürsule juba 1913. aastal, sõja eelõhtul. Soomusmasinate arengutase 20. sajandi alguses võimaldas aga ilma spetsiaalsete soomustläbistavate relvadeta hakkama saada. Neid läks vaja hiljem, Teise maailmasõja ajal.

Alakaliibrilise mürsu tööpõhimõte põhineb lihtsal, koolifüüsika kursusest tuntud valemil: liikuv keha on otseselt võrdeline selle massi ja kiiruse ruuduga. Seetõttu on suurima hävitamisvõime tagamiseks olulisem lööva objekti hajutamine kui raskemaks muutmine.

See lihtne teoreetiline seisukoht leiab oma praktilise kinnituse. 76-millimeetrise alakaliibriga mürsk kaalub poole vähem kui tavaline soomust läbistav mürsk (vastavalt 3,02 ja 6,5 ​​kg). Kuid löögijõu tagamiseks ei piisa lihtsalt massi vähendamisest. Soomus, nagu laul ütleb, on tugev ja sellest läbi murdmiseks on vaja lisanippe.

Kui ühtlase sisestruktuuriga terastoorik põrkab vastu tugevat barjääri, siis see puruneb. See protsess aegluubis näeb välja nagu otsa esialgne muljumine, kontaktpinna suurenemine, intensiivne kuumenemine ja sulametalli levimine löögipunkti ümber.

Soomust läbistav alakaliibriga mürsk toimib erinevalt. Selle teraskere vajub kokkupõrkel kokku, neelates osa soojusenergiast ja kaitstes tugevat sisemist osa termilise hävimise eest. Metallkeraamiline südamik, mis on kujundatud niidi jaoks mõnevõrra pikliku poolina ja mille läbimõõt on kolm korda väiksem kui kaliiber, jätkab liikumist, lüües soomusse väikese läbimõõduga augu. Samas paistab see silma suur hulk soojus, mis tekitab termilise tasakaalustamatuse, mis koos mehaanilise rõhuga tekitab hävitava efekti.

Alamkaliibrilise mürsu tekitatud auk on lehtri kujuga, laienedes selle liikumise suunas. See ei nõua kahjustavaid elemente, lõhkeaineid ega süütenööri, lahingumasina sees lendlevad soomuki ja südamiku killud kujutavad meeskonnale surmaohtu ning eralduv võib põhjustada kütuse ja laskemoona detonatsiooni.

Vaatamata tankitõrjerelvade mitmekesisusele on enam kui sajand tagasi leiutatud alakaliibritel mürskudel tänapäevaste armeede arsenalis endiselt oma koht.

Kaasaegse pealahingutanki üheks ülesandeks on hävitada sarnane vaenlase varustus, milleks on vaja võimsat relva ja vastavaid soomustläbistavaid mürske. Vene tankid on relvastatud mitmega tankitõrje laskemoon, mis võimaldab teil võidelda hästi kaitstud vaenlase varustusega. Lisaks peaksid lähitulevikus laiaulatuslikku tootmisse jõudma uued täiustatud relvadega kasutamiseks mõeldud mudelid.

Kõrgeimaid soomuse läbitungimisomadusi näitavad soomust läbistavad uimedega sabotmürsud (BOPS). Selline laskemoon ilmus mitu aastakümmet tagasi ja kujunes hiljem mugavaks vahendiks soomusmasinate hävitamiseks võimas kaitse erinevad tüübid. Selle tulemusena on praegu just BOPS-id, mis on tankide peamine tööriist teiste tankidega võitlemisel. Selle klassi mürskude arendamine jätkub.


Sari "Mango"

Erinevate allikate kohaselt on Venemaa soomusüksustel praegu kasutusel mitut tüüpi BOPS-i ja selle klassi levinuim esindaja on 3BM-42 “Mango”. Uue suurema võimsusega mürsu väljatöötamine koodi “Mango” all algas kaheksakümnendate esimesel poolel. Teatud materjalide, tehnoloogiate ja lahenduste kasutamise kaudu tuleks soomuste läbitungivust olemasolevate mürskudega võrreldes suurendada. Tulevast mürsku 3BM-42 pidi kasutama olemasolevate 2A46 perekonna tankirelvadega.

Peatankil T-72B3 on täiustatud automaatlaadur, mis ühildub pikendatud pikkusega mürskudega. Foto Vitalykuzmin.net

Mõni aasta hiljem võeti kasutusele 3BM-42 BOPS-iga 3VBM-17 voor. See sisaldab nn. põlev silinder, mille sees on jäigalt kinnitatud mürsuga ajam. Samuti kasutatakse süütamiseks eraldi osaliselt põlevat padrunikarpi koos süütevahenditega. Padrunipesa ja silindri õõnsused on täidetud torukujulise püssirohuga, mis tagab mürsu kiirenduse.

Mango mürsu loojad said soomuse läbitungimise suurendamise ülesandega hakkama ja tegid seda väga huvitaval viisil. Mürsul on eriline disain, mille tõttu saavutatakse põhiomaduste suurenemine. Samal ajal ei erine 3BM-42 väliselt peaaegu teistest oma klassi toodetest. See BOPS on väikese läbimõõduga õõnes silindriline korpus, mis on valmistatud terasest ja varustatud saba stabilisaatoriga. Korpuse esiots on suletud ballistilise korgiga jne. soomust läbistav siiber. Korpuse õõnsuses on üksteise järel kaks volframisüdamikku, mida hoiab paigal kergsulavast metallist ümbris.

Mürsule on paigaldatud alumiiniumist lähtestatav juhtimisseade. Sellel on laieneva esiosaga kooniline kuju. Koostoime tünni avaga tagavad mitmed rõngad seadme välispinnal. 3VBM-17 padrun, mis sisaldab silindrit, mürsku ja juhtimisseadet, on 574 mm pikk ja 125 mm läbimõõt. Mürsu enda mass on 4,85 kg.


3VBM-17 lask 3BM-42 "Mango" mürsuga. Foto Fofanov.armor.kiev.ua

Püssirohu põlemine padrunipesas ja silindris võimaldab mürsku koos ajamseadmega kiirendada kiiruseni mitte üle 1700 m/s. Pärast tünnist väljumist lähtestatakse põhiseade. Sihtmärgi tabamisel sulab hoidmisjope, misjärel volframist südamikud suudab läbistada soomust. Soomuse maksimaalne läbitung 2 km kaugusel on määratud 500 mm. Kui kohtumisnurk on samal kaugusel 60°, väheneb see omadus 220 mm-ni.

3VBM-17 mürsk koos mürsuga 3BM-42 võeti kasutusele 1986. aastal ja see mõjutas oluliselt võitluslikud omadused kõik olemasolevad põhimahutid Nõukogude armee. Seda toodet kasutatakse siiani tankivägedes ja see on võib-olla nende arsenali aluseks. Seejärel viidi läbi moderniseerimine, mis seisnes kere ja südamike pikkuse suurendamises. Selle tulemusena kaalub Mango-M 5 kg ja suudab 60° nurga all läbistada kuni 270 mm soomust.

"Leadi" pikk teekond

Varsti pärast Mango BOPSi ilmumist algasid meie riigis tuntud ebameeldivad sündmused, mis mõjutasid paljusid valdkondi, sealhulgas paljutõotavate tankirelvade kestade väljatöötamist. Alles üheksakümnendate aastate lõpuks oli võimalik saada tõelisi tulemusi teise täiustatud omadustega mürsu näol. See laskemoon oli arendustöö tulemus koodiga "Pii".


Toote "Mango" skeem. Joonis Btvt.narod.ru

Olemasolev kogemus on näidanud, et põhiliste lahinguomaduste edasine kasv on seotud mürsu pikkuse kohustusliku suurendamisega. Seda parameetrit suurendati 740 mm-ni, kuid see asjaolu ei võimaldanud tulevast mürsku kasutada olemasolevate tankiautomaatsete laaduritega. Sellest tulenevalt pidi järgmine soomusmasinate moderniseerimisprojekt hõlmama relva teenindava automaatika uuendamist.

3VBM-20 lask 3BM-46 “Svinets-1” mürsuga sarnaneb üldilme poolest mõneti vanema 3VBM-17-ga ning koosneb samuti põlevas silindris mürsust ja padrunipesast koos metallist kandik. Samal ajal erineb mürsu enda disain olemasolevast oluliselt. Seekord otsustati kasutada vaesestatud uraanist (teistel andmetel volframisulamist) valmistatud monoliitset südamikku, mis tegelikult on mürsu aluseks. Metallist südamiku külge on kinnitatud ballistiline kork ja sabauimed, mille läbimõõt on tünni kaliibrist väiksem.

Pikema mürsu jaoks loodi täiustatud ajamiseade. Seda eristab suur pikkus ja kahe kontakttsooni olemasolu. Seadme esiosas on suur tuttava välimusega silinder ning teise tsooni loovad kolm tagumist tuge. Pärast tünnist väljumist lähtestatakse selline sõiduseade ja vabastab mürsu.


"Mango-M" ja raketikütuse laenguga padrunikesta. Foto: Btvt.narod.ru

Olemasolevatel andmetel on Svinets-1 mass 4,6 kg ja see on võimeline kiirendama kiiruseni 1750 m/s. Tänu sellele läbistab kuni 650 mm homogeenset soomust 2000 m laskekaugusel ja lööginurga nullist. Teada on Lead-2 projekti olemasolust, mille käigus asendati südamik teisest materjalist tootega. Seega võivad arsenalidesse ilmuda sarnased uraanist ja volframist valmistatud kestad.

Uut tüüpi mürsku ei saanud oma suure pikkuse tõttu kasutada olemasolevate seeriatankide automaatlaaduritega. See probleem lahendati 2000. aastate keskel. Uue seeria soomusmasinad T-90A olid varustatud modifitseeritud kuulipildujatega, mis ühildusid “pikkade” kestadega. Seejärel hakkas moderniseeritud T-72B3 sarnast varustust saama. Seega saab märkimisväärne osa soomusjõudude varustusest kasutada mitte ainult suhteliselt vana piiratud omadustega "Mangot".

"Vakuum" jaoks "Armata"

Täheldatud potentsiaalsete vaenlase tankide kaitseomaduste tõus on relvaarendajatele tõeline väljakutse. Edasine uurimistöö viis järeldusele, et laskemoona pikkuse uus suurendamine on vajalik. Omaduste optimaalset tasakaalu võiks näidata 1000 mm pikkusega BOPS, kuid sellist mürsku ei saanud arusaadavatel põhjustel kasutada püstoli 2A46 ja selle automaatlaaduriga.


Juhtseadmega mürsk 3BM-46. Foto Fofanov.armor.kiev.ua

Väljapääs sellest olukorrast oli luua täiesti uus relv koos lisavarustusega. Paljutõotav relv sai hiljem tuntuks sümboli 2A82 all ja uus mürsk sai koodi “Vacuum”. Teatud ajast alates hakati paljutõotava Armata tanki projekti raames kaaluma uut relvasüsteemi. Tööriista ja BOPS-i eduka lõpetamise korral, uus tank võis neid pearelvana vastu võtta.

Mõnede allikate kohaselt loobuti Vaakumi projektist uusarenduste kasuks. Seoses relva 2A82-1M väljatöötamise algusega tehti sellise mürsu asemel ettepanek luua väiksem BOPS koodiga “Vacuum-1”. See pidi olema "kõigest" 900 mm pikk ja varustatud karbiidsüdamikuga. Lähiminevikus mainisid kaitsetööstuse esindajad, et Rosatomi organisatsioonid olid kaasatud uue mürsu väljatöötamisse. Nende osalemine on tingitud vajadusest kasutada vaesestatud uraani.

Mõnede aruannete kohaselt luuakse paralleelselt mürsku nimega "Vacuum-2". Oma disainilt peaks see sarnanema seadmega tootele, kuid samal ajal erinema materjalist. See peaks olema valmistatud volframisulamist, mis on tavalisem kodumaise BOPS-i jaoks. Samuti luuakse relvaga 2A82-M kasutamiseks kontrollitud detonatsiooniga suure plahvatusohtliku killumoona koodiga "Telnik" ja juhitav rakett 3UBK21 "Sprinter". Täpne teave uue 125-mm kumulatiivse mürsu loomise kohta pole veel saadaval.


Põhitank T-14 püstoliga 2A82-1M. Foto NPK "Uralvagonzavod" / uvz.ru

Kuju ja täpne spetsifikatsioonid Perekonna "Vacuum" paljutõotavad BOPS-id pole veel täpsustatud. Teada on see, et uraani südamikuga mürsk läbib umbes 900–1000 mm homogeenset soomust. Tõenäoliselt on sellised omadused saavutatavad ideaalse lööginurgaga. Muid üksikasju pole saadaval.

Paljutõotav "kiltkivi"

Erinevate viimaste aastate aruannete kohaselt pidid saama ka paljulubavad kodumaised tankid soomust läbistav mürsk nimega "Slate". Tema kohta polnud aga liiga palju infot, mis tekitas segadust ja väärarusaamu. Nii arvati mõnda aega, et “Grifel” on mõeldud uutele 125 mm relvadele. Nüüdseks on teada, et seda toodet plaanitakse kasutada võimsama, 152 mm kaliibriga 2A83 püstoliga.

Ilmselt on suure võimsusega relvade mürsk välimuselt sarnane teiste oma klassi esindajatega. See saab suure pikenemisega südamiku, mis on varustatud ballistilise korgi ja soomust läbistava siibriga peas, samuti suhteliselt väikese kaliibriga stabilisaatoriga. Varem teatati, et mürsud Grifel-1 ja Grifel-2 varustatakse volframi- ja uraanisüdamikega. Uute mürskude soomuse läbitungimisparameetrite kohta aga andmed puuduvad.


125 mm 2A82-1M relva mudelid. Foto: Yuripasholok.livejournal.com

Erinevate hinnangute kohaselt suudavad "Liidrid" kaliibri ja hinnanguliste energianäitajate põhjal läbida vähemalt 1000–1200 mm homogeenset soomust optimaalse lööginurgaga. Siiski on teavet mõne iseloomuliku probleemi kohta sellise laskemoona väljatöötamisel. Teatud objektiivsete piirangute tõttu võib 152 mm relvade laskeenergia kasutamise efektiivsus olla madalam kui väiksema kaliibriga süsteemide puhul. Kas selliste probleemidega on võimalik toime tulla ja raketikütuse laengu energiavaru täielikult ära kasutada, pole teada.

Paljutõotavat 2A83 tankipüstolit arendatakse praegu kontekstis edasine arengühtne roomikplatvorm "Armata". Juba loodud põhitank T-14 on varustatud asustamata torniga, millel on püstol 2A82-1M. Lähitulevikus on oodata tanki uue versiooni ilmumist, millel on erinev lahingukamber ja võimsam 2A83 püstol. Koos nendega saab täiustatud Armata ka Grifeli liini BOPS-i.

Oleviku ja tuleviku mürsud

Praegu on soomusjõududel mitu soomust läbistavat uimega sabotimürsku, mis on mõeldud kasutamiseks üsna vana, kuid eduka 2A46 liini relvadega. Märkimisväärne osa olemasolevate mudelite põhipaakidest on suhteliselt vanade automaatsete laadimissüsteemidega ja seetõttu saab kasutada ainult Mango kestasid ja vanemaid tooteid. Samal ajal on hilisemate seeriate T-90A tankid, aga ka moderniseeritud T-72B3, varustatud täiustatud automaatlaaduritega, tänu millele saavad nad kasutada suhteliselt pikki "Lead" liini mürske.


"Grifel" tüüpi BOPSi eeldatav välimus. Joonis: Otvaga2004.mybb.ru

BOPS 3BM-42 ja 3BM-46 on üsna kõrgete omadustega ja tänu sellele suudavad nad võidelda paljude lahinguväljal olevate sihtmärkidega. Samas pole alamkaliibriline laskemoon ainus vahend vaenlase tankide vastu võitlemiseks. Samadel eesmärkidel saavad meie tankid kasutada juhitavaid rakette ja kumulatiivseid rakette. Seega "Mango", "Lead" jt tanki laskemoona pakkuda võitlust erinevate sihtmärkide vastu laias vahemikus.

Järgmise põlvkonna Vene tankid, mida seni esindas ainult T-14 Armata, on varustatud uue 2A82-1M relvaga, mis näitab suuremat jõudlust ja ühildub uue laskemoonaga. Uus mürskude ja rakettide perekond suurendab märgatavalt lahinguomadusi ja on üsna võimeline viima Armata maailmas juhtpositsioonile.

Pole saladus, et lähiminevikus on kodumaiste BOPS-i ja kaasaegsete välismaiste mudelite vahel olnud märkimisväärne mahajäämus. Olukord on aga järk-järgult muutumas ja uued sedalaadi mudelid on kasutusele võtmas. Lähitulevikus saavad soomusüksused põhimõtteliselt uued lahingumasinad kaasaegsete relvade ja laskemoonaga. On põhjust arvata, et vahe vähemalt väheneb. Pealegi ei saa välistada võimalust väliskonkurentidest ees olla, millel on arusaadavad tagajärjed armee lahingutõhususele.

Põhineb saitide materjalidel:
http://vpk.mane/
http://ria.ru/
http://tass.ru/
http://otvaga2004.ru/
http://btvt.narod.ru/
http://russianarms.ru/
http://fofanov.armor.kiev.ua/
http://gurkhan.blogspot.com/
http://bmpd.livejournal.com/

120 mm kaadrid Iisraeli firmalt IMI. Esiplaanil on kaader M829 (USA), mille on tootnud IMI litsentsi alusel

Terminoloogia

Soomust läbistavaid uimedega sabotkarpe saab tähistada lühenditega BOPS, OBPS, OPS, BPS. Praegu kasutatakse lühendit BPS ka uimeliste noolekujuliste mürskude puhul, kuigi seda tuleks õigesti kasutada alamkaliibriliste soomust läbistavate mürskude tähistamiseks, mis on vint-suurtükimürskude tavaline laiend. Nimetus soomust läbistav flechette laskemoon kehtib vint- ja sileraudsete suurtükiväesüsteemide kohta.

Seade

Seda tüüpi laskemoon koosneb noolekujulisest sulgedega mürsust, mille korpus (kere) (või kere sees olev südamik) on valmistatud vastupidavast ja suure tihedusega materjalist ning saba traditsioonilistest konstruktsioonisulamitest. Kere jaoks enim kasutatavad materjalid on rasked sulamid (nagu VNZh jne), uraanisulamid (näiteks Ameerika sulam Stabilloy või kodumaine analoog nagu UC sulam). Saba on valmistatud alumiiniumisulamitest või terasest.

Rõngassoonte (stantsimise) abil ühendatakse BOPS-i korpus terasest või ülitugevast alumiiniumisulamist (tüüp V-95, V-96Ts1 jms) valmistatud sektoripanniga. Sektori kaubaalust nimetatakse ka põhiseadmeks (MU) ja see koosneb kolmest või enamast sektorist. Kaubaalused kinnitatakse üksteise külge metallist või plastikust juhtrihmadega ja sellisel kujul kinnitatakse lõpuks metallist hülsi või põleva muhvi korpusesse. Pärast püssitorust lahkumist eraldatakse sektoripann BOPS-i korpusest läheneva õhuvoolu mõjul, lõhkudes veorihmad, samal ajal kui mürsu keha ise jätkab sihtmärgi poole lendamist. Kõrge aerodünaamilise takistusega mahakukkunud sektorid aeglustuvad õhus ja kukuvad mõnel kaugusel (sadadest meetritest kuni rohkem kui kilomeetrini) relva koonust. Möödajätmise korral võib madala aerodünaamilise takistusega BOPS ise lennata püssitorust 30 kuni enam kui 50 km kaugusele.

Kaasaegsete BOPS-ide konstruktsioonid on äärmiselt mitmekesised: mürsu korpused võivad olla kas monoliitsed või komposiitmaterjalid (südamik või mitu südamikku kestas, samuti piki- ja põikisuunaliselt mitmekihilised), sabad võivad olla peaaegu võrdsed suurtükirelva kaliibriga. või alamkaliibriga, valmistatud terasest või kergsulamitest. Juhtseadmetel (MD) võib olla erinev gaasirõhu toimevektori sektoritesse jaotamise põhimõte ("laialivalguv" või "kinnitus" tüüpi FD), erinev arv sektori juhtimiskohti ning need võivad olla valmistatud terasest, kergsulamitest jne. komposiitmaterjalidena – näiteks süsinikkomposiidid või aramiidkomposiidid. BOPS-i kerede peaosadesse saab paigaldada ballistilisi otsikuid ja amortisaatoreid. Volframisulamist südamike materjalile võib lisada lisandeid, et tõsta südamike pürofoorilisust. BOPS-i sabaosadesse saab paigaldada jäljendid.

Sabaga BOPS-i kerede mass ulatub vanemate mudelite 3,6 kg-st kuni 5-6 kg või enamani lubatavate 140-155 mm kaliibriga tankirelvade mudelite puhul.

Ilma ribideta BOPS-korpuste läbimõõt ulatub 40 mm-st vanade mudelite puhul kuni 22 mm-ni või alla selle uue, suure kuvasuhtega lootustandva BOPS-i puhul. BOPS-i pikenemine suureneb pidevalt ja jääb vahemikku 10–30 või rohkem.

Rasketest sulamitest valmistatud südamikud, mille pikenemine ületab 30, on altid paindedeformatsioonidele, kui neid liigutatakse piki ava ja pärast kaubaaluse eraldamist, samuti hävivad mitme takistuse ja vahedega soomustega suhtlemisel. Materjali tihedus on praegu piiratud, kuna praegu pole tehnikas volframist ja uraanist tihedamaid materjale, mida praktiliselt sõjaliseks otstarbeks kasutatakse. BOPS-i kiirus on samuti piiratud väärtustega vahemikus 1500-1800 m/s ja sõltub suurtükirelvade ja nende laskemoona konstruktsioonist. Kiiruse edasine suurenemine on seotud uurimistöö teostatakse mürskude viskamise valdkonnas, kasutades vedelaid raketikütuseid (LPM) kasutavaid suurtükirelvi, elektrotermokeemilise viskemeetodiga, elektrotermilise viskemeetodiga, elektrilise (magnetilise) viskemeetodiga rööbasrelvade abil, Gaussi süsteemid, nende kombinatsioonid, nagu samuti elektrotermokeemiliste ja elektromagnetiliste viskemeetodite kombinatsioonid. Samal ajal põhjustab paljude mürsumaterjalide variantide kiiruse tõus üle 2000 m/s soomuse läbitungivuse vähenemise. Põhjuseks on mürsu hävimine kokkupuutel enamiku tüüpi soomustõketega, mis lõppkokkuvõttes ületab kiiruse suurenemise tõttu soomuki läbitungimisvõime suurenemise. Sellisena suurendab mürsu kiirus tavaliselt soomuse läbitungimist selle suurenedes, samal ajal kui soomusmaterjalide vastupidavus väheneb. Mõju võib mõnel juhul olla kumulatiivne, mõnel juhul mitte, kui räägime keerukatest soomustatud tõketest. Monobarjääride puhul on need sageli sama protsessi erinevad nimetused.

NSV Liidus ja Venemaal on laialt tuntud mitut tüüpi BOPS-e, mis on loodud eri aegadel ja millel on oma nimed, mis tekkisid T&A nimetusest/koodist. BOPS-id on loetletud allpool kronoloogilises järjekorras vanast uueni. BOPS-i korpuse struktuur ja materjal on lühidalt näidatud:

  • “Juukseklamber” 3BM22 - väike volframkarbiidist südamik teraskorpuse peaosas (1976);
  • "Nadfil-2" 3BM30 - uraanisulam (1982);
  • “Nadezhda” 3BM27 - väike volframisulamist südamik teraskorpuse sabas (1983);
  • “Vant” 3BM32 - uraanisulamist valmistatud monoliitne korpus (1985);
  • “Mango” 3BM42 - kaks piklikku volframisulamist südamikku terasest korpuses (1986);
  • Plii 3BM48 - uraanisulamist valmistatud monoliitne korpus (1991);
  • "Anker" 3BM39 (1990ndad);
  • “Lekalo” 3BM44 M? - täiustatud sulam (detailid teadmata) (1997); võib-olla nimetatakse seda BOPS-i "suurenenud võimsusmürsuks";
  • “Svinets-2” - indeksi järgi otsustades uraanisüdamikuga modifitseeritud mürsk (üksikasjad teadmata).

Teistel BOPS-idel on ka pärisnimed. Näiteks 100 mm kaliibriga tankitõrje sileraudsel relval on laskemoon “Falštšik”, 115 mm tankirelval “Chamberlain” jne.

Soomuste läbitungimise indikaatorid

Soomuste läbitungimisnäitajate võrdlev hindamine on seotud märkimisväärsete raskustega. Soomuste läbitungimisnäitajate hindamist mõjutavad erinevates riikides üsna erinevad BOPS-i testimise meetodid, standardse soomukitüübi puudumine testimiseks erinevates riikides, erinevad tingimused soomuse paigutamisel (kompaktne või vahedega), samuti pidevad manipulatsioonid kõigi riikide arendajad, kellel on testitava soomuki laskekaugused, soomuki paigaldusnurgad enne testimist, erinevad statistilised meetodid katsetulemuste töötlemiseks. Venemaal ja NATO riikides aktsepteeritakse testimismaterjalina homogeenset valtsitud soomust, täpsemate tulemuste saamiseks kasutatakse liitsihtmärke.

Avaldatud andmete kohaselt [ ], suurendades lennuosa pikenemist väärtuseni 30, võimaldas RHA standardile vastava läbistatud valtsitud homogeense soomuse suhtelist paksust (soomuse paksuse ja relva kaliibri suhe, b/d p) suurendada järgmiste väärtusteni: 5,0 105 mm kaliibriga ja 6,8 120 mm kaliibriga.

mitmed teised USA

  • BOPS М829А1 120 mm kaliibriga relva jaoks (USA) - 700 mm;
  • BOPS М829А2- 730 mm;
  • BOPS М829А3- 765 mm; sageli mainitud palju aastaid "enne 800"
  • BOPS M829A4 pole midagi välja kuulutatud, väliselt on see üsna kooskõlas oma eelkäijaga.

Saksamaa

Teiste riikide teadaolevatest BPS-idest on viimastel aastakümnetel rekordiline laskemoon Sel hetkel ei märgatud, et sellel on olukorra tegeliku seisuga vähe pistmist, eriti lisaandmete mõttes (näiteks mürskude ja relvade arv ning kandja turvalisus).

Lugu

BOPS-i tekkimist seostati vint-suurtükiväe tavaliste soomust läbistavate ja alamkaliibriliste mürskude ebapiisava soomuse läbitungimisega II maailmasõja järgsetel aastatel. Katsed suurendada erikoormust (st pikendada nende südamikku) alakaliibriliste mürskude puhul ilmnesid pöörlemisstabilisatsiooni kadumise nähtusega, kui mürsu pikkus kasvas üle 6–8 kaliibri. Kaasaegsete materjalide tugevus ei võimaldanud mürskude pöörlemise nurkkiirust veelgi suurendada.

1944. aastal 210 mm kaliibriga kahuri jaoks ülikaugmaa raudteepaigaldise jaoks K12 (E) Saksa disainerid lõid allalastava sabaga kaliibriga mürsu. Mürsu pikkus oli 1500 mm, kaal 140 kg. Algkiirusega 1850 m/s pidi mürsu lennukaugus olema 250 km. Sulevmürskude tulistamiseks loodi sile 31 m pikkune suurtükitoru, mis ei väljunud katsetapist.

Kõige kuulsam projekt, mis kasutas ülipika uimega alamkaliibriga mürsku, oli Rechlingi ettevõtte peainseneri Conndersi projekt. Conderi relval oli mitu nime - V-3, "HDP-pump kõrgsurve", "Sajajalgne", "Töökas Lizhen", "Sõber". 150 mm mitmekambrilises relvas kasutati pühitud uimedega sabotmürsku, mis kaalus erinevates versioonides 80 kg kuni 127 kg, lõhkelaenguga 5 kg kuni 25 kg. Mürsu korpuse kaliiber jäi vahemikku 90 mm kuni 110 mm. Erinevad variandid Kestad sisaldasid 4 kokkupandavat kuni 6 püsivat stabilisaatorsulge. Mõnede mürsumudelite pikenemine ulatus 36-ni. LRK 15F58 kahuri lühendatud modifikatsioon tulistas 15 cm-Sprgr pühitud mürsku. 4481, mis on kavandatud Peenemündes ja nägi tegevust, tulistati Luksemburgi, Antwerpeni ja USA 3. armee pihta. Sõja lõpus võtsid ameeriklased kinni ühe relva ja viidi USA-sse.

Suledega tankitõrjerelvade mürsud

1944. aastal lõi ettevõte Rheinmetall sileraudse tankitõrjekahuri. 8N63 80 mm kaliibriga, tulistavad sulelised kumulatiivne mürsk kaaluga 3,75 kg koos 2,7 kg lõhkelaenguga. Väljatöötatud relvi ja mürske kasutati lahingutes kuni II maailmasõja lõpuni.

Samal aastal lõi firma Krupp sileraudse tankitõrjerelv P.W.K. 10.H.64 kaliiber 105 mm. Püstol tulistas 6,5 kg kaaluvat sulelist kumulatiivset mürsku. Mürsk ja relv ei lahkunud katsetamisetapist.

Katsed viidi läbi suure kiirusega noolekujuliste Tsp-Geschoss tüüpi alamkaliibriliste mürskude (saksa keelest Treibspiegelgeschoss - alusega alamkaliibri mürsk) kasutamisega tankitõrjesõjas (vt allpool "nool- õhutõrjekahuri kujulised mürsud”). Kinnitamata teadete kohaselt katsetasid Saksa arendajad sõja lõpus loodusliku uraani kasutamist alakaliibrilistes uimedega mürskudes, mis lõppes tulutult legeerimata uraani ebapiisava tugevuse tõttu. Kuid isegi siis märgiti uraanisüdamike pürofoorset olemust.

Õhutõrjerelvade mürsud

Poola linna Blizna lähedal asuval harjutusväljakul viidi disainer R. Hermani ( R. Hermann). Katsetati 103 mm kaliibriga õhutõrjekahureid, mille toru pikkus oli kuni 50 kaliibrit. Katsetuste käigus selgus, et noolekujulised uimedega mürsud, mis saavutasid oma ebaolulise massi tõttu väga suure kiiruse, omasid ebapiisavat killustamisefekti, kuna nendesse ei olnud võimalik panna olulist lõhkelaengut. [ ] Lisaks näitasid nad ülimadalat täpsust, kuna suurtel kõrgustel oli hõre õhk ja sellest tulenevalt ebapiisav aerodünaamiline stabiliseerimine. Pärast seda, kui ilmnes, et pühitud uimedega mürsud ei sobi õhutõrjetuleks, püüti tankide vastu võitlemiseks kasutada suure kiirusega uimedega mürske. Töö peatati seetõttu, et seeriatankitõrje- ja tankirelvadel oli sel ajal piisav soomusläbivus ning Kolmas Reich elas oma viimaseid päevi.

Noolekujulised käsirelvade kuulid

Noolekujulised kuulid käe jaoks tulirelvad need töötas esmakordselt välja AAI disainer Irwin Bahr.

Firmad "AAI", "Springfield", "Winchester" on konstrueerinud erinevaid noolekujulisi kuule noole massiga 0,68-0,77 grammi, noolekere läbimõõduga 1,8-2,5 mm stantsitud sabaga. Noolekujuliste kuulide algkiirus varieerus olenevalt tüübist 900 m/s kuni 1500 m/s.

Püsside tagasilöögiimpulss noolekujulise laskemoonaga tulistamisel oli mitu korda madalam kui M16 vintpüssil. Ajavahemikul 1989–1989 katsetati USA-s palju noolekujulise laskemoona modifikatsioone ja selle jaoks mõeldud spetsiaalseid relvi, kuid loodetud eeliseid tavapäraste ümbrisega kuulide (nii keskmise kui väikese kaliibriga) ees ei saavutatud. Madala massi ja kaliibriga suure trajektoori tasapinnaga noolekujulised kuulid omasid ebapiisavat täpsust ja ebapiisavat surmavat toimet keskmisel ja pikal distantsil. tera) (19,958 g) eemaldatavas pannil. Pühkiva kuuli algkiirusel 1450 m/s on snaiprirelva koonuenergia 20 980 J. 800 meetri kaugusel läbistab volframisulamist valmistatud alamkaliibriline suleline nool 30° nurga all löömisel 40 mm paksuse soomusplaadi; 1 km kaugusel tulistades trajektoori maksimaalne ülejääk. sihtimisnöör on vaid 80 cm.

Jahtivad noolekujulised kuulid

Enamik pikkade kuulide tüüpe jahipidamiseks sileraudsed relvad neil on lennu stabiliseerimise aerodünaamiline põhimõte ja need kuuluvad noolekujuliste (noolekujuliste) mürskude hulka. Tavaliste jahikuulide kerge pikenemise tõttu enamikus mudelites (1,3-2,5 ja isegi vähem (näiteks Mayeri kuul, mis on samuti stabiliseeritud mitte turbiini, vaid lantsettmeetodiga)), on tulisus (pühkivus). jahikuulid ei ole visuaalselt ilmne.

Praegu on kõige ilmekama noolekujulise kujuga Vene Zeniti kuulid (disainer D.I. Shiryaev) ja välismaised Sovestra kuulid. Näiteks teatud tüüpi Sovestra kuulide pikenemine on kuni 4,6-5 ja teatud tüüpi Širjajevi kuulide pikenemine üle 10. Mõlemad suure pikenemisega noolekujulised sulelised kuulid erinevad teistest jahilantsettkuulidest oma omaduste poolest. suur tule täpsus.

Noolekujulised veealuste relvade sulelised kuulid

Venemaal töötatakse välja noolekujulist (nõelakujulist) ilma uimedeta veealust laskemoona, mis on osa 4,5 mm kaliibriga SPS-padruneid (spetsiaalse veealuse püstoli jaoks SPP-1; SPP-1M) ja MPS-padruneid. 5,66 mm kaliibriga (spetsiaalne veealune ründerelv APS). Veealuste relvade jaoks mõeldud sulgedeta noolekujulised kuulid, mis on stabiliseeritud vees kavitatsiooniõõnsusega, ei ole õhus praktiliselt stabiliseeritud ja nõuavad vee all kasutamiseks spetsiaalseid, mitte standardrelvi.

Praegu on lootustandvaim veealune õhulaskemoon, millest saab võrdse efektiivsusega tulistada nii vee all kuni 50 m sügavusel kui ka õhus, tavaliste (seeria)kuulipildujate ja ründerelvade padrunid, mis on varustatud Polotnevi noolekujulise noolega. sulgedega kuul, mille on välja töötanud föderaalne riigi ühtne ettevõte TsNIIHM. Polotnevi kuulide stabiliseerimine vee all toimub kavitatsiooniõõnde abil ja õhus - kuuli saba abil.

ISBN 978-5-9524-3370-0; BBK 63,3(0)62 K59.

  • Hogg Ya. Laskemoon: padrunid, granaadid, suurtükimürsud, mördimiinid. - M.: Eksmo-Press, 2001.
  • Irving D. Kättemaksurelvad. - M.: Tsentrpoligraf, 2005.
  • Dornberger V. VAU-2. - M.: Tsentrpoligraf, 2004.
  • Katorin Yu. F., Volkovski N. L., Tarnavsky V. V. Unikaalne ja paradoksaalne sõjavarustus. - Peterburi. : Polygon, 2003. - 686 lk. - (Sõjaajaloo raamatukogu). - ISBN 5-59173-238-6, UDC 623,4, BBK 68,8 K 29.

Tankide ilmumine lahinguväljale oli üks olulisemaid sündmusi sõjaajalugu eelmisel sajandil. Vahetult pärast seda hetke hakati välja töötama vahendeid nende tohutute masinate vastu võitlemiseks. Kui vaatame tähelepanelikult soomusmasinate ajalugu, näeme tegelikult mürsu ja soomuki vastasseisu ajalugu, mis on kestnud juba peaaegu sajandi.

Selles lepitamatus võitluses saavutas üks või teine ​​pool perioodiliselt ülekaalu, mis viis kas tankide täieliku haavatavuse või nende tohutute kaotusteni. Viimasel juhul kostis iga kord hääli tanki hukkumisest ja "tankiajastu lõpust". Tänapäeval jäävad aga tankid peamiseks löögijõuks maaväed kõik maailma armeed.

Tänapäeval on üks peamisi soomust läbistava laskemoona liike, mida soomusmasinate vastu võitlemiseks kasutatakse, alamkaliibriline laskemoon.

Natuke ajalugu

Esiteks tankitõrje kestad olid tavalised metallist toorikud, mis oma kineetilise energia tõttu läbistasid tankisoomus. Viimane polnud õnneks väga paks ja sellega said hakkama isegi tankitõrjepüssid. Kuid juba enne II maailmasõja algust hakkasid ilmuma järgmise põlvkonna tankid (KV, T-34, Matilda), millel oli võimas mootor ja tõsine soomus.

Peamised maailmariigid astusid teise maailmasõda, millel tankitõrje suurtükivägi kaliibriga 37 ja 47 mm ning viimistleti relvadega, mis ulatusid 88 ja isegi 122 mm kõrgusele.

Püstoli kaliibri suurendamine ja algkiirus mürsu lendu pidid disainerid suurendama relva massi, muutes selle keerukamaks, kallimaks ja palju vähem manööverdatavaks. Tuli otsida teisi teid.

Ja need leiti peagi: ilmus kumulatiivne ja alakaliibriline laskemoon. Kumulatiivse laskemoona toime põhineb suunatud plahvatuse kasutamisel, mis põleb läbi tankisoomuse, ka alamkaliibrilisel mürsul pole plahvatusohtlikku mõju, see tabab hästi kaitstud sihtmärki suure kineetilise energia tõttu.

Alamkaliibrilise mürsu konstruktsiooni patenteeris juba 1913. aastal Saksa tootja Krupp, kuid nende massiline kasutamine algas palju hiljem. Sellel laskemoonal ei ole plahvatusohtlikku mõju, see sarnaneb palju rohkem tavalise kuuliga.

Sakslased hakkasid Prantsusmaa kampaania ajal esimest korda aktiivselt kasutama alamkaliibrilisi kestasid. Pärast sõjategevuse algust pidid nad sellist laskemoona veelgi laiemalt kasutama Ida rinne. Ainult alakaliibrilisi mürske kasutades suutsid natsid tõhusalt vastu seista võimsatele Nõukogude tankidele.

Sakslastel oli aga tõsine volframipuudus, mis takistas neil selliste mürskude masstootmist. Seetõttu oli laskemoonakoormas selliste padrunite arv väike ja sõjaväelastele anti ranged käsud: kasutada neid ainult vaenlase tankide vastu.

NSV Liidus alustati alamkaliibrilise laskemoona seeriatootmist 1943. aastal, need loodi püütud Saksa proovide põhjal.

Pärast sõda jätkus töö selles suunas enamikus maailma juhtivates relvajõududes. Tänapäeval peetakse alamkaliibrilist laskemoona üheks peamiseks vahendiks soomussihtmärkide hävitamisel.

Praegu on isegi alakaliibrilisi kuule, mis suurendavad oluliselt sileraudsete relvade laskeulatust.

Tööpõhimõte

Millel see kõrgem põhineb? soomust läbistav efekt milline mõju on alakaliibrilisel mürsul? Kuidas see tavapärasest erineb?

Alakaliibriline mürsk on laskemoona liik, mille lõhkepea kaliiber on kordades väiksem kui selle toru kaliiber, millest see tulistati.

Leiti, et suurel kiirusel liikuval väikesekaliibrilisel mürsul on soomust läbitavus suurem kui suurekaliibrilisel. Aga saada suur kiirus pärast lasku on vaja võimsamat padrunit ja seega ka tõsisema kaliibriga relva.

Seda vastuolu suudeti lahendada mürsu loomisega, mille löögiosa (südamik) on mürsu põhiosaga võrreldes väikese läbimõõduga. Alamkaliibrilisel mürsul puudub tugev plahvatusohtlik või killustamistegevus, töötab see samal põhimõttel nagu tavaline kuul, mis tabab sihtmärke suure kineetilise energia tõttu.

Alakaliibriline mürsk koosneb eriti tugevast ja raskest materjalist valmistatud tahkest südamikust, korpusest (alusest) ja ballistilisest kaitsekattest.

Panni läbimõõt on võrdne relva kaliibriga, see toimib tulistamisel kolbina, kiirendades lahinguüksus. Ajamirihmad paigaldatakse vintrelvade jaoks mõeldud alamkaliibriliste mürskude alustele. Tavaliselt on kandik poolikujuline ja valmistatud kergsulamitest.

On soomust läbistavaid subkaliibrilisi mürske, millel on lahtivõetav pann, tulistamise hetkest kuni sihtmärgi tabamuseni toimivad mähis ja südamik ühtse üksusena. See disain tekitab tõsise aerodünaamilise takistuse, vähendades oluliselt lennukiirust.

Mürsud, mille puhul pärast tulistamist õhutakistuse tõttu eraldub mähis, peetakse arenenumateks. Kaasaegsetes alamkaliibrilistes mürskudes tagavad südamiku stabiilsuse lennu ajal stabilisaatorid. Sageli paigaldatakse sabaosasse jälituslaeng.

Ballistiline ots on valmistatud pehmest metallist või plastikust.

Alakaliibrilise mürsu kõige olulisem element on kahtlemata tuum. Selle läbimõõt on ligikaudu kolm korda väiksem kui mürsu kaliiber ja südamiku valmistamiseks kasutatakse suure tihedusega metallisulameid: levinumad materjalid on volframkarbiid ja vaesestatud uraan.

Suhteliselt väikese massi tõttu kiireneb alakaliibrilise mürsu tuum kohe pärast tulistamist märkimisväärse kiiruseni (1600 m/s). Kui see tabab soomusplaati, teeb südamik sellesse suhteliselt väikese augu. Mürsu kineetilist energiat kasutatakse osaliselt soomuse hävitamiseks ja osaliselt muutub see soojusenergiaks. Pärast soomust läbimurdmist väljuvad südamiku ja soomuse kuumad killud soomustatud ruumi ja levivad ventilaatorina, tabades sõiduki meeskonda ja sisemisi mehhanisme. Sel juhul tekib palju tulekahjusid.

Kui soomus läbib, kulub südamik maha ja muutub lühemaks. Seetõttu väga oluline omadus Asi, mis mõjutab soomuse läbitungimist, on südamiku pikkus. Samuti mõjutab alamkaliibrilise mürsu efektiivsust materjal, millest südamik on valmistatud, ja selle lennukiirus.

Vene alakaliibriga mürskude uusim põlvkond (Svinets-2) on soomuse läbitungimisel oluliselt halvem Ameerika analoogid. See on seotud kauem kahjustav südamik, mis on osa Ameerika laskemoonast. Takistuseks mürsu pikkuse (ja seega ka soomuse läbitungimise) suurendamisel on Vene tankide automaatlaadurite projekteerimine.

Südamiku soomuse läbitung suureneb, kui selle läbimõõt väheneb ja mass suureneb. Selle vastuolu saab lahendada väga tihedate materjalide kasutamisega. Algselt kasutati sellise laskemoona löögielementideks volframit, kuid see on väga haruldane, kallis ja ka raskesti töödeldav.

Vaesestatud uraanil on peaaegu sama tihedus kui volframil ja see on ka praktiliselt tasuta ressurss igale riigile, kus on tuumatööstus.

Praegu on suurriikide teenistuses uraani südamikuga alamkaliibriline laskemoon. USA-s on kogu selline laskemoon varustatud ainult uraani tuumadega.

Vaesestatud uraanil on mitmeid eeliseid:

  • soomust läbides teritab uraanivarras ennast, mis tagab parema soomuse läbitungimise; see omadus on ka volframil, kuid see on vähem väljendunud;
  • pärast soomuse läbimurdmist süttivad kõrgete temperatuuride mõjul uraanivarda jäänused, täites soomustatud ruumi mürgiste gaasidega.

Tänapäeval on kaasaegsed alakaliibrilised mürsud peaaegu saavutanud oma maksimaalse efektiivsuse. Seda saab suurendada ainult tankipüstolite kaliibri suurendamisega, kuid selleks on vaja tanki konstruktsiooni oluliselt muuta. Praegu tegelevad juhtivad tankitootjad vaid külma sõja ajal toodetud sõidukite modifitseerimisega ega võta tõenäoliselt nii radikaalseid samme ette.

USA-s töötatakse välja kineetilise lõhkepeaga aktiivrakettmürske. See on tavaline mürsk, mis kohe pärast tulistamist aktiveeritakse oma kiirendusplokk, mis suurendab oluliselt selle kiirust ja soomuse läbitungimist.

Ameeriklased arendavad ka kineetikat juhitav rakett, kahjustav tegur mis on uraanipulk. Pärast stardikonteinerist tulistamist lülitatakse sisse ülemine aste, mis annab laskemoona kiiruseks 6,5 Machi. Suure tõenäosusega on 2020. aastaks alakaliibrilist laskemoona kiirusega 2000 m/s ja rohkem. See viib nende tõhususe täiesti uuele tasemele.

Alamkaliibriga kuulid

Lisaks alakaliibrilistele mürskudele on olemas ka sama disainiga kuulid. Selliseid kuule kasutatakse laialdaselt 12-gabariidiliste padrunite jaoks.

12-gabariidiliste alamkaliibriliste kuulide mass on väiksem, pärast tulistamist saavad nad suurema kineetilise energia ja seega on neil suurem lennuulatus.

Väga populaarne alakaliibri kuulid 12 gabariit on: Polevi kuul ja "Kirovchanka". Sarnast 12-gabariidilist laskemoona on ka teisi.

Video alakaliibri laskemoona kohta

Kui teil on küsimusi, jätke need artikli all olevatesse kommentaaridesse. Meie või meie külastajad vastavad neile hea meelega