Схема платы повышающего преобразователя 3.7 5 вольт. Как получить нестандартное напряжение. Повышение переменного напряжения

Повышающий преобразователь 3,6 - 5 вольт на MC34063

Статей о преобразователях на MC34063 и подобных микросхемах написано предостаточно. Зачем писать ещё одну? Признаемся честно, мы написали её, чтобы выложить печатную плату. Возможно, кто-то сочтёт её удачной или просто поленится рисовать свою.


Понадобиться такой преобразователь может, например, для питания какой-либо самоделки или измерительного прибора от литиевого аккумулятора. В нашем случае - это питание дозиметра от китайского 1,5А/ч . Схема - стандартная, из даташита, повышающий преобразователь.


Печатная плата получилась маленькой, всего 2*2,5см. Можно сделать меньше. Все детали, как планировалось - SMD. Однако, найти керамический SMD конденсатор с ёмкостью менее 1нФ оказалось не так-то просто, пришлось поставить выводной. Также непросто оказалось найти сравнительно маленький дроссель нужной индуктивности, не входящий в насыщение на нужном токе. В итоге решено было использовать повышенную частоту - порядка 100кГц и дроссель на 47мкГн. В итоге он лишь на треть выходит за габариты платы.


Делитель напряжения для стабилизации 5 вольт удачно получился из резисторов на 3 и 1 кОм. Если постараться, на их место можно аккуратно припаять многооборотный потенциометр, как мы сделали это в преобразователе на NCP3063 , чтобы иметь возможность подстройки напряжения.

Сфера применения этой схемы не ограничивается лишь питанием приборов. Её с успехом можно использовать в самодельных фонариках, зарядных устройствах, повербанках, одним словом - везде, где требуется преобразовать одно значение напряжения в другое. Микросхема эта не очень мощная, однако способна справиться в большинстве применений.

Однако, при применении импульсных преобразователей для питания измерительных приборов и чувствительной аппаратуры, следует помнить о том уровне шума, который они создают по цепям питания. Есть мнение, что для очень чувствительных к таким вещам схем решение - только в применении линейного стабилизатора между преобразователем и непосредственно питаемой им схемой. В нашем случае минимальный уровень пульсаций мы получили при помощи максимальной ёмкости конденсатора на выходе преобразователя, которую смогли найти. Это оказался тантал на 220мкФ. На плате есть место для установки на выходе нескольких керамических конденсаторов, если это необходимо.

Повышающий преобразователь 3,6 - 5 вольт на MC34063 показал хорошую стабильную работу и может быть рекомендован к применению.

Далеко не все слышали о том, что литий-ионные батареи типа АА, имеют не только стандартные 3,7 вольта, но есть такие модели что дают обычных полтора, как в никель кадмиевых. Да, сама химия банок не позволяет создавать 1,5-вольтовые ячейки, поэтому внутри есть понижающий стабилизатор. Таким образом получается классическая перезаряжаемая батарейка, на стандартное для большинства приборов и, главное, игрушек, напряжение. Эти АКБ имеют то преимущество, что очень быстро заряжаются и более мощные по ёмкости. Поэтому можно смело предположить рост популярности таких элементов питания. Давайте осмотрим тестовый образец и разберём его начинку.

Сама батарея выглядит как обычные АА элементы, за исключением верхней положительной клеммы. Есть сверху утопленное кольцо вокруг неё, что обеспечивает прямое подключение к Li-ion ячейке для .

После отрывания этикетки, мы встретились с простым стальным корпусом. Желая разобрать ячейку с минимальным риском короткого замыкания внутри, использовался маленький труборез для аккуратной разборки сварного шва.

Печатная плата, которая выдаёт из 3,7 - 1,5 вольта, находится внутри крышки.

В этом преобразователе использована , 1.5 МГц инвертор DC-DC, чтобы обеспечить 1,5 В на выходе. Судя по даташиту, это полностью интегрированный конвертер со всеми силовыми полупроводниковыми компонентами. Преобразователь рассчитан на 2,5-5,5 вольт входа, то есть в пределах рабочего диапазона Li-ion ячейки. Кроме того, он имеет собственный ток потребления всего 20 микроампер.

Для аккумулятора предусмотрена схема защиты, расположенная на гибкой плате, которая окружает Li-ion ячейку. Она использует микросхему XB3633A , которая, как и инвертор, является полностью интегрированным устройством; нет внешних МОП-транзисторов для отключения ячейки от остальной схемы. В общем со всей этой сопутствующей электроникой, из литиевого элемента получилась обычная полноценная батарейка 1,5 В.

Чтобы питать электроприборы, нужно обеспечить номинальные значения параметров электропитания, заявленные в их документации. Безусловно большинство современных электроприборов работают от сети переменного тока 220 Вольт, но бывает так, что нужно обеспечить питание приборов для других стран, где напряжение другое или запитать что-нибудь от бортовой сети автомобиля. В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и что для этого нужно.

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – , особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, мы рассказали в статье, на которую сослались.

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью , полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта. Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора.

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

В заключении хотелось бы напомнить о технике безопасности. При подключении трансформаторов, автотрансформаторов, а также работе с инверторами и умножителями будьте аккуратны. Не касайтесь токоведущихчастей голыми руками. Подключения следует выполнять при отключенном питании от устройства, а также избегать их работы во влажных помещениях с возможностью попадания воды или брызг. Также не превышайте заявленный производителем ток трансформатора, преобразователя или блока питания, если не хотите, чтобы он у вас сгорел. Надеемся, предоставленные советы помогут вам повысить напряжение до нужного значения! Если возникнут вопросы, задавайте их в комментариях под статьей!

Наверняка вы не знаете:

Нравится(0 ) Не нравится(0 )

Представляю обзор микромощного преобразователя напряжения, который мало на что сгодится.

Собран довольно неплохо, размер компактный 34х15х10мм




Заявлено:
Входное напряжение: 0.9-5В
С одной батареи АА выходной ток до 200мА
С двух батарей АА выходной ток 500 ~ 600мA
КПД до 96%
Реальная схема преобразователя


В глаза сразу бросается очень малая ёмкость входного конденсатора - всего-то 0.15мкФ. Обычно ставят больше раз в 100, видимо наивно рассчитывают на низкое внутреннее сопротивление батареек:) Ну поставили такой и бог с ним, при необходимости можно и поменять - себе сразу поставил 10мкФ. Снизу на фото валяется родной конденсатор.


Габариты дросселя также весьма невелики, что заставляет призадуматься насчёт правдивости заявленных характеристик
На входе преобразователя подключен красный светодиод, который начинает светиться при входном напряжении более 1,8В

Проверку проводил для следующих стабилизированных входных напряжений:
1,25В - напряжение Ni-Cd и Ni-MH аккумулятора
1,5В - напряжение одного гальванического элемента
3,0В - напряжение двух гальванических элементов
3,7В - напряжение Li-Ion аккумулятора
При этом нагружал преобразователь до падения напряжения до разумных 4,66В

Напряжение холостого хода 5,02В
- 0,70В - минимальное напряжение, при котором преобразователь начинает работать на холостом ходу. Светодиод при этом естественно не светится - напряжения не хватает.
- 1,25В ток холостого хода 0,025мА, максимальный выходной ток всего 60мА при напряжении 4,66В. Входной ток при этом 330мА, КПД около 68%. Светодиод при таком напряжении естественно не светится.


- 1,5В ток холостого хода 0,018мА, максимальный выходной ток 90мА при напряжении 4,66В. Входной ток при этом 360мА, КПД около 77%. Светодиод при таком напряжении естественно не светится


- 3,0В ток холостого хода 1,2мА (потребляет в основном светодиод), максимальный выходной ток 220мА при напряжении 4,66В. Входной ток при этом 465мА, КПД около 74%. Светодиод при таком напряжении светится нормально.


- 3,7В ток холостого хода 1,9мА (потребляет в основном светодиод), максимальный выходной ток 480мА при напряжении 4,66В. Входной ток при этом 840мА, КПД около 72%. Светодиод при таком напряжении светится нормально. Преобразователь начинает незначительно греться.


Для наглядности, свёл результаты в таблицу.


Дополнительно при входном напряжении 3,7В проверил зависимость КПД преобразования от тока нагрузки
50мА - КПД 85%
100мА - КПД 83%
150мА - КПД 82%
200мA - КПД 80%
300мA - КПД 75%
480мА - КПД 72%
Как несложно заметить, чем меньше нагрузка, тем выше КПД
До заявленных 96% сильно не дотягивает

Пульсации выходного напряжения при нагрузке 0,2А


Пульсации выходного напряжения при нагрузке 0,48А


Как нетрудно заметить, на максимальном токе амплитуда пульсаций очень велика и превышает 0,4В.
Скорее всего это происходит из-за выходного конденсатора небольшой ёмкости с высоким ESR (измерил 1,74Ом)
Рабочая частота преобразования около 80кГц
Запаял дополнительно керамику 20мкФ на выход преобразователя и получил снижение пульсаций при максимальном токе в 5 раз!




Вывод: преобразователь является весьма маломощным - это обязательно следует учитывать, выбирая его для питания Ваших устройств

Планирую купить +20 Добавить в избранное Обзор понравился +37 +69

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:

  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.


Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.
1. Первая 0,7 Ом.


2. Вторая 1,3 Ом.


3. Третья 6,2 Ом.


Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства


Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.


Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.



Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).


Для удобства провода на 220 вольт берем с «крокодилами».


Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.


Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.


Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.
Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.


Наше устройство готово.
Совет. Увеличить мощность преобразователя можно установив транзистор на радиатор.
Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.