Схема включения светодиода от 1.5 вольт. Несколько простых схем питания светодиодов. Схемы с обратной связью по току


Итак имеем радиоприемник Panasonic RF-800UEE-K, обо всех его достоинствах и недостатках полно информации в интернете. Из плюсов отмечу очень хорошее качество тюнера, деревянный(фанерный) корпус, достойное качество звука для этого сегмента приемников. Разбирается очень легко, никаких защелок, пять винтов на задней панели и еще двумя винтами прикручена передняя панель к фанерному корпусу.

Из недостаков можно отметить моно-звук, отсутствие нормальных басов. Но зато есть вход и выход, кому не хватает басов можно подключить его на внешние колонки.


Приемник настолько удачный что, для того чтобы не залезть этим аппаратом в класс мультимедиа-центров производитель урезал часть функционала MP3 плеера, и не стал устанавливать подсветку шкалы приемника, хотя судя по конфигурации передней панели она там предполагалась. Корпус склеен из пресованной стружки и достаточно рыхлый, но это легко исправить.

Проклеиваем все швы столярным ПВА с "горкой" до полного высыхания.

Затем пропитываем торцы и внутренности полиуретановым лаком, он очень хорошо внитывается поэтому придется положить три-четыре обильных слоя.

После высыхания корпус натягивается и начинат "звучать" как передняя дека гитары:-)

Промеряем посадочное место для установки света, в нашем случае это панелька длиной 90 и шириной 7 мм.

Режем фольгированный текстолит на панельки нужного размера.

Питание приемника осуществляется напряжением 6В, для подсветки я хочу попробовать ораньжевые и желтые светодиоды с прямым напряжением 2.1В. Буду ставить их парами, избыток напряжения при такой схеме будет составлять 1.8В, его мы осадим на резисторе. Номинал резистора расчитывается по закону Ома R=U/I. В нашем случае U=1.8 В, а ток I=20 mA (предельно допустимый прямой ток для данного типа светодиодов), получается что при R=90 Ом все должно работать, но мы пойдем дальше и ограничим ток до 10-9mA, при этом значительного уменьшения яркости не происходит. Получаем R=220 Ом. Расчет можно произвести по ссылке приведенной внизу этого поста.

Собираю две планки желтого и ораньжевого цвета на разных типах светодиодов. Для того чтобы не городить сопли использую одну сторону фальгированного текстолита как минус, другую как плюс.



Более насыщенное свечение дали SMD светодиоды оранжевого цвета.


Эта планка и пошла в дело. Клею на двухсторонний скотч, при этом светодиоды светят строго в торец шкалы, там имеется технологическая щель.

Волшебная шкала.

Плюс выводим на ручку включения (регулировки громкости)


Минус на центральную жилу разъема питания. При такой схеме включения подсветка будет работать только при работе от внешнего блока питания, в режиме работы от батареек она светить не будет экономя батарейки. Думаю производитель специально разязал две цепи питания через диод.

Не знаю, как вас, а меня в современном мире угнетает нерациональное использование батареек. Покупаем полуторавольтовую для пульта телевизора, например. Он работает и радует нас своей возможностью переключать каналы, не вставая с дивана. Но со временем начинаются сбои, кнопки приходится нажимать многократно, чтобы добиться хоть каких-то действий, пульт уже надо держать на вытянутой руке… Села батарейка. Как всегда — меняем, что же делать. Но если проверить напряжение в ней, то оно вряд ли будет на нуле. Скажем, останется один вольт. И куда его девать? Выбросить жалко, а использовать некуда, ничего толкового не запитаешь.

Вот в связи с такими чудовищными растратами энергии я и собрал схему «похитителя джоулей», чтобы «дожигать» забракованные другими потребителями батарейки с помощью светодиода. Она и называется так оттого, что способна почти полностью осушать батарейку, лишая ее последнего джоуля энергии. Да и вообще, «фонарик Апокалипсиса», работающий на всяком мусоре — очень крутая идея.
Наиболее занимательное в данном устройстве — это, собственно, сам факт работы светодиода от источника питания с низким напряжением. Обычно светодиоду надо 2,5 — 4 вольта (в зависимости от цвета), если напряжение ниже, то он попросту не включится. Данная схема работает как повышающий преобразователь, и на выходе ее как раз столько напряжения, сколько надо светодиоду.

Схема очень простая, с минимумом деталей. Конденсатор и диод можно исключить.


Сердцем устройства является трансформатор. Он наматывается на ферритовом кольце. Хорошо подходят кольца из отслужившей свое материнской платы ПК.


Берем эмалированную медную проволоку (у моей диаметр 0,3, что ли — штангенциркуль ржавый), складываем ее вдвое и начинаем мотать вокруг кольца.

Всего нужно 20 витков. Забегая на будущее — во втором варианте схемы 26 витков (для разнообразия).
После определяемся с катушками. У нас получаются два вывода сверху и два снизу. Зачищаем их от лака любым известным методом — «наждачка», огонь, «Аспиирн». С помощью функции прозвонки в мультиметре находим комбинацию выводов «один сверху-один снизу», когда он не пищит — это будет место соединения двух катушек. Они соединяются в противофазе, то есть конец одной — к началу другой.


Транзистор я использовал КТ315Г, но можно и с другой оконечной буквой. Мой друг-электронщик, когда я ему показываю свою очередную самоделку (или чью-то в Интернете), сразу спрашивает, сколько внутри КТ315. Если меньше одного — устройство бесполезно и бездушно, если один, но вместе с другими транзисторами — то на нем все держится, на нескольких КТ315 — хорошее и правильное, весь функционал обеспечивает один-единственный транзистор этой марки — высший класс.
Во втором варианте схемы — КТ361Д. Соответственно, меняется полярность включения светодиода и батарейки.
Резистор в базовой цепи — 1 кОм.
Светодиод теплого белого свечения, с желтым оттенком. В китайских поделках, заваливших рынок, поголовно стоят холодного белого свечения, у них синеватый отлив. Под моим светодиодом припаян резистор на 100 Ом. Он ограничивает ток.



Ух ты, работает. Очень сильное колдунство.




Работы по миниатюризации. Я на основе такой схемки хочу действительно собрать себе фонарик-дожигатель батареек. Резистор перед светодиодом убрал, чтобы он ярче светил.

Данная схема еще одна из серии популярных преобразователей для питание светодиода от одной батарейки на 1,5 вольта.

Описание работы преобразователя для светодиода от 1,5 вольт

После подключения питания через резистор R2 открывается транзистор T1. Далее, ток протекающий через резистор R3 открывает транзистор T2 и ток начинает течь через дроссель L1. Ток дросселя L1 постоянно растет и определяется напряжением батареи, самого дросселя, а также величиной сопротивления резистора R3.

Когда ток в дросселе достигает своего максимума, он меняет свое направление на противоположное и, следовательно, меняется и полярность напряжения. В этот момент через конденсатор C1 закрывает транзистор T1, а за ним и транзистор T2. Ток из катушки противоположной полярности, проходит через светодиод, который загорается. Через некоторое время транзистор T1 и T2 открываются, и цикл повторяется снова.

Преобразователь способен повышать напряжение до 10 вольт, так что он с легкостью сможет зажечь даже два-три диода на полную яркость. Ток протекающий через светодиод можно в определенных пределах регулировать, изменяя сопротивление резистора R3.

Преобразователь для светодиода собран на односторонней плате


Если вы когда-нибудь захотите запитать светодиод от одной батарейки, то рано или поздно наткнетесь на схему под названием Joule Thief- вор джоулей. Эта схема хороша многим: малым количеством деталей, можно использовать севшую батарейку, собранная конструкция получается компактной и будет работать от батареи с напряжением всего 0.6В. Классическую схему этого устройства можно посмотреть в Википедии. Есть много вариантов этой схемы, попыток ее оптимизации. я покажу вам с один из вариантов этой конструкции, который позволит зажечь два 3-х ваттных светодиода включенных последовательно. Все было собрано быстро. С учетом перемотки дросселя, времени ушло 20 минут.

Что понадобится для сборки:

Паяльник, не много припоя и проводов. Батарейка на 1.5В и меньше, твердые руки.
Транзистор. Я использовал КТ630,


максимальная рабочая частота у него большая, ток коллектора выше, чем у рекомендуемых в стандартных схемах. В принципе можно любой NPN транзистор c коэффициентом усиления не менее 150, к примеру, 2SC1815. Один переменный резистор на 10 кОм.

Один электролитический конденсатор 47 мкФ на 25В. Конденсатор большей емкости дольше заряжается и снижает яркость свечения. Один любой диод с обратным напряжением не меньше 100 В, т.к. без нагрузки конденсатор заряжается до 30-45В.

Один конденсатор 0.01 мкФ. Два 3-х ваттных светодиода, включенных последовательно. Закрепленных на радиаторе от компьютерного процессора.

Один дроссель групповой стабилизации от компьютерного БП.

Можно использовать любое ферритовое кольцо, которое окажется под рукой. Я использовал дроссель от БП, просто потому, что он был. Количество витков не считал, просто смотал весь провод с кольца (там два провода разно сечения) и намотал его снова, бифилярно.



Обмотку, намотанную проводом меньшего сечения, включил в цепь базы транзистора. Соответственно, вторую обмотку включил в цепь коллектора. Важно, чтобы начало одной обмотки соединялось с концом другой, как показано на схеме. можно намотать на ферритовом стержне обмотку с отводом от нужного количества витков, или вообще, сделать катушку без сердечника.

В отличии от стандартной схемы, здесь, нагрузка подключается между базой и коллектором. Кпд схемы зависит от конденсатора, который включен в параллель с нагрузкой. Такая схема включения нагрузки сделана в попытке использовать ОЭДС,возникающую в катушке L2.

На видео видно, что при замыкании резистора R1 яркость свечения увеличивается.

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на , как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой .

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать : многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной . Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.

Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить , например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 ().

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.

При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.

При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.

На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.

Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.

Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Борис Аладышкин