Давит ли воздух на весы. Обладает ли весом воздух. Почему мы не чувствуем, что воздух давит на нас

Хотя мы и не чувствуем воздух вокруг себя, воздух - это не ничто. Воздух - это смесь газов: азота, кислорода и других. А газы, как и другие вещества, состоят из молекул, и поэтому имеют вес, хотя и небольшой.

С помощью опыта можно доказать, что воздух имеет вес. На середине палки длиной сантиметров в шестьдесят укрепим веревочку, а к обоим ее концам привяжем два одинаковых воздушных шарика. Подвесим палку за веревочку и увидим, что она висит горизонтально. Если теперь проткнуть иголкой один из надутых шариков, из него выйдет воздух, и тот конец палки, к которому он был привязан, поднимется вверх. Если проколоть и второй шарик, то палка снова займет горизонтальное положение.



Это происходит потому что воздух в надутом шарике плотнее , а значит, и тяжелее , чем тот, что находится вокруг него.

Сколько весит воздух, зависит от того, когда и где его взвешивают. Вес воздуха над горизонтальной плоскостью - это атмосферное давление. Как и все предметы, окружающие нас, воздух тоже подвержен земному притяжению. Оно-то и наделяет воздух весом, который равен 1 кг на квадратный сантиметр. Плотность воздуха равна около 1,2 кг/м 3 , то есть куб со стороной 1 м, наполненный воздухом, весит 1,2 кг.

Воздушный столб, вертикально поднимающийся над Землей, тянется на несколько сотен километров. Значит, на стоящего прямо человека, на его голову и плечи, площадь которых составляет примерно 250 см 2 , давит столб воздуха весом около 250 кг!

Мы не смогли бы выдерживать такую тяжесть, если бы ей не противостояло такое же давление внутри нашего тела. Следующий опыт поможет нам понять это. Если растянуть двумя руками бумажный лист и кто-то с одной стороны надавит на него пальцем, то результат будет один - дырка в бумаге. Но если надавить двумя указательными пальцами на одно и то же место, но с разных сторон, ничего не случится. Давление с обеих сторон будет одинаковым. То же самое происходит и с давлением воздушного столба и встречным давлением внутри нашего тела: они равны.



Воздух обладает весом и со всех сторон давит на наше тело.
Но он не может раздавить нас, ибо встречное давление тела равно внешнему.
Изображенный выше простой опыт делает это очевидным:
если с одной стороны надавить пальцем на лист бумаги, он порвется;
но если надавить на него с обеих сторон, этого не произойдет.

Кстати...

В повседневности, когда мы что-то взвешиваем, мы делаем это в воздухе, и поэтому мы пренебрегаем его весом, так как вес воздуха в воздухе равен нулю. Например, если мы взвесим пустую стеклянную колбу, мы будем считать полученный результат весом колбы, пренебрегая тем, что она наполнена воздухом. А вот если колбу закрыть герметично и откачать из нее весь воздух, мы получим совсем другой результат...

Городская научно – практическая конференция

«Планета эрудитов»

Обладает ли весом воздух

Окружающий мир

4 «А» класс, МБОУ СОШ № 14

Руководитель:

г. Дзержинск

2013г

2. Очистка воздуха.

3. Воздух имеет вес.

4. Проведение опытов.

Введение

Вся наша планета окутана прозрачным покрывалом - воздухом. Мы его не видим, не чувствуем. Но если оно вдруг исчезнет, мгновенно закипит на Земле вода, все другие жидкости, а лучи Солнца сожгут все живое.

Без еды человек может обходиться пять недель, без воды - пять дней, а без воздуха - самое большое пять минут. Воздух нужен и человеку, и животным, и растениям, чтобы дышать, а значит, чтобы жить. А ветер? Ведь это движение воздуха! Без ветра облака всегда стояли бы над морем или рекой. Значит, дождь без ветра мог бы идти только над водой. Под действием воздуха и воды совершаются геологические процессы на поверхности Земли, формируются погода и климат. Сжигая топливо (а в этом обязательно должен участвовать кислород - составная часть воздуха), люди издавна получают тепло, необходимое и в быту, и на производстве.

Воздух - важнейший источник химического сырья. Всего лишь два века назад ученые узнали, что воздух - смесь многих газов, в основном кислорода и азота , аргона и углекислого газа. В связи с актуальностью данной проблемы мы выявили следующую цель исследования: определить, есть ли вес у воздуха?

Задачи исследования:


Проанализировать передовой опыт по вопросу изучения воздуха;

Определить свойства воздуха;

Провести эксперимент по определению веса воздуха;

Сделать выводы.

1. Значение воздуха для человека.

Для человека большое значение имеют температура, влажность , движение воздуха. Например, если вы легко одеты и заняты несложной работой, лучшая температура воздуха 18- 20 С. Чем тяжелее работа, тем ниже может быть температура воздуха, но не настолько, чтобы стало трудно дышать, как при сильном морозе. Люди лучше всего себя чувствуют при влажности воздуха 40-60 процентов. Обычно хорошо переносится сухой воздух, а повышенная влажность воздуха действует неблагоприятно: при высокой температуре организм перегревается, при низкой - переохлаждается.

2. Очистка воздуха.

В воздухе растет количество углекислого газа, химических соединений, которые выбрасывают промышленные предприятия и автомашины.

В мире широко развернулось движение в защиту природы. У нас приняты законы и разрабатывают новые, по которым руководители предприятий отвечают за очистку и обезвреживание газов до их выброса в атмосферу.

Огромную роль в очистке воздуха играют растения - легкие планеты. Они задерживают пыль, копоть, поглощают углекислый газ и выделяют кислород. Среди других природных фильтров тополь и подсолнечник лучше всего очищают воздух от загрязнения. Как показали исследования, на оживленных автомагистралях, вдоль которых были высажены пирамидальные тополя и простирались поля подсолнечника, воздух оставался чистым.

3. Воздух имеет вес.

Воздух имеет вес. В литровой бутылке, например, больше одного грамма воздуха. Своим весом воздух давит на нас и на все предметы вокруг нас. Если, к примеру, откачать воздух из консервной банки, то она сплющится.

При температуре 0 °C и нормальном атмосферном давлении масса воздуха объемом 1 м3 равна 1,29 кг.

4. Проведение опытов.

С помощью опыта можно доказать, что воздух имеет вес. На середине палки длиной сантиметров в шестьдесят укрепим веревочку, а к обоим ее концам привяжем два одинаковых воздушных шарика . Подвесим палку за веревочку и увидим, что она висит горизонтально. Если теперь проткнуть иголкой один из надутых шариков, из него выйдет воздух, и тот конец палки, к которому он был привязан, поднимется вверх. Если проколоть и второй шарик, то палка снова займет горизонтальное положение.

Это происходит потому что воздух в надутом шарике плотнее, а значит, и тяжелее, чем тот, что находится вокруг него.

Еще один опыт:

Возьми пустую прозрачную пластиковую бутылку. Этот опыт покажет, так ли она пуста, как кажется. Опусти бутылку в таз с водой так, чтобы она начала заполняться. Смотри, что будет с водой. Видишь, из горлышка входят пузырьки. Это вода вытесняет воздух из бутылки. Большинство предметов, которые выглядят пустыми, на самом деле заполнены воздухом.

Почувствуй воздух.

Есть ли воздух вокруг? Узнать это очень просто. Помаши листом картона у своего лица. Картонка заставит воздух двигаться и ты ощутишь его дуновение на своем лице.


Бумажные гонки.

Воздухом можно двигать предметы. Предлагаем устроить такую игру: каждому игроку понадобится картонка и лист бумаги. Одну сторону листа нужно отогнуть. Вместо финишной ленты натяните нитку. Теперь по команде машите картонками позади листов бумаги, и воздух будет двигать их вперед.

Тяжелая газета.

Возьми половину газетного листа и расправь его на столе. Под газету положи линейку, так, чтобы ее конец выступал за край стола. Нажми на линейку и попробуй оторвать ее от стола.

Оказывается, это не так-то легко сделать, потому что давление воздуха прижимает газету к столу.

Сплющенный пакет.

Для опыта возьми маленький пакетик сока с дырочкой для трубки. Высоси через трубочку сок из пакетика. Продолжай тянуть через нее воздух. Посмотри, что произойдет. Когда часть воздуха уйдет из пакетика, наружный воздух сдавит его стенки. Вынь соломинку и посмотри на пакетик.

Стенки снова разошлись, потому что воздух вошел в пакетик и распрямил его. Посмотри, что произойдет с пакетиком, если ты вдуешь в него еще больше воздуха.

Таким образом, мы доказали, что воздух имеет вес.

Заключение.

Сколько весит воздух, зависит от того, когда и где его взвешивают. Вес воздуха над горизонтальной плоскостью - это атмосферное давление. Как и все предметы, окружающие нас, воздух тоже подвержен земному притяжению. Оно-то и наделяет воздух весом, который равен 1 кг на квадратный сантиметр. Плотность воздуха равна около 1,2 кг/м3, то есть куб со стороной 1 м, наполненный воздухом, весит 1,2 кг.

Воздушный столб, вертикально поднимающийся над Землей, тянется на несколько сотен километров. Значит, на стоящего прямо человека, на его голову и плечи, площадь которых составляет примерно 250 см2, давит столб воздуха весом около 250 кг!

Кстати...

В повседневности, когда мы что-то взвешиваем, мы делаем это в воздухе, и поэтому мы пренебрегаем его весом, так как вес воздуха в воздухе равен нулю. Например, если мы взвесим пустую стеклянную колбу, мы будем считать полученный результат весом колбы, пренебрегая тем, что она наполнена воздухом. А вот если колбу закрыть герметично и откачать из нее весь воздух, мы получим совсем другой результат...

Список литературы

1. «Экология, окружающая среда и человек»

2. Энциклопедия «Мир вокруг нас»

3. Сайт http://*****/

Светлана Чебышева

Опыт №1. «Где спрятался воздух?»

Оборудование: целлофановые пакеты, зубочистки.

Скажите, вы видите воздух вокруг нас? (нет, не видим)

Значит, воздух, какой? (невидимый) .

Давайте поймаем воздух.

Возьмите со стола целлофановые пакеты и попробуйте поймать воздух.

Закрутите пакеты.

Что произошло с пакетами? (они надулись, приобрели форму)

Попробуйте сдавить пакет. Почему не получается? (внутри находится воздух)

Где можно использовать это свойство воздуха? (надувной матрац, спасательный круг).

Давайте сделаем вывод: Воздух не имеет формы, он приобретает форму того предмета в который он попадает.

А теперь посмотрите на свою руку через пакет. Вы видите руку? (видим) .

Значит, воздух, какой? (он прозрачный, бесцветный, невидимый).

Давайте проверим, действительно внутри находится воздух?

Возьмите острую палочку и осторожно проколите мешочек. Поднесите его к лицу и нажмите на него руками.

Что вы чувствуете? (шипение) .

Так выходит воздух. Мы его не видим, но чувствуем.

Какой сейчас можно сделать вывод? Воздух нельзя увидеть, но его можно почувствовать.

Вывод: Воздух прозрачный, невидимый, бесцветный, не имеет формы.

Опыт №2. «Как увидеть воздух?»

Оборудование: трубочки для коктейля, стаканы с водой.

Подуйте через трубочку на свою ладошку.

Что почувствовала ладошка? (движение воздуха – ветерок) .

Воздухом мы дышим через рот или через нос, а потом его выдыхаем.

Можно ли увидеть воздух, которым мы дышим?

Давайте попробуем. Погрузите трубочку в стакан с водой и подуйте.

На воде появились пузырьки.

Откуда взялись пузырьки? (Это воздух, который мы выдыхали) .

Куда плывут пузырьки – поднимаются вверх или опускаются на дно?

(Воздушные пузырьки поднимаются вверх) .

Потому что воздух легкий, он легче воды. Когда весь воздух выйдет, пузырьков не будет.

Вывод: Воздух легче воды.



Опыт №3. «Воздух - невидимка»

Оборудование: большая прозрачная ёмкость с водой, стакан, салфетка.

На дно стакана необходимо закрепить бумажную салфетку. Перевернуть стакан вверх дном и медленно опустить его в ёмкость с водой.

Обратить внимание детей на то, что стакан нужно держать очень ровно. Вынули стакан из воды и потрогали салфетку, она оказалась сухой.

Что получается? Попадает ли вода в стакан? Почему нет?

Это доказывает, что в стакане находился воздух, который не пустил воду в стакан. А раз воды нет, значит, она намочить салфетку не может.

Детям предлагается снова опустить стакан в банку с водой, но теперь предлагается держать стакан не прямо, а немного наклонив его.

Что появляется в воде? (Видны пузырьки воздуха) .

Откуда они взялись? Воздух выходит из стакана, и его место занимает вода.

Вывод: Воздух прозрачный, невидимый.



Опыт №4. «Движение воздуха»

Оборудование: Заранее сделанные из цветной бумаги веера.

Ребята, а мы можем почувствовать движение воздуха? А увидеть?

На прогулке мы часто наблюдаем движение воздуха (качаются деревья, бегут облака, крутится вертушка, пар изо рта) .

А в комнате мы можем почувствовать движение воздуха? Как? (вентилятор) .

Воздух не видим, зато мы его можем ощутить.

Возьмите веера и помашите им в лицо.

Что вы чувствуете? (Чувствуем, как воздух движется) .

Вывод: Воздух движется.


Опыт №5. «Имеет ли воздух вес?»

Оборудование: два одинаково надутых воздушных шарика, зубочистка, весы (можно заменить палкой длинной около 60-ти см. На её середине закрепите верёвочку, а на концах воздушные шары) .

Предложите детям подумать, что произойдёт, если вы проткнёте один из шаров острым предметом.

Проткните зубочисткой один из надутых шаров.

Из шарика выйдет воздух, а конец, к которому он привязан, поднимется вверх. Почему? (Шарик без воздуха стал легче) .

Что произойдёт, когда мы проткнём и второй шарик?

Проткните зубочисткой второй шарик.

У вас опять восстановится равновесие. Шарики без воздуха весят одинаково, так же, как и надутые.

Вывод: Воздух имеет вес.



Разделы на этой странице:

Имеет ли воздух вес? Не спешите сказать «да» или «нет», подумайте.

Давайте проделаем такой опыт.

Возьмем весы, такие, как показаны на рисунке 42. Положим на левую чашку весов детский воздушный шарик, а на правую небольшими порциями будем сыпать песок до тех пор, пока не наступит равновесие. Наполним воздушный шарик воздухом. Завяжем его, чтобы воздух не вышел, и положим на весы. Равновесие нарушилось – чашка с надутым шариком перевесила. Значит, воздух имеет вес.


Рис. 42. Этот опыт доказывает, что воздух имеет вес

Вес воздуха

Взвешивая воздух, ученые установили, что он очень легкий. Его 1 кубический метр (сокращенно 1 м 3: 1 м в ширину, 1 м в длину и 1 м в высоту) весит 1290 г. Следует запомнить, что такой вес имеет воздух только у поверхности Земли. Если взвешивать воздух на различных расстояниях от Земли, то вес 1 м 3 воздуха будет уменьшаться с высотой. Чем дальше от поверхности Земли, тем воздух более разрежен, менее плотен, а значит, меньше весит.

Давление воздуха

Поскольку толщина атмосферы составляет более 1000 км, воздух оказывает значительное давление на земную поверхность: на 1 см 2 поверхности Земли он давит с силой в 1 кг. Подсчитаем, какое давление воздуха испытывает человек (поверхность его тела составляет в среднем 1,5 м 2 , или 15 тыс. см 2).

Получается, что на человека давит 15 т воздуха! Такого огромного давления, казалось бы, он не выдержит. Однако человек его не ощущает. Объясняется это тем, что кровь, другие жидкости и газы в организме сжаты до такого же давления и, действуя изнутри, уравновешивают внешнее давление.

Воздух оказывает давление на все предметы, находящиеся на поверхности Земли.

Чтобы в этом убедиться, проделаем опыт.

На поверхность стола положим тонкую рейку так, чтобы половина ее выступала за край стола. Накроем рейку листом бумаги размером с газету (можно и самой газетой). Бумага должна плотно лежать на поверхности стола. Резким ударом руки по рейке постараемся сбросить бумагу со стола. Однако рейка сломалась – бумага осталась лежать на столе. Это объясняется тем, что на бумагу воздух давит практически с одной стороны, так как к поверхности стола она плотно прилегает.


Рис. 43. Опыт, доказывающий, что воздух оказывает давление на все предметы, находящиеся на Земле. Даже сильный удар по линейке не смог поднять газету

Воздух давит на все окружающие предметы со всех сторон.

В далеком 1654 г. бургомистр города Магдебурга Отто фон Герике решил показать горожанам силу воздушного давления. Для опыта были изготовлены два металлических полушария (их впоследствии назвали «магдебургскими»). Плотно прилегая друг к другу, они образовывали полый шар. В одном из полушарий находилось отверстие для откачивания воздуха, которое затем плотно закрывалось, чтобы воздух не мог проникнуть в шар. В опыте использовались две восьмерки лошадей, впряженных в упряжки. Каждая упряжка через прочный крюк соединялась с полушарием. После того, как насосом откачивали воздух из шара, собранного из полушарий, лошади по команде тянули полушария в разные стороны, чтобы оторвать их друг от друга. Но шар только покачивался и оставался целым и невредимым. Когда же внутрь шара впустили воздух, полушария сами распались (рис. 44).


Рис. 44. Опыт с магдебургскими полушариями

Когда мы поднимаем наполненное водою ведро, то сразу чувствуем его большую тяжесть. Подняв ведро без воды, мы ощущаем только тяжесть самого сосуда. Но это ведро ведь не пустое, оно наполнено воздухом; стало быть, сам воздух не имеет никакого веса? Может быть, воздух в ведре ничего не весит потому, что уходит из открытого ведра. Возьмем бурдюк или бычий пузырь, наполним его воздухом, завяжем и попробуем взвесить, а затем выдавим из него воздух и снова взвесим. Окажется, что показания весов оба раза будут одинаковыми, быть, действительно, воздух ничего не весит и это можно считать доказанным? Вместе с тем, если согласиться с отсутствием веса воздуха, то многие явления покажутся непонятными.

Почему, например, медицинские банки втягивают кожу человека. Почему, если мы наполним водой стакан с хорошо пришлифованными краями точно по эти края и накроем его бумажкой, а затем быстро перевернем стакан, то вода из стакана не выльется? Почему действует насос, перекачивающий воду снизу вверх?

Все эти явления казались долгое время необъяснимыми, но насос же и позволил открыть истину.

В поисках объяснения обратились к знаменитому ученому Галилею, тогда 80-летнему старцу. До нас дошли два варианта дальнейших событий. По первому из них Галилей будто бы смутился и не знал, что ответить. По второму варианту Галилей взвесил «пустую» бутылку, затем сильно разогрел ее, закрыл пробкой и, охладив, взвесил вторично. Оказалось, что на этот раз бутылка весила меньше.Сохранились сведения, что в XVII веке в саду герцога Тосканско во Флоренции построили насос, чтобы перекачивать воду для фонтана на высоту больше 10 метров, но это никак не удавалось. Насос был сделан так же хорошо, как и все другие, прекрасно работавшие, и поэтому неудача с ним казалась совершенно непонятной.

Галилей правильно объяснил уменьшение веса бутылки, указав, что при нагревании воздух расширился и был вытеснен из бутылки в атмосферу. Следовательно, в бутылке его оказалось меньше, поэтому и вес бутылки во второй раз стал меньшим. Таким образом Галилеи установил, что воздух имеет вес, но весит он меньше воды, и новый насос, больший, чем предшествовавшие, не работал только потому, что вес наружного воздуха не уравновешивал слишком высокого столба воды.

Несомненно, правильнее второй вариант дошедшего до нас рассказа, так как известно, что Галилей уже раньше делал подобные расчеты. Он объяснил силу, уравновешивающую давление воздуха «силой пустоты» В те времена существовало мнение, что природа «боится пустоты», и как только где-либо пустота образуется, природа ее тотчас заполняет. Но при этом оставалось необъяснимым то, что эта «боязнь пустоты» прекращалась выше 10 метров. Следовательно, загадка так и не была разрешена полностью.

Ученик Галилея, Торричелли продолжал исследование вопроса и произвел ряд опытов, которые позволили ему надежно доказать, что воздух имеет вес, и привели его в 1643 году к изобретению прибора, известного нам теперь под названием барометра . Торричелли наполнил ртутью закрытую с одного конца стеклянную трубку длиной 100 сантиметров и погрузил ее открытым концом в сосуд с ртутью. При этом ртуть из трубки вся не вылилась, но, немного опустившись, остановилась на уровне около 76 сантиметров; Торричелли сделал совершенно правильный вывод, что ртуть поддерживается в трубке весом наружного воздуха.

Давление воздуха на поверхность ртути в чашке уравновешивается давлением ртутного столба.

В течение нескольких лет выводы Торричелли не были подтверждены. Наконец, в 1647 году французский ученый Паскаль задумал окончательно выяснить этот вопрос. Он обратился к своему родственнику Перье, жившему в городе Клермон, у подножья горы Пью-де-Дом, с просьбой проделать необходимые наблюдения. Просьба Паскаля была выполнена 19 сентября 1648 года, и с этой даты то, что воздух имеет вес, перестало вызывать сомнения.

Перье поступил так. Он заготовил две одинаковые трубки Торричелли и, измерив высоту ртутного столба в трубках у подножья горы, оставил одну из них на месте, а с другой поднялся на вершину. На высоте 975 метров он опять измерил высоту ртути в трубке. Оказалось, что на вершине она была на 8 миллиметров ниже, чем у подножья горы.

Изумленный полученным результатом, Перье много раз проверял свои измерения и, только окончательно убедившись в их правильности, спустился вниз. В находившейся внизу трубке ртуть осталась на прежнем уровне. На том же уровне она остановилась и в принесенной сверху трубке.

Таким образом, было окончательно доказано, что воздух имеет вес и поэтому в нижних слоях он давит с большей силой, чем вверху, где над головой наблюдателя остается меньшее его количество. Воздух давит на поверхность Земли с такой же силой, с какой давил бы слой воды толщиной в 10,3 метра. Вот почему насос герцога Тосканского, поднятый над уровнем воды выше 10 метров, не работал. Ртуть в 13,6 раза тяжелее воды. Поэтому она устанавливалась в трубке Торричелли на высоте около 76 сантиметров (76х13,6=1033,6 сантиметра). Давлением воздуха объясняется и действие медицинской банки, а также и то, что вода из перевернутого, но закрытого бумажкой стакана не выливается.

Мы не замечаем этого большого веса воздуха, так как человеческий организм приспособился к нему и чувствует себя нормально именно в этих условиях. Все внутренние органы человека наполнены воздухом, имеющим такое же давление, как и давление атмосферы у поверхности Земли вне нашего организма; это внутреннее давление уравновешивает внешнее. Поднимаясь высоко в горы или на самолете, человек сильно ощущает уменьшение с высотой давления воздуха (рис. 2) и переносит происходящее при этом его понижение только до известного предела, после которого наступает ощущение удушья или даже смерть.

Рыбы, живущие в океане на больших глубинах, приспособились к еще большему давлению, слагающемуся из веса атмосферы и веса огромной массы воды. Выловленные на больших глубинах и поднятые на поверхность моря, рыбы гибнут: их разрывает внутреннее давление, не уравновешиваемое внешним.

Почему же мы не ощущаем веса воздуха, когда поднимаем наполненное воздухом ведро? Да потому, что мы взвешиваем его в самом же воздухе. Подобно этому, опустив ведро в колодец и наполнив его водой, мы не ощущаем веса воды в ведре. Но достаточно приподнять ведро из воды в воздух, как сразу почувствуется его тяжесть.

Один кубический метр воздуха весит 1,3 килограмма, а вся атмосфера, окружающая земной шар, - 5 300 000 000 000 000 тонн. Как видим, воздух весит очень и очень много. Вес 1 кубического метра воздуха, равный 1,3 килограмма, мы получаем тогда, когда взвешиваем воздух на уровне моря и при температуре 0°. Чем выше от поверхности Земли, тем плотность воздуха становится меньшей и вес 1 его кубического метра уменьшается. Так, на высоте 12 километров 1 кубический метр воздуха весит 319 граммов, то есть в четыре раза меньше, чем внизу; на высоте 25 километров - 43 грамма, а на высоте 40 километров - только 4 грамма (рис. 3). Увеличение плотности воздуха книзу и разрежение его вверху обусловливаются земным притяжением. Но как бы ни был разрежен воздух, он, как газ, заполняет все предоставленное ему пространство и, следовательно, распространяется далеко вверх от поверхности Земли.

До каких же высот простирается земная атмосфера? И можно ли вообще установить ее границу или же плотность воздуха постепенно сходит на нет?

Правильно второе предположение, но тем не менее теоретически мы можем установить границы воздушного океана. Это сделать нетрудно, так как мы знаем вес всей атмосферы, лежащей над нашей головой, и можем вычислить вес кубического метра воздуха на любой высоте.

Если бы воздух на всех высотах имел ту же плотность, что и у поверхности Земли, то средняя высота воздушной оболочки, окружающей земной шар, была бы близка к 8 километрам. Но плотность воздуха с высотой быстро уменьшается, и поэтому высота атмосферы должна быть во много сотен раз больше.

Еще М. В. Ломоносов разбирал вопрос о высоте земной атмосферы. Рассуждал он так. Воздух состоит из бесчисленного количества мельчайших частиц - молекул. Молекулы газа находятся в непрерывном движении, несутся вверх, вниз, в стороны. Внизу, где воздух плотен и число молекул огромно, они непрестанно сталкиваются между собою и как бы «толкутся» на месте. Чем выше, тем меньше молекул в одном и том же объеме воздуха, и путь, который они пролетают от одного столкновения с соседней молекулой до другого, - длиннее. Расположенные на больших высотах молекулы воздуха при этом часто летят вниз, к Земле; они падают под влиянием силы тяжести, как и все другие тела. Падение продолжается до столкновения с молекулами, расположенными ниже, в более плотных слоях. Оттолкнувшись от них, падавшая молекула снова летит вверх. Такое движение - вверх и вниз - все молекулы проделывают бесчисленное количество раз. Но вверх молекула движется только до известного уровня. Этот уровень определяется силой земного притяжения, вследствие которого все тела падают на Землю, движутся по ее поверхности и не уносятся от нее в мировое пространство. Выскакивают за этот уровень и уходят из атмосферы только те молекулы которые на большой высоте получили от столкновения с соседней молекулой толчок такой силы, которая превышает силу земного притяжения на этой высоте.

Более поздние исследования подтвердили правильность рассуждений М В. Ломоносова и показали, что такая теоретическая граница земной атмосферы лежит над полюсом на высоте 28 тысяч километров, над экватором на высоте 42 тысячи километров, то есть более чем в четыре и в семь раз превышает земной радиус.

Нас, земных жителей, в первую очередь интересует высота тех слоев атмосферы, которые имеют еще измеримую плотность и где совершаются те метеорологические и физические явления, которые мы имеем возможность наблюдать и с которыми мы должны считаться.

С такой точки зрения высота земной атмосферы определится слоем толщиной в 800-1000 километров.

Перье измерял давление атмосферы высотой столбика ртути в трубке Торричелли, определяя длину его в миллиметрах. Такой способ измерения сохранился и поныне. Современные ртутные барометры в принципе ничем не отличаются от трубки Торричелли. Они только совершеннее технически, что позволяет производить отсчеты очень точно, улавливая самые незначительные (до 1/10 миллиметра) изменения высоты ртутного столба.

Как мы уже знаем, на уровне моря атмосферное давление в среднем соответствует давлению ртутного столба высотой в 760 миллиметров. Но эта величина не остается постоянной. В разных местах в разное время года и при разной погоде она меняется в широких пределах Крайние отмеченные до сих пор значения давления составляют 680 и 802 миллиметра.

Изменение давления воздуха играет значительную роль в явлениях погоды. Но эта роль все же не решающая. Поэтому и предсказывать «погоду, используя измерение только одного давления, нельзя. Стало быть, не следует придавать большого значения надписям, имеющимся на некоторых металлических барометрах-анероидах: «буря», «дождь» или «сухо». Мы легко согласимся с этим, если вспомним описанный выше опыт Перье: барометр меняет свои показания не только от состояния погоды, но и от высоты, на которой он сейчас находится. Это его свойство широко используется в авиации, где по показаниям такого же барометра-анероида (альтиметра ) определяют высоту самолета.

Для облегчения отсчетов на шкале альтиметра показана не величина давления, а соответствующая высота.

Для ряда теоретических вычислений значительно удобнее величину давления воздуха выражать не длиной ртутного столба, следовательно, не в миллиметрах, а в единицах давления. В качестве такой единицы принят «бар», равный давлению миллиона дин 2 на 1 квадратный сантиметр, что соответствует давлению ртутного столба длиной 750,1 миллиметра. В практике применяется одна тысячная часть бара - миллибар. Давление ртутного столба длиной в 1 миллиметр равно 1,333 миллибарам. Соответственно этому 1 миллибар приблизительно равен 0,75 миллиметра ртутного столба. В настоящее время в метеорологии почти повсеместно применяют миллибары, но так как шкалы большинства барометров сделаны в миллиметрах, то отсчет величины давления с помощью специальных таблиц переводится затем в миллибары.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .