Нечеткая логика — математические основы. Теория нечетких множеств

Аннотация: В лекции представлены методы моделирования экономических задач с использованием нечетких множеств в среде Mathcad. Введены основные понятия теории нечетких множеств. На примерах показаны операции над множествами, расчет свойств. Рассмотрены оригинальные задачи, в которых применен нечетко-множественный подход в процессе принятия решения. Техника моделирования реализована с помощью матриц программы Mathcad.

Цель лекции. Познакомить с нечеткими множествами. Научить ставить задачу для построения нечетко-множественной модели. Показать, как строить нечеткие множества и производить действия над ними в Mathcad. Представить методы решения нечетко-множественной модели в процессе решения задач.

6.1 Нечетко-множественное моделирование

При моделировании широкого класса реальных объектов возникают необходимость принимать решения в условиях неполной нечеткой информации. Современным перспективным направлением моделирования различного вида неопределенностей является теория нечетких множеств. В рамках теории нечетких множеств разработаны методы формализации и моделирования рассуждений человека, таких понятий как "более или менее высокий уровень инфляции", "устойчивое положение на рынке", "более ценный" и т.д.

Впервые понятие нечетких множеств предложил американский ученый Л.А.Заде (1965 г). Его идеи послужили развитию нечеткой логики. В отличие от стандартной логики с двумя бинарными состояниями (1/0, Да/Нет, Истина/Ложь), нечеткая логика позволяет определять промежуточные значения между стандартными оценками. Примерами таких оценок являются: "скорее да, чем нет", "наверное да", "немного вправо", "резко влево" в отличие от стандартных: "вправо" или "влево", "да". В теории нечетких множеств введены нечеткие числа как нечеткие подмножества специализированного вида, соответствующих высказываниям типа " значение переменной примерно равно а". В качестве примера рассмотрим треугольное нечеткое число , где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значение фактора. Треугольные числа – это самый часто используемый на практике тип нечетких чисел, причем, чаще всего их используют в качестве прогнозных значений параметра. Например, ожидаемое значение инфляции на следующий год. Пусть наиболее вероятное значение – 10%, минимально возможное – 5%, а максимально возможное – 20%, тогда все эти значения могут быть сведены к виду нечеткого подмножества или нечеткого числа A: А: (5, 10, 20)

С введением нечетких чисел оказалось возможным прогнозировать будущие значения параметров, которые меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраическим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности). Применение нечетких чисел позволяет задавать расчетный коридор значений прогнозируемых параметров. Тогда ожидаемый эффект оценивается экспертом также как нечеткое число со своим расчетным разбросом (степенью нечеткости).

Нечеткая логика , как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

6.2 Основные понятия теории нечетких множеств

Множество - неопределяемое понятие математики. Георг Кантор (1845 – 1918) – немецкий математик, чьи работы лежат в основе современной теории множеств, дает такое понятие: "…множество - это многое, мыслимое как единое".

Множество, включающее в себя все объекты, рассматриваемые в задаче, называют универсальным множеством. Универсальное множество принято обозначать буквой . Универсальное множество является максимальным множеством в том смысле, что все объекты являются его элементами, т.е. утверждение в рамках задачи всегда истинно. Минимальным множеством является пустое множество – , которое не содержит ни одного элемента. Все остальные множества в рассматриваемой задаче являются подмножествами множества . Напомним, что множество называют подмножеством множества , если все элементы являются также элементами . Задание множества - это правило, позволяющее относительно любого элемента универсального множества однозначно установить, принадлежит множеству или не принадлежит. Другими словами, это правило, позволяющее определить, какое из двух высказываний, или , является истинным, а какое ложным. Одним из способов задания множеств является задание с помощью характеристической функции.

Характеристической функцией множества называют функцию , заданную на универсальном множестве и принимающую значение единица на тех элементах множества , которые принадлежат , и значение нуль на тех элементах, которые не принадлежат :

(6.1)

В качестве примера рассмотрим универсальное множество и два его подмножества: - множество чисел, меньших 7, и - множество чисел, немного меньших 7. Характеристическая функция множества имеет вид

(6.2)

Множество в данном примере является обычным множеством.

Записать характеристическую функцию множества , используя лишь 0 и 1, невозможно. Например, включать ли в числа 1 и 2? "намного" или "ненамного" число 3 меньше 7? Ответы на эти и подобные им вопросы могут быть получены в зависимости от условий задачи, в которой используются множества и , а также от субъективного взгляда того, кто решает эту задачу. Множество называется нечетким множеством. При составлении характеристической функции нечеткого множества решающий задачу (эксперт) может высказать свое мнение относительно того, в какой степени каждое из чисел множества принадлежит множеству . В качестве степени принадлежности можно выбрать любое число с отрезка . При этом означает полную уверенность эксперта в том, что - столь же полную уверенность, что говорит о том, что эксперт затрудняется в ответе на вопрос, принадлежит ли множеству или не принадлежит. Если , то эксперт склонен отнести к множеству , если же , то не склонен.

Функцией принадлежности нечеткого множества называют функцию , которая

Такую функцию называют функцией принадлежности нечеткому множеству . - Максимальное значение функции принадлежности , присутствующее в множестве - верхняя грань - называется супремум. Функция принадлежности отражает субъективный взгляд специалиста на задачу, вносит индивидуальность в ее решение.

Характеристическую функцию обычного множества можно рассматривать как функцию принадлежности этому множеству, но в отличие от нечеткого множества , принимает лишь два значения: 0 или 1.

Нечетким множеством называют пару , где - универсальное множество , - функция принадлежности нечеткого множества .

Несущим множеством или носителем нечеткого множества называют подмножество множества , состоящее из элементов, на которых .

Точкой перехода нечеткого множества называют элемент множества , на котором .

В рассматриваемом примере, где , - множество чисел, меньших 7, - множество чисел, немного меньших 7, субъективно выбираем значения для множества , которые будут составлять функцию принадлежности . В таблице 6.1 представлены функции принадлежности и для и .

Таблица 6.1.
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 0 0 0 0
0 0 0,5 0,6 0,8 0,9 0 0 0 0

Часто используется более компактная запись конечных или счетных нечетких множеств. Так, вместо приведенного выше табличного представления подмножеств и , эти подмножества можно записать следующим образом.

Здравствуйте, граждане и гражданочки. По велению левой пятки решил начать цикл научно-популярных статей, где буду объяснять азы искусственного интеллекта. Поэтому в дальнейшем буду примерять на себя роль приезжего лектора, рассказывающего о том, как космические корабли бороздят просторы Большого театра.

Выдавать на гора одну статью в день не смогу, поэтому не буду ничего обещать, дабы не стеснять себя данными обязательствами. Единственное: не стану мучить окружающих обилием математики, постараюсь изложить все как можно более доступно, но без профанации. Начну же цикл с аппарата нечеткой логики, где объясню, в чем же интеллектуальность оного.

Для начала краткий экскурс в теорию множеств. Множество – это совокупность нескольких объектов, обладающих определенным свойством. Например, множество всех людей, находящихся на нашей планете. Множество автомобилей марки «Ауди» с цветовыми координатами RGB (255, 165, 0). Множество всех самцов какаду, сидящих на ветке на одной лапе ровно в 15 часов 39 минут по Гринвичу. Суть четких множеств заключается в абсолютной их категоричности. То есть, для того, чтобы определить, принадлежит ли объект какому-то множеству, нужно ответить на вопрос, обладает ли он свойством, определяющим это множество. Да/Нет. Ни больше, ни меньше. Единица больше нуля? Да. Значит, она принадлежит к множеству положительных чисел.

Перейдем ближе к телу, к теории нечетких множеств. Создана она была американским ученым азербайджанского происхождения Лотфи Заде, для того, чтобы адаптировать теорию множеств к способу человеческого мышления. Ведь как человечишко мыслит? Если, будучи на пляже, спросить купающегося: «Скажи, мил человек, какую температуру имеет вода по шкале Фаренгейта, с точностью до десятых долей градуса?», - он посмотрит на вас, как на душевно больного. А если задать вопрос: «Как водичка сегодня?», он сообщит: «Холодная/горячая/теплая», или буркнет «мокрая», если сегодня не в духе. Весь цимес в том, что «холодная вода» - это достаточно размытая формулировка. Один будет в блаженстве нежиться там, откуда второй сбежит на берег греться через две минуты. Так уж устроен человек, субъективизм и отсутствие четких границ – это про нас.

Некоторые уже смогли сообразить, почему именно нечеткие множества. Крайне трудно определить, сколько людей обладает свойством «высокий». Для меня, двухметрового красавца, косой сажени в плечах, высокий – это как минимум не ниже уровня моего уха. А коротышка полутора метров будет смотреть на человека ростом 170 см задрав голову – для него высокий рост начинается гораздо раньше. Это что касается субъективизма.

Вторая сложность заключается в размытости границ. Возможно ли точно задать то количество сантиметров, которое отделит человека среднего роста от низкого? 170 с половиной? 172 и три четверти? Разделение очень и очень условно. Итак, мы вплотную подошли к отличию нечетких множеств от четких.

Барабанная дробь, мхатовская пауза… Итак, нечеткие множества отличаются от четких тем, что объекты, принадлежащие нечетким множествам, могут обладать определяющим их свойством в разной степени. Условились считать эту степень принадлежности лежащей в интервале от нуля до единицы, но если кому-то удобнее, то он может умножить на 100, и будут вам проценты.

Допустим, пьете вы обжигающий кофе, чашка дымится. С уверенностью 0,99 (99 процентов – первый и последний раз делаю работу за вас) можно утверждать, что кофе обладает свойством «горячий». Если же он (кофе, в смысле) имеет температуру 50 градусов по Цельсию, то степень обладания свойством «горячий» будет гораздо ниже, скажем, 0,76 (теперь считайте сами). В то же время, есть объекты, которые принадлежат множеству «горячий» с нулевой или единичной степенью. Например, полузамерзший кофе сможет назвать горячим лишь помешанный, либо не знающий русского языка, а кипящий – это горячий сто пудов. Примеров можно привести нескончаемое количество, благо, что практически любая человеческая категория, которая используется в повседневной жизни, является нечеткой. Полагаясь на ваше богатое воображение, оставляю задачу нахождения других примеров для самостоятельного решения.

Почему же создание подобной теории было так важно, почему на нее обратили столь пристальное внимание? Ответ прост: тут скрыто золотое дно. Колоссальная широта применения. Допустим, вы инженер, и перед вами стоит задача спроектировать микроволновку. До какой температуры человек будет разогревать еду? До 40,2°С? Хрен там. До горячей, что есть нечеткое множество. А задача микроволновки – придать хавчику такую температуру, которая с единичной степенью достоверности принадлежала бы к множеству «горячо».

Дальше начинается самое веселое, прогульщики уроков математики могут с воем разбегаться в стороны. А? Что? Я обещал обойтись без этого? Как говорил старина Арни в известном фильме – «Я солгал». Степень принадлежности как правило обозначается греческой буквой «мю» - μ. Чтобы не скучать, введем понятие лингвистической переменной – это такая переменная, которая может принимать значение в виде слов человеческого языка. То есть, лингвистическая переменная «рост» может принимать значения: «высокий», «средний», «низкий». Значения лингвистической переменной будем называть терм-множествами, обращаю внимание – они являются нечеткими. И, наконец, существует понятие универсального множества – обычное, четкое множество, содержащее все значения, которые может принимать обычная переменная. Обычная переменная «рост человека» может принимать значения от нуля до «сколько там рекорд Гиннеса, я не помню».

Задача функции принадлежности (ФП) – определить, с какой степенью обычная переменная принадлежит значению лингвистической переменной. Раз уж я начал педалировать тему роста, разовью: ФП определяет, с какой степенью человек ростом 184 см принадлежит терм-множеству «средний». Итак, подобьем бабки. У нас имеется лингвистическая переменная. У нас есть несколько ее значений, каждое из которых является нечетким множеством. Наконец, у нас есть универсальное множество – множество числовых значений обычной переменной. Перед нами стоит следующая цель: определить для каждого из нечетких множеств свою функцию принадлежности, т.е. для каждого из элементов универсального множества задать степень принадлежности соответствующему нечеткому множеству. Тогда мы сможем ткнуть на конкретное значение переменной и посмотреть, с какой степень оно принадлежит к какому-либо нечеткому множеству. Все, гроза прошла, можно утереть пот и ненадолго расслабиться. Дальше пойдут веселые картинки, после чего ненадолго продолжим развлекаться. На картинках я проиллюстрирую смысл функции принадлежности, покажу, каких видов бывают эти звери, с чем их едят, и объясню, как этих зверей строить. Вернемся к полюбившейся вам теме роста человека. Возьмем для примера множество «средний» ипостроим график функции принадлежности.

Теперь можно, вооружившись остро заточенным карандашом, выбрать любое значение «икс» и посмотреть, с какой степенью этот икс удовлетворяет условию среднего роста. То, что метр восемьдесят – это железно. Метр семьдесят два – со степенью 0,5. Рост метр пятьдесят средним ну никак не является, поэтому степень принадлежности равна нулю. И так далее. Отметим, что приведенная функция называется треугольной. В это поверить трудно, и тем не менее.

Но мы взяли готовую функцию, которую нам кто-то (кто-то!) любезно предоставил. Как же самим построить аналогичную функцию? Есть два способа: простой и с заморочками. По понятным причинам опишу лишь простой. Для начала, нужно собрать группу экспертов. Ну, то есть, тех бездельников, которые считают, что во всем разбираются и знают, как на самом деле устроен мир. Дать каждому эксперту по карандашу и блокноту. Потом перечислить значения переменной и попросить поставить «1» (палочку, крестик – опционально) напротив этого значения, если эксперт считает, что значение переменной принадлежит нечеткому множеству. Ноль – в противном случае. После чего для каждого значения переменной просуммировать нули и единицы и взять среднее - то бишь, разделить получившуюся сумму на количество бездельников. Получившееся значение будет лежать в интервале от нуля до единицы (оба значеия - включительно). Некоторые могли догадаться, что мы получили значение функции принадлежности для конкретного значения переменной. Получив величины ФП для всех значений переменной икс, можно строить график. Или не строить, если лень.

Математическая теория нечетких множеств, созданная в 60-е гг. для решения узкой утилитарной задачи распознавания образов, в настоящее время имеет приложения в самых различных областях научной и хозяйственной деятельности - от работ по созданию искусственного интеллекта в ЭВМ пятого поколения до управления сложными технологическими процессами.
В основе данной теории лежат понятия нечеткого множества и функции принадлежности, определение которых приводятся ниже.

Пусть Е - множество, счетное или нет, их: - элемент Е. Тогда нечеткое подмножество А множества Е определяется как множество упорядоченных пар {(х, ц~А(х))}, Ух є Е, где ц-А(х) - характеристическая функция принадлежности, принимающая свои значения во вполне упорядоченном множестве М, указывающая степень принадлежности элемента х подмножеству А. Множество М называется множеством принадлежностей.
Применение теории нечетких множеств в экономике проиллюстрируем на примере вычисления перспективного ассортимента оптового предприятия в одном товарном профиле при фиксированной торговой зоне. Под перспективным ассортиментом в данном случае понимается набор товаров, которые заведомо будут иметь спрос среди потребителей - в данном случае розничных торговых предприятий, входящих в район эффективной коммерческой деятельности оптовой организации. Нахождение перспективного ассортимента гарантирует оптовой организации формирование ассортиментного ядра, которое будет реализовано на рынке с минимальным риском, а также помогает отразить общие тенденции того потребительского рынка, на котором организация оптовой торговли осуществляет свою коммерческую деятельность.
Успешное решение задачи нахождения перспективного ассортимента позволяет принять решение о заключении сделки при анализе поступающего коммерческого предложения.
Дано:
X = \хг х2,..., хп} - множество товаров, имеющихся на складе оптового торгового предприятия или выдвигаемых в качестве коммерческих предложений.
У = {уг у2,..., ур} - множество признаков товаров.
Z = {zr z2,., zm} - множество рассматриваемых розничных торговых предприятий - потребителей оптовой организации.
Требуется определить перспективный ассортимент организации оптовой торговли, т.е. набор х; для удовлетворения предполагаемых запросов из Z.
Модель строится при следующих допущениях:

  1. на рынке действуют поставщик и потребители - соответственно оптовая и розничные торговые организации;
  2. коммерческие запросы от розничных торговых организаций zt, z2,..., zm рассматриваются и по возможности удовлетворяются независимо от времени их поступления.
  3. сделки между оптовой и розничными торговыми организациями имеют различный порядок, который определяется весовой функцией розничных организаций с помощью экс
    пертной оценки по итогам предыдущей коммерческой деятельности;
  4. товары хр х2,...,хп характеризуютсяр признаками;
  5. степени принадлежности признаков уг у2,...,ур товарам варьируются между отдельными товарами хр х2,..., хп;
  6. один товар предпочитается другому всякий раз, когда его признаки v. по степени важности более близки к оценке потребителя z. (розничного предприятия).
Пусть л х Y -gt; - функция принадлежности нечеткого бинарного отношения R, определяемая с помощью эксперта.
Отношение R представляется в матричной форме следующим образом:
.У, У2 " * * Ур ¦
  1. %r(xi’ У і)^r(xpУ2) ^r(xi" Ур)
Х2 ?r(X2gt; У/) ?r(X2’ У2) " ‘ ^r(X2’ Ур)
*„1,іж(\’Уі) у2-gt; fAV .
В этой матрице элементы каждой строки выражают относительные степени принадлежности признаков определенным товарам. Чем выше значения, тем более важен признак.
Пусть fs:7xZ-gt; - функция принадлежности нечеткого бинарного отношения S. Для всех у є Y и всех zeZ ф5(у, z) равна степени совместимости розничного торгового предприятия z с признаком у. Чем выше значения функции, тем более данный признак совместим с конкретным предприятием розничной торговли.
В матричной форме это отношение имеет вид:
Значение матрицы S отражают относительные степени важности признаков Yt при принятии предприятием решения
о закупке партии какого-либо товара у рассматриваемого нами оптовика.

Z, ... Z
2 п
Из матриц R и S получаем матрицу Т:
элементы которой определяются функцией принадлежности
? ІR(X, У) -ф(У,Z,)
Рл/Хgt; zi) =¦
, для всех хе X, ye Y, zi Z.
Сумма 2, фв(х, у) равна степени нечеткого подмножества,
У
указывающей число важнейших признаков у, которое присуще товару д: с точки зрения предприятия розничной торговли. Далее строится матрица:
^A,(xl’zl) Л 1*А7(Х1- z2gt; - Iі Л /*/¦ zm-l) Л Мл (xl’zm)\
‘ * m-і т
I
\!lAt(xn‘Zl)^ltA7(xn-z2) - ,(xn-zm-l) Л ЦА (хп- zm)\
" 1 * т-1 т "
где конъюнкция Л означает операцию попарного минимума. Порог разделения / ассортимента ограничивается условием /lt;шіп шах шіп (и.(х, г.), и,(х, z.J).
i.j X ЯІ ‘ Aj 3
После того как порог I выбран, можно для любого z определить уровневое множество:
М\ = {х\ц,(х)gt; тіптахтіп(ц (х, г),ц (х, z))},
I 1 Л,j х I 1 Л] J
YxeMr
Пусть oj(z) - весовая функция, задающая для каждого розничного торгового предприятия его вес по итогам предыдущей коммерческой деятельности.

Ассортимент предприятия оптовой торговли описывается объединением уровневых множеств:
м = U 0)(z)Mr
І
Вычисление перспективного ассортимента помогает оптовому торговому предприятию определить:
как оптимизировать товарный ассортимент (какие товары обязательно следует иметь на складе при сохранении сложившейся структуры потребителей);
как изменить ассортиментную концепцию при заданном изменении зоны обслуживания, т.е. какие стратегические действия предпринять в случае выхода из числа обслуживаемых потребителей отдельных розничных организаций;
как оптимизировать зону обслуживания (в нашем случае это район эффективной коммерческой деятельности) при исключении из ассортимента тех товаров, признаки которых не удовлетворяют оптовую организацию, или включении тех товаров, признаки которых устраивают ее).
В качестве иллюстрации к данной задаче рассмотрим упрощенный числовой пример.
Пусть оптовая организация имеет на складе 6 потребительских товаров {х„ х2,..., х6} и осуществляет поставки трем потребителям - Zj (крупный универмаг), z2 (небольшой магазин) и z3 (палатка).
В качестве рассматриваемых признаков товаров возьмем следующие:
yt - «цена», у3-«внешний вид»
у2-«качество», у4-«сезонность»,
у5-«ступень жизненного цикла товара».
Пусть: X х Y -gt; и ф5: Y х Z -gt; [О, 1] задаются следующими матрицами:


1

0,8

0,5

1

0,2


1

0,5

о

0,8

0,7

1

0,1

0,7


1

0,5

0

0,5

0,5 0,3

1

0,7

gt;

1

0,3

1

0,5

0,3

0,9

0,1

0,2

5 =

0

1

0.5

0,3

0,4 0,1

0

0


1

0

0,5

0,5 0,5

1

1

0,5/


,


і

а значения весовой функции равны:
co(Zj) = 30, ш(^) = 20, co(z,) = 15.

Характеристики товаров, стоящие в матрице R, указывают, например, что товар х, - дорогой, высококачественный, внешне неброский, соответствует сезону, но несколько устарел технически (или, наоборот, только поступает на рынок и еще неизвестен покупателям).
Характеристики магазинов, стоящие в матрице 5, указывают, например, что второй потребитель - магазин z2 - стеснен в складских помещениях и поэтому предпочитает торговать товарами, соответствующими данному сезону, что следует из значения функции ф$(у4, zJ.
Вычисляем матрицу Т:


/0,714

0,586

0,314

0,97

0,348

0,41

0,667

0,53

0,234

0,95

0,34

0,525

1

0,475

0,125

\ 0,714

0,514

0,5

Заранее отметим для внимательного читателя, что уже на этом этапе можно предположить, что товар х6, как следует из последней строки матрицы Т, по всей видимости, будет закуплен всеми тремя потребителями.
Попарными сведениями получаем матрицу W:

(0,586

0,314

0,314

0,348

0,41

0,348

0,53

0,234

0,234

0,34

0,525

0,34

0,475

0,125

0,125

№,514

0,5

0,5

На этом этапе вычислений учитывается конкуренция между потребителями-магазинами zr z2 и z}.
Далее находятся максимальные элементы в каждом из столбцов матрицы W:
maxmin(nAi(x, zl)tjiAJx, z2))= 0,586; maxmm(nA](x, zl),nAJx, z3)) =0,525; maxminfnAJx, г2),цА](х, z})) =0,5.

{ X, х2, х3, х4, х}, х6,} ,
{Хг х3, ху х6),
{х4,х6,},
Таким образом, широкие возможности крупного универмага zt позволяют ему торговать всем спектром продукции, предлагаемой оптом, магазин z2 в силу недостатка складских помещений, избегает приобретать товары, реализация которых потребует длительного срока, а палатка z3 берет только броские и относительно недорогие товары. Большой спрос на товар х6 не случаен, это действительно товар с блестящими характеристиками: он имеет невысокую цену при среднем качестве, великолепно выглядит, соответствует сезону и достаточно известен розничному покупателю.
Воспользовавшись значениями весовой функции, получаем значения ассортимента:
М = {50хр 30х2, 50х3, 45х4, 50х}, 105х6}
Результатами этой задачи легко воспользоваться при принятии решения о заключении сделки (при анализе поступающего коммерческого предложения).
Для этого следует, определив функцию принадлежности цредлагаемого товара хп +, провести счет согласно приведенному алгоритму, и определить, в какой степени этот товар принадлежит множеству товаров перспективного ассортимента, а если принадлежит, то не вытеснит ли он каких-либо товаров из набора хг,..., хп, уже находящихся на складе предприятия оптовой торговли.
На основании этой оценки лицо, ответственное за заключение сделки, может принять положительное, выжидательное или отрицательное решение.

К. Хирота (Институт государства и права)

Прошло более четверти века с тех пор, как Л. А. Заде из Калифорнийского университета предложил теорию нечетких множеств. Эта теория развивалась во многих направлениях, поэтому для восприятия всех ее идей потребуется довольно много времени. Однако чтобы применить ее в конкретной области, достаточно небольшого числа понятий. Ниже рассмотрены основные положения теории нечетких множеств с тем, чтобы ее быстро освоить в прикладной области. Прежде всего изучим теорию четких множеств и двузначную булеву логику. Затем на их основе перейдем к понятиям теории нечетких множеств и нечеткой логики. Кроме того, обратим внимание на нечеткие выводы, особенно важные с точки зрения применения этой теории, а также на нечеткие продукционные правила и нечеткие отношения.

2.1. ЧЕТКИЕ МНОЖЕСТВА

Английское слово fuzz, от которого образовано прилагательное fuzzy (нечеткий), означает «ворс» - специальный термин, определяющий свойство тканей. Когда мы смотрим на рисунок на ворсистой ткани, он кажется нам размытым, поэтому говоря «нечеткий», мы будем иметь в виду «неясный», «размытый». Нечетким множеством, например, мы назовем всех японских красавиц. Смысл этого определения нам понятен, но сказать, принадлежит ли этому множеству та или иная девушка однозначно, только с помощью слов «да» или «нет», нам трудно; таким образом, мы имеем дело с неопределенными, нестрогими свойствами объектов изучения.

В отличие от этого мир, свойства которого можно строго определить двумя словами, например «мужчина или женщина?», назовем четким миром. Следовательно, логику компьютеров, которые имеют дело с 0 и 1, будем называть

четкой логикой, а обычные множества - четкими множествами. Как расширение этих понятий можно рассматривать нечеткую логику и нечеткие множества. Для того чтобы подготовиться к пониманию этих понятий, прежде всего изучим теорию четких множеств.

К теории четких множеств в общем случае относятся аксиоматическая теория множеств и элементарная теория множеств. Первая - одна из фундаментальных теорий математики, она требует достаточно высокого уровня философского мышления. Однако здесь нам достаточно всего лишь расширить понятие множества, изучаемого еще в школе, до понятий элементарной теории множеств. Кроме того, для понимания теории нечетких множеств нам необходимо понятие характеристической функции.

Сначала объясним несколько основных терминов и обозначений. Прописными буквами (например, X) будем обозначать совокупность объектов, с которыми мы будем иметь дело, а строчными буквами (например, х) - отдельные структурные элементы. При этом введем обозначение

Фигурные скобки означают совокупность объектов. Саму совокупность (здесь X) назовем предметной областью, полным пространством или вспомогательным множеством. Последнее название особенно часто используется в области нечеткого управления. (Слово «вспомогательный» в математическом анализе и ряде других областей имеет несколько иной оттенок, поэтому обращаем на это внимание.) Отдельные структурные элементы назовем просто элементами или объектами. Тот факт, что х является элементом X, обозначим следующим образом:

В полном пространстве X определим множество (четкое множество). В качестве названий (меток) множеств будем использовать прописные буквы А, В, С. Например, пусть полное множество состоит из десяти цифр

тогда множество четных цифр A - это множество

При этом число структурных элементов назовем мощностью множества или кардинальным числом; введем для него обозначение . В указанных выше примерах

В случае назовем синглетоном. Множество с конечным назовем конечным множеством, все элементы в таком множестве можно записать так, как в формулах (2.3) и (2.4), но, например в случае натуральных или вещественных чисел, т. е. бесконечных множеств, этого сделать нельзя. При этом часто используют способ записи, при котором справа от вертикальной черты записывают все свойства множества. Например формулу (2.4) можно записать в виде

Кроме того, для об означения понятия в виде рисунка часто используют диаграммы Венна (рис. 2.1).

Помимо указанных способов для определения понятий четкого множества существует способ определения с помощью характеристической функции. Характеристическая функция определяющая множество А в полном пространстве X, представляет собой отображение, для которого X есть область определения, а (двузначное множество из 0 и 1) есть область значений:

При этом если элемент удовлетворяет свойствам А, и 0, если не удовлетворяет. Следовательно, если отложить X на горизонтальной, а на вертикальной оси, то получим графической представление, показанное на рис. 2.2.

В полном пространстве X можно рассматривать различные множества, например А с некоторыми свойствами и В с другими свойствами. Объединение всех Таких множеств называется степенным множеством и обозначается Например, пусть

тогда степенное множество есть

Рис. 2.1. Представление множества с помощью диаграммы Вейна.

Рис. 2.2. Определение множества с помощью характеристической функции.

Здесь 0 - специальное множество, в котором нет элементов, оно называется пустым множеством. Его характеристическая функция

Здесь V называется квантором всеобщности, его можно читать словом «всех». (Кроме него есть квантор существования 3 в смысле «существует...».) Эти кванторы часто используются в логике и искусственном интеллекте. В отличие от пустого множества характеристическая функция полного множества X имеет вид

Кроме того, для мощности множества в общем случае справедливо утверждение

Это можно легко вывести из формул (2.8) и (2.9).

Теперь изучим некоторые операции над множествами (рис. 2.3). Прежде всего, отношение вложения множеств: если элементы А обязательно являются элементами В, то А называется подмножеством В (или В - надмножеством А), что обозначается как ( справедливо также при , если , но , то А называется собственным подмножеством В). Если определить А с: В через характеристическую функцию, то получим следующее неравенство:

Для отношения вложения множеств можно доказать

Рис. 2.3. Вложение (а), дополнение (б), произведение (в) и сумма множеств

справедливость трех свойств:

1) рефлексивность

2) антисимметричность

3) транзитивность

Можно сказать, что образует частично упорядоченное множество, или (Для отношения вложени» множеств обычно для произвольных А, В не всегда справед ливо А с В или В а А, поэтому наше множество не является линейно упорядоченным или полностью упорядоченным множеством.)

При помощи нечетких множеств можно формально определить неточные и многозначные понятия, такие как «высокая температура», «молодой человек», «средний рост» либо «большой город». Перед формулированием определения нечеткого множества необходимо задать так называемую область рассуждений (universe of discourse). В случае неоднозначного понятия «много денег» большой будет признаваться одна сумма, если мы ограничимся диапазоном и совсем другая - в диапазоне . Область рассуждений, называемая в дальнейшем пространством или множеством, будет чаще всего обозначаться символом . Необходимо помнить, что - четкое множество.

Определение 3.1

Нечетким множеством в некотором (непустом) пространстве , что обозначается как , называется множество пар

, (3.1)

Функция принадлежности нечеткого множества . Эта функция приписывает каждому элементу степень его принадлежности к нечеткому множеству , при этом можно выделить три случая:

1) означает полную принадлежность элемента к нечеткому множеству , т.е. ;

2) означает отсутствие принадлежности элемента к нечеткому множеству , т.е.;

3) означает частичную принадлежность элемента к нечеткому множеству .

В литературе применяется символьное описание нечетких множеств. Если - это пространство с конечным количеством элементов, т.е. , то нечеткое множество записывается в виде

Приведенная запись имеет символьный характер. Знак «–» не означает деления, а означает приписывание конкретным элементам степеней принадлежности . Другими словами, запись

означает пару

Точно также знак «+» в выражении (3.3) не означает операцию сложения, а интерпретируется как множественное суммирование элементов (3.5). Следует отметить, что подобным образом можно записывать и четкие множества. Например, множество школьных оценок можно символически представить как

, (3.6)

что равнозначно записи

Если - это пространство с бесконечным количеством элементов, то нечеткое множество символически записывается в виде

. (3.8)

Пример 3.1

Допустим, что - множество натуральных чисел. Определим понятие множества натуральных чисел, «близких числу 7». Это можно сделать определением следующего нечеткого множества :

Пример 3.2

Если , где - множество действительных чисел, то множество действительных чисел, «близких числу 7», можно определить функцией принадлежности вида

. (3.10)

Поэтому нечеткое множество действительных чисел, «близких числу 7», описывается выражением

. (3.11)

Замечание 3.1

Нечеткие множества натуральных или действительных чисел, «близких числу 7», можно записать различными способами. Например, функцию принадлежности (3.10) можно заменить выражением

(3.12)

На рис. 3.1а и 3.1б представлены две функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Рис. 3.1. Иллюстрация к примеру 3.2: функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Пример 3.3

Формализуем неточное определение «подходящая температура для купания в Балтийском море». Зададим область рассуждений в виде множества . Отдыхающий I, лучше всего чувствующий себя при температуре 21°, определил бы для себя нечеткое множество

Отдыхающий II, предпочитающий температуру 20°, предложил бы другое определение этого множества:

С помощью нечетких множеств и мы формализовали неточное определение понятия «подходящая температура для купания в Балтийском море». В некоторых приложениях используются стандартные формы функций принадлежности. Конкретизируем эти функции и рассмотрим их графические интерпретации.

1. Функция принадлежности класса (рис. 3.2) определяется как

(3.15)

где . Функция принадлежности, относящаяся к этому классу, имеет графическое представление (рис. 3.2), напоминающее букву «», причем ее форма зависит от подбора параметров , и . В точке функция принадлежности класса принимает значение, равное 0,5.

2. Функция принадлежности класса (рис. 3.3) определяется через функцию принадлежности класса :

(3.16)

Рис. 3.2. Функция принадлежности класса .

Рис. 3.3. Функция принадлежности класса .

Функция принадлежности класса принимает нулевые значения для и . В точках ее значение равно 0,5.

3. Функция принадлежности класса (рис. 3.4) задается выражением

(3.17)

Читатель с легкостью заметит аналогию между формами функций принадлежности классов и .

4. Функция принадлежности класса (рис. 3.5) определяется в виде

(3.18)

Рис. 3.4. Функция принадлежности класса .

Рис. 3.5. Функция принадлежности класса .

В некоторых приложениях функция принадлежности класса может быть альтернативной по отношению к функции класса .

5. Функция принадлежности класса (рис. 3.6) определяется выражением

(3.19)

Пример 3.4

Рассмотрим три неточных формулировки:

1) «малая скорость автомобиля»;

2) «средняя скорость автомобиля»;

3) «большая скорость автомобиля».

В качестве области рассуждений примем диапазон , где - это максимальная скорость. На рис. 3.7 представлены нечеткие множества , и , соответствующие приведенным формулировкам. Обратим внимание, что функция принадлежности множества имеет тип , множества - тип , а множества - тип . В фиксированной точке км/час функция принадлежности нечеткого множества «малая скорость автомобиля» принимает значение 0,5, т.е. . Такое же значение принимает функция принадлежности нечеткого множества «средняя скорость автомобиля», т.е. , тогда как .

Пример 3.5

На рис. 3.8 показана функция принадлежности нечеткого множества «большие деньги». Это функция класса , причем , , .

Рис. 3.6. Функция принадлежности класса .

Рис. 3.7. Иллюстрация к примеру 3.4: функции принадлежности нечетких множеств «малая» , «средняя» , «большая» скорость автомобиля.

Рис. 3.8. Иллюстрация к примеру 3.5: Функция принадлежности нечеткого множества «большие деньги».

Следовательно, суммы, превышающие 10000 руб, можно совершенно определенно считать «большими», поскольку значения функции принадлежности при этом становятся равными 1. Суммы, меньшие чем 1000 руб, не относятся к «большим», так как соответствующие им значения функции принадлежности равны 0. Конечно, такое определение нечеткого множества «большие деньги» имеет субъективный характер. Читатель может иметь собственное представление о неоднозначном понятии «большие деньги». Это представление будет отражаться иными значениями параметров и функции класса .

Определение 3.2

Множество элементов пространства , для которых , называется носителем нечеткого множества и обозначается (support). Формальная его запись имеет вид

. (3.20)

Определение 3.3

Высота нечеткого множества обозначается и определяется как

. (3.21)

Пример 3.6

Если и

, (3.22)

то .

, (3.23)

Определение 3.4

Нечеткое множество называется нормальным тогда и только тогда, когда . Если нечеткое множество не является нормальным, то его можно нормализовать при помощи преобразования

, (3.24)

где - высота этого множества.

Пример 3.7

Нечеткое множество

(3.25)

после нормализации принимает вид

. (3.26)

Определение 3.5

Нечеткое множество называется пустым и обозначается тогда и только тогда, когда для каждого .

Определение 3.6

Нечеткое множество содержится в нечетком множестве , что записывается как , тогда и только тогда, когда

(3.27)

для каждого .

Пример включения (содержания) нечеткого множества в нечетком множестве иллюстрируется на рис. 3.9. В литературе встречается также понятие степени включения нечетких множеств. Степень включения нечеткого множества в нечеткое множество на рис. 3.9 равна 1 (полное включение). Нечеткие множества, представленные на рис. 3.10, не удовлетворяют зависимости (3.27), следовательно, включение в смысле определения (3.6) отсутствует. Однако нечеткое множество содержится в нечетком множестве в степени

, (3.28)

, выполняется условие

Рис. 3.12. Нечеткое выпуклое множество.

Рис. 3.13. Нечеткое вогнутое множество.

Рис. 3.13 иллюстрирует нечеткое вогнутое множество. Легко проверить, что нечеткое множество является выпуклым (вогнутым) тогда и только тогда, когда являются выпуклыми (вогнутыми) все его -разрезы.