Распространение колебаний в среде. Волны. Продольные и поперечные волны. Образование и распространение волн в упругой среде

Cтраница 1


Процесс распространения колебаний в упругой среде называют звуковым.  

Процесс распространения колебаний в пространстве называется волной. Граница, отделяющая колеблющиеся частицы от частиц, еще не начавших колебаться, носят название фронта водны. Распространение волны в среде характеризуется скоростью, называемой скоростью ультразвуковой волны. Расстояние между ближайшими частицами, колеблющимися одинаковым образом (в одинаковой фазе), называется длиной волны. Число волн, проходящих через данную точку в 1 с, называется частотой ультразвука.  

Процесс распространения колебаний в упругой среде называется волновым движением, или упругой волной.  

Процесс распространения колебаний в пространстве с течением времени называют волной. Волны, распространяющиеся за счет упругих свойств среды, называют упругими. Упругие волны бывают поперечными и продольными.  

Процесс распространения колебаний в упругой среде называется волной. Если направление колебаний совпадает с направлением распространения волны, то такая волна называется продольной, например звуковая волна в воздухе. Если направление колебаний перпендикулярно направлению распространения волны, то такая волна называется поперечной.  

Процесс распространения колебаний в пространстве называется волновым процессом.  

Процесс распространения колебаний в пространстве называется волной.  

Процесс распространения колебаний в упругой среде называется волной. Если направление колебаний совпадает с направлением распространения волны, то такая волна называется продольной, например звуковая волна в воздухе. Если направление колебаний перпендикулярно направлению распространения волны, то такая волна называется поперечной.  

Процесс распространения колебаний частиц в упругой среде называется волновым процессом или просто волной.  

Процессы распространения колебания частиц жидкости или газа в трубе осложняются влиянием ее стенок. Косые отражения вдлн от стенок трубы создают условия для образования радиальных колебаний. Поставив задачу исследования аксиальных колебаний частиц жидкости или газа в узких трубах, мы должны учесть ряд условий, при которых можно пренебречь радиальными колебаниями.  

Волной называется процесс распространения колебаний в среде. Каждая частица среды при этом колеблется около положения равновесия.  

Волной называется процесс распространения колебаний.  

Рассмотренный нами процесс распространения колебаний в упругой среде является примером волновых движений, или, как обычно говорят, волн. Так, например, оказывается, что электромагнитные волны (см. § 3.1) могут распространяться не только в веществе, но и в вакууме. Таким же свойством обладают так называемые гравитационные волны (волны тяготения), с помощью которых передаются возмущения полей тяготения тел, обусловленные изменением масс этих тел или их положений в пространстве. Поэтому в физике волнами называют всякие распространяющиеся в пространстве возмущения состояния вещества или поля. Так, например, звуковые волны в газах или жидкостях представляют собой колебания давления, распространяющиеся в этих средах, а электромагнитные волны - распространяющиеся в пространстве колебания напряженностей Е и Н электромагнитного поля.  

Рассмотрим опыт, показанный на рисунке 69. Длинную пружину подвешивают на нитях. Ударяют рукой по её левому концу (рис. 69, а). От удара несколько витков пружины сближаются, возникает сила упругости, под действием которой эти витки начинают расходиться. Как маятник проходит в своём движении положение равновесия, так и витки, минуя положение равновесия, будут продолжать расходиться. В результате в этом же месте пружины образуется уже некоторое разрежение (рис. 69, б). При ритмичном воздействии витки на конце пружины будут периодически то сближаться, то отходить друг от друга, совершая колебания возле своего положения равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, как показано на рисунке 69, е.

Рис. 69. Возникновение волны в пружине

Другими словами, вдоль пружины от её левого конца к правому распространяется возмущение, т. е. изменение некоторых физических величин, характеризующих состояние среды. В данном случае это возмущение представляет собой изменение с течением времени силы упругости в пружине, ускорения и скорости движения колеблющихся витков, их смещения от положения равновесия.

  • Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называются волнами

В данном определении речь идёт о так называемых бегущих волнах. Основное свойство бегущих волн любой природы заключается в том, что они, распространяясь в пространстве, переносят энергию.

Так, например, колеблющиеся витки пружины обладают энергией. Взаимодействуя с соседними витками, они передают им часть своей энергии и вдоль пружины распространяется механическое возмущение (деформация), т. е. образуется бегущая волна.

Но при этом каждый виток пружины колеблется около своего положения равновесия, и вся пружина остаётся на первоначальном месте.

Таким образом, в бегущей волне происходит перенос энергии без переноса вещества .

В данной теме будем рассматривать только упругие бегущие волны, частным случаем которых является звук.

  • Упругие волны - это механические возмущения, распространяющиеся в упругой среде

Иначе говоря, образование упругих волн в среде обусловлено возникновением в ней упругих сил, вызванных деформацией. Например, если по какому-нибудь металлическому телу ударить молотком, то в нём возникнет упругая волна.

Помимо упругих существуют и другие виды волн, например электромагнитные волны (см. § 44). Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение имеет большое значение.

При возникновении волн в пружине колебания её витков происходили вдоль направления распространения волны в ней (см. рис. 69).

  • Волны, в которых колебания происходят вдоль направления их распространения, называются продольными волнами

Кроме продольных волн существуют и поперечные волны. Рассмотрим такой опыт. На рисунке 70, а показан длинный резиновый шнур, один конец которого закреплён. Другой конец приводят в колебательное движение в вертикальной плоскости (перпендикулярно горизонтально расположенному шнуру). Благодаря силам упругости, возникающим в шнуре, колебания будут распространяться вдоль шнура. В нём возникают волны (рис. 70, б), причём колебания частиц шнура происходят перпендикулярно направлению распространения волн.

Рис. 70. Возникновение волн в шнуре

  • Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными волнами

Движение частиц среды, в которой образуются как поперечные, так и продольные волны, можно наглядно продемонстрировать с помощью волновой машины (рис. 71). На рисунке 71, а показана поперечная волна, а на рисунке 71, б - продольная. Обе волны распространяются в горизонтальном направлении.

Рис. 71. Поперечная (а) и продольная (б) волны

На волновой машине представлен только один ряд шариков. Но, наблюдая за их движением, можно понять, как распространяются волны в сплошных средах, протяжённых во всех трёх направлениях (например, в некотором объёме твёрдого, жидкого или газообразного вещества).

Для этого представьте себе, что каждый шарик является частью вертикального слоя вещества, расположенного перпендикулярно к плоскости рисунка. Из рисунка 71, а видно, что при распространении поперечной волны эти слои, подобно шарикам, будут сдвигаться друг относительно друга, совершая колебания в вертикальном направлении. Поэтому поперечные механические волны являются волнами сдвига.

А продольные волны, как видно из рисунка 71, б, - это волны сжатия и разрежения. В этом случае деформация слоев среды состоит в изменении их плотности, так что продольные волны представляют собой чередующиеся уплотнения и разрежения.

Известно, что упругие силы при сдвиге слоев возникают только в твёрдых телах. В жидкостях и газах смежные слои свободно скользят друг по другу без появления противодействующих упругих сил. Раз нет упругих сил, то и образование упругих волн в жидкостях и газах невозможно. Поэтому поперечные волны могут распространяться только в твёрдых телах.

При сжатии и разрежении (т. е. при изменении объёма участков тела) упругие силы возникают как в твёрдых телах, так и в жидкостях и газах. Поэтому продольные волны могут распространяться в любой среде - твёрдой, жидкой и газообразной.

Вопросы

  1. Что называется волнами?
  2. В чём заключается основное свойство бегущих волн любой природы? Происходит ли в бегущей волне перенос вещества?
  3. Что такое упругие волны?
  4. Приведите пример волн, не относящихся к упругим.
  5. Какие волны называются продольными; поперечными? Приведите примеры.
  6. Какие волны - поперечные или продольные - являются волнами сдвига; волнами сжатия и разрежения?
  7. Почему поперечные волны не распространяются в жидких и газообразных средах?

Пусть колеблющееся тело находится в среде, все частицы которой связаны между собой. Соприкасающиеся с ним частицы среды придут в колебательное движение, в результате чего в прилегающих к этому телу участках среды возникают периодические деформации (например, сжатие и растяжение). При деформациях в среде появляются упругие силы, которые стремятся вернуть частицы среды в первоначальное состояние равновесия.

Таким образом, периодические деформации, которые появились в каком-нибудь месте упругой среды, будут распространяться с некоторой скоростью, зависящей от свойств среды. При этом частицы среды не вовлекаются волной в поступательное движение, а совершают колебательные движения около своих положений равновесия, от одних участков среды к другим передается только упругая деформация.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной . Иногда эту волну называют упругой, потому что она обусловлена упругими свойствами среды.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны. Интерактивная демонстрация поперечной и продольной волны









Продольная волна это волна, в которой частицы среды колеблются вдоль направления распространения волны.



Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.


Таким образом, про дольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины .
Демонстрация распространения продольной волны


Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.


Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами. На рисунке изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия. Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания ( t 2 = T 4 ) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А. Через половину периода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А, волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки. Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и гребня.

Демонстрация распространения поперечной волны

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при сжатии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние деформации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.


Тема: Распространение колебаний в среде. Волны.
Физика. 9 класс.
Цель: Познакомить учащихся с волновым движением, рассмотреть его особенности, механизм
распространения волн.
Задачи:
­
обучающие: углубление знаний о видах колебательного движения, использование связи физики
с литературой, историей, математикой; формирование понятий волновое движение,
механической волны, вида волн, распространение их в упругой среде;
развивающие: развитие умений сравнивать, систематизировать, анализировать, делать выводы;
воспитательные: воспитание коммуникативности.
­
­
Дидактический тип урока: Изучение нового материала.
Оборудование: Ноутбук, мультимедийный проектор, видеоролик – волны на пружине, презентация
PowerPoint

К уроку.
Ход урока:
I. Проверка знаний и умений.
1. Ответить на вопросы.
 Внимательно прочитайте словосочетания. Определите, возможны ли свободные колебания:
поплавка на поверхности воды; тела на канале, прорытом сквозь земной шар; птицы на ветке;
шарика на плоской поверхности; шарика в сферической ямке; рук и ног человека; спортсмена на
батуте; иглы в швейной машинке.
 Какой автомобиль, нагруженный или без груза, будет совершать на рессорах более частые
колебания?
 Существует два типа часов. В основе одних – колебания груза на стержне, других – груза на
пружине. Каким образом можно регулировать частоту хода каждых часов?
 При периодических порывах ветра раскачался и рухнул мост Tacoma Narrous в Америке.
Объясните почему?
2. Решение задач.
Учитель предлагает выполнить компетентностно ­ ориентированное задание, структура и содержание
которого представлена ниже.
Стимул: Оценить имеющиеся знания по теме «Механические колебания».
Задачная формулировка: В течение 5 минут, используя приведенный текст, определите частоту и
период сокращения сердца человека. Запишите данные, которые вы не сможете использовать при решении
задач.
Общая длина кровеносных капилляров в организме человека примерно 100 тыс. км, что в 2,5 раза
превышает длину экватора, а общая внутренняя площадь – 2400 м2. Кровеносные капилляры имеют
толщину в 10 раз меньшую, чем волос. В течение минуты сердце выбрасывает в аорту около 4 л
крови, которая затем перемещается во все точки организма. Сердце в среднем сокращается 100 тыс.
раз в сутки. За 70 лет жизни человека сердце сокращается 2 миллиарда 600 миллионов раз и
перекачивает 250 миллионов раз.
Бланк для выполнения задания:
1. Данные необходимые для определения периода и частоты сокращения сердца:
а) ___________; б) _________
Формула для вычисления: ______________
Вычисления _______________
=________; Т=_____________
ν
2. Излишние данные
а) ___________
б) ___________

в) ___________
г) ___________
Модельный ответ:
Данные необходимые для определения периода и частоты сокращения сердца:
а) Число сокращений N=100000; б) Время сокращений t=1 сут.
ν
c­1; T=1/1,16=0,864 c
Формула для вычисления: =ν N/t; T=1/ν
Вычисления =100000/(24*3600)=1,16
=1,16
c­1; Т=0,864 c.
ν
Или а) Число сокращений N=2600000000; б) Время сокращений t=70 лет. – Но эти данные
приводят к более сложным вычислениям, поэтому нерациональны.
Излишние данные
а) Общая длина кровеносных сосудов – 100 тыс. км
б) общая внутренняя площадь – 2400 м2
в) В течение минуты сердце выбрасывает в кровь около 4 л крови.
г) Толщина кровеносных сосудов в 10 раз меньше толщины волоса.
Поле модельных ответов
Выделены данные для определения частоты и периода сокращения сердца.
Приведены формулы для вычисления.
Выполнены вычисления, приведен правильный ответ.
Выделены из текста излишние данные.
Инструмент
оценки
ответа
1
1
1
1
II.
Объяснение нового материала.
Все частицы среды связаны между собой силами взаимного притяжения и отталкивания, т.е.
взаимодействуют друг с другом. Поэтому если хотя бы одну частицу вывести из положения равновесия
(заставить совершать колебания), то она потянет за собой рядом находящуюся частицу(благодаря
взаимодействию между частицами это движение начинает распространяться во все стороны). Таким
образом, колебания будут передаваться от одной частицы к другой. Такое движение называется волновым.
Механической волной (волновым движением) называется распространение колебаний в упругой
среде.
Колебания, распространяющиеся в пространстве со временем, называются волной.
или
В данном определении речь идет о так называемых бегущих волнах.
Основное общее свойство бегущих волн любой природы заключается в том, распространяясь в
пространстве, переносят энергию, но без переноса вещества.
В бегущей волне происходит перенос энергии без переноса вещества.
В данной теме мы будем рассматривать только упругие бегущие волны, частным случаем которых
является звук.
Упругие волны – это механические возмущения, распространяющиеся в упругой среде.
Иначе говоря, образование упругих волн в среде обусловлено возникновением в ней упругих сил,
вызванных деформацией.

Кроме упругих волн существуют и другие виды волн, например волны на поверхности жидкости,
электромагнитные волны.
Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение
имеет большое значение.
Волновое движение бывает двух видов: поперечное и продольное.
Поперечная волна – частицы колеблются (движутся) перпендикулярно (поперек) скорости
распространения волны.
Примеры: волна от брошенного камня…
Продольная волна – частицы колеблются (движутся) параллельно скорости распространения
волны.
Примеры: звуковые волны, цунами…
Механические волны
Шнур Пружина
поперечные
продольные
Поперечные волны.
Продольные волны.
Возникает упругая деформация сдвига.
Объем тела
не меняется.
Силы упругости стремятся вернуть тело в
исходное положение. Эти силы и вызывают
колебания среды.
Сдвиг слоев друг относительно друга в
жидкости и газе не приводит к появлению
сил упругости, следовательно возникают
только в твердых телах.
Возникают при деформации сжатия.
Силы упругости возникают в твердых
телах, жидкостях и газах. Эти силы
вызывают колебания отдельных участков
среды, поэтому распространяются во всех
средах.
В твердых телах скорость распространения
больше.
III.
Закрепление:
1. Интересные задачи.
а) В 1883г. При печально известном извержении индонезийского вулкана Кракатау воздушные ударные
волны, рожденные подземными взрывами, трижды обошли земной шар.
К какому виду волн можно отнести ударную волну? (К продольным волнам).
б) Цунами – грозный попутчик землетрясений. Родилось такое название в Японии и означает
гигантскую волну. Когда она накатывает на берег, создается впечатление, что это не волна вовсе, а
море, разъяренное, неукротимое, кидается на берег. Ничего нет удивительного в том, что цунами
производят на нем опустошения. Во время землетрясения 1960 г. На побережье Чили бросались

волны высотой до шести метров. Море отступало и наступало несколько раз в течение второй
половины дня.
К какому виду волн относятся цунами? Чему равна амплитуда цунами 1960 года, обрушившаяся на
Чили?(Цунами относятся к
волны равна 3 м).
(иллюстрация цунами:
продольным волнам. Амплитуда
http://ru.wikipedia.org/wiki/Изображение:2004_Indian_Ocean_earthquake_Maldives_tsunami_wave.jpg
в) Рифели – это знаки мелкой волновой ряби. Они существуют на земле со времен появления сыпучих
сред – снега и песка. Их отпечатки встречаются в древних геологических пластах (иногда вместе со
следами динозавров). Первые научные наблюдения над рифелями были сделаны Леонардо да Винчи. В
пустынях расстояние между соседними гребнями волновой ряби измеряется от 1­12 см (чаще 3­8см)
при глубине впадин между гребнями в среднем 0,3­1 см.
Предположив, что рифели – это волна, определите амплитуду волны (0,15­0,5 см).
Иллюстрация рифели:
http://rusnauka.narod.ru/lib/phisic/destroy/gl7/image246.gif
2. Физический опыт. Индивидуальная работа.
Учитель предлагает учащимся выполнить компетентностно – ориентированное задание, структура и
содержание которого представлена ниже
Стимул: оценить приобретенные знания по теме «Волновое движение».
Задачная формулировка: используя выданные приборы и знания, полученные на уроке,
определить:
­ какие волны образуются на поверхности волны;
­ какую форму имеет фронт волны от точечного источника;
­ перемещаются ли частицы волны в направлении распространения волны?
­ сделайте вывод об особенности волнового движения.

Оборудование: стакан от калориметра, пипетка или бюретка, стеклянная трубка, спичка.
Волны, образующиеся на поверхности воды, являются __________
Волны на поверхности воды имеют форму _________
Спичка, помещенная на поверхность воды при распространении волны, ___________
Бланк для выполнения задания
Особенность волнового движения _________________
Поле модельных ответов
Инструмент оценки
ответа
Волны, образующиеся на поверхности воды, являются поперечными.
Волны на поверхности воды имеют форму окружности.
Спичка, помещенная на поверхность воды при распространении волны, не
перемещается.
Особенность волнового движения – при волновом движении не происходит
смещения вещества вдоль направления распространения волны.
Всего
III.
Домашнее задание: §31, 32
1
1
1
2
5
http://school­collection.edu.ru/catalog/rubr/8f5d7210­86a6­11da­a72b­0800200c9a66/21674/

Представляем вашему вниманию видеоурок по теме «Распространение колебаний в упругой среде. Продольные и поперечные волны». На этом уроке мы будем изучать вопросы, связанные с распространением колебаний в упругой среде. Вы узнаете, что такое волна, как она появляется, чем она характеризуется. Изучим свойства и отличия продольных и поперечных волн.

Мы переходим к изучению вопросов, связанных с волнами. Поговорим о том, что такое волна, как она появляется и чем характеризуется. Оказывается, помимо просто колебательного процесса в узкой области пространства, возможно еще и распространение этих колебаний в среде, именно такое распространение и есть волновое движение.

Перейдем к обсуждению этого распространения. Чтобы обсудить возможность существования колебаний в среде, мы должны определиться с тем, что такое плотная среда. Плотной средой называют такую среду, которая состоит из большого числа частиц, взаимодействие которых очень близко к упругому. Представим следующий мысленный эксперимент.

Рис. 1. Мысленный эксперимент

Поместим в упругую среду шар. Шар будет сжиматься, уменьшаться в размерах, а потом расширяться наподобие биения сердца. Что в этом случае будет наблюдаться? В этом случае частицы, которые прилегают вплотную к этому шару, будут повторять его движение, т.е. удаляться, приближаться - тем самым будут совершать колебания. Поскольку эти частицы взаимодействуют с другими более удаленными от шара частицами, то они также будут совершать колебания, но с некоторым запаздыванием. Частицы, которые к этому шару прилегают вплотную, совершают колебания. Они будут передаваться другим частицам, более далеким. Таким образом, колебание будет распространяться по всем направлениям. Обратите внимание, в данном случае произойдет распространение состояния колебаний. Такое распространение состояния колебаний мы и называем волной. Можно сказать, что процесс распространения колебаний в упругой среде с течением времени называется механической волной.

Обратите внимание: когда мы говорим о процессе возникновения таких колебаний, надо говорить о том, что они возможны, только если существует взаимодействие между частицами. Другими словами, волна может существовать только тогда, когда есть внешняя возмущающая сила и силы, которые противостоят действию силы возмущения. В данном случае это силы упругости. Процесс распространения в данном случае будет связан с тем, какова плотность и сила взаимодействия между частицами данной среды.

Отметим еще одну вещь. Волна не переносит вещества . Ведь частицы совершают колебания возле положения равновесия. Но вместе с тем волна переносит энергию. Этот факт можно проиллюстрировать волнами цунами. Вещество не переносится волной, но волна переносит такую энергию, которая приносит большие бедствия.

Поговорим о типах волн. Существуют две разновидности - волны продольные и поперечные. Что такое продольные волны ? Эти волны могут существовать во всех средах. И пример с пульсирующим шаром внутри плотной среды - это как раз пример образования продольной волны. Такая волна представляет собой распространение в пространстве с течением времени. Вот это чередование уплотнения и разряжения и представляет собой продольную волну. Еще раз повторюсь, что такая волна может существовать во всех средах - жидких, твердых, газообразных. Продольной называется волна, при распространении которой частицы среды совершают колебания вдоль направления распространения волны.

Рис. 2. Продольная волна

Что касается поперечной волны, то поперечная волна может существовать только в твердых телах и на поверхности жидкости. Поперечной называется волна, при распространении которой частицы среды совершают колебания перпендикулярно направления распространения волны.

Рис. 3. Поперечная волна

Скорость распространения продольных и поперечных волн разная, но это уже тема следующих уроков.

Список дополнительной литературы:

А так ли хорошо знакомо вам понятие волна? // Квант. — 1985. — №6. — С. 32-33. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.