Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории. Сведения по баллистике: внутренняя и внешняя баллистика. раневая баллистика Элементы траектория полета пули определение

Под траекторией полета пули понимается линия, которую вычерчивает в пространстве ее центр тяжести.

Эта траектория формируется под влиянием инерции пули, действующих на нее сил тяжести и сопротивления воздуха.

Инерция пули формируется во время ее нахождения в канале ствола. Под действием энергии пороховых газов пуле задаются скорость и направление поступательного движения. И если бы на нее не действовали внешние силы, то согласно первому закону Г алилея - Ньютона, она совершала бы прямолинейное движение в заданном направлении с постоянной скоростью до бесконечности. При этом в каждую секунду она проходила бы расстояние, равное начальной скорости пули (см. рис. 8).

Однако в связи с тем, что на пулю в полете действуют силы тяжести и сопротивления воздуха, они в совокупности в соответствии с четвертым законом Галилея - Ньютона сообщают ей ускорение, равное векторной сумме ускорений, возникающих от действий каждой из этих сил в отдельности.

Поэтому для того, чтобы понять особенности формирования траектории полета пули в воздухе, нужно рассмотреть, как действуют в отдельности на пулю сила тяжести и сила сопротивления воздуха.

Рис. 8. Движение пули по инерции (при отсутствии воздействия сил тяжести

и сопротивления воздуха)

Сила тяжести, действующая на пулю, сообщает ей ускорение, равное ускорению свободного падения. Направлена эта сила вертикально вниз. В связи с этим пуля под действием силы тяжести будет постоянно совершать падение к земле, а скорость и высота ее падения будут определяться соответственно по формулам 6 и 7:

где: v - скорость падения пули, H - высота падения пули, g - ускорение свободного падения (9,8 м/с2), t - время падения пули в секундах.

Если бы пуля вылетела из канала ствола, не обладая кинетической энергией, заданной давлением пороховых газов, то, в соответствии с выше приведенной формулой она падала бы вертикально вниз: через одну секунду на 4, 9 м; через две секунды на 19,6 м; через три секунды на 44,1 м; через четыре секунды на 78,4 м; через пять секунд на 122,5 м и т.д. (см. рис. 9).

Рис. 9. Падение не обладающей кинетической энергией пули в вакууме

под действием силы тяжести

При движении пули, обладающей заданной кинетической энергией, по инерции, под действием силы тяжести она будет смещаться на данное расстояние вниз по отношению к линии, являющейся продолжением оси канала ствола. Построив параллелограммы, линиями которых будут величины расстояний, преодоленных пулей по инерции и под действием силы тяжести в

соответствующие временные отрезки, мы можем определить точки, которые пуля пройдет в данные отрезки времени. Соединив их линией, получим траекторию полета пули в безвоздушном пространстве (см. рис. 10).

Рис. 10. Траектория полета пули в безвоздушном пространстве

Данная траектория представляет собой симметричную параболу, самая высшая точка которой называется вершиной траектории; ее часть, расположенная от точки вылета пули до вершины, называется восходящей ветвью траектории; а часть, расположенная после вершины - нисходящей. В безвоздушном пространстве эти части будут одинаковыми.

При этом высота вершины траектории и, соответственно, ее фигура будут зависеть только от начальной скорости пули и угла ее вылета.

Если сила тяжести, действующая на пулю, направлена вертикально вниз, то сила сопротивления воздуха направлена в сторону, противоположную движению пули. Она непрерывно замедляет движение пули и стремится опрокинуть ее. На преодоление силы сопротивления воздуха затрачивается часть кинетической энергии пули.

Основными причинами сопротивления воздуха являются: его трение о поверхность пули, образование завихрения, образование баллистической волны (см. рис. 11).

Рис. 11. Причины сопротивления воздуха

Пуля в полете сталкивается с частицами воздуха и заставляет их колебаться, в результате чего плотность воздуха перед пулей повышается, и образуются звуковые волны, вызывающие характерный звук, и баллистическая волна. При этом слой воздуха, обтекающий пулю, не успевает замкнуться за ее донной частью, в результате чего там создается разреженное пространство. Разность давления воздуха, оказываемого на головную и донную части пули, формирует силу, направленную в сторону, противоположную направлению ее полета и уменьшающую ее скорость. При этом частицы воздуха, стремясь заполнить разреженное пространство, образованное за донной частью пули, создают завихрение.

Сила сопротивления воздуха, представляет собой сумму всех сил, образующихся вследствие влияния воздуха на полет пули.

Центр сопротивления - это точка приложения силы сопротивления воздуха к пуле.

Сила сопротивления воздуха зависит от формы пули, ее диаметра, скорости полета, плотности воздуха. При увеличении скорости полета пули, ее калибра и плотности воздуха она возрастает.

Под влиянием сопротивления воздуха траектория полета пули теряет симметричную форму. Скорость пули в воздухе по мере удаления от точки вылета все время уменьшается, поэтому средняя скорость пули на восходящей ветви траектории больше, чем на нисходящей. В связи с этим восходящая ветвь траектории полета пули в воздухе всегда длиннее и положе нисходящей, при стрельбе на средние дистанции отношение длины восходящей ветви траекторий к длине нисходящей условно принимается, как 3:2 (см. рис. 12).

Рис. 12. Траектория полета пули в воздухе

Вращение пули вокруг своей оси

При полете пули в воздухе сила его сопротивления постоянно стремится опрокинуть ее. Это проявляется следующим образом. Пуля, двигаясь по инерции, постоянно стремится сохранить положение своей оси, заданное направлением ствола оружия. При этом под действие силы тяжести, направление полета пули постоянно отклоняется от ее оси, что характеризуется ростом угла между осью пули и касательной к траектории ее полета (см. рис. 13).

Рис. 13. Действие силы сопротивления воздуха на полет пули: ЦТ - центр тяжести, ЦС - центр сопротивления воздуха

Действие же силы сопротивления воздуха направлено противоположно направлению движения пули и параллельно касательной ее траектории, т.е. снизу под углом к оси пули.

Исходя из особенностей формы пули, частицы воздуха ударяются в поверхность ее головной части под углом, близким к прямому, а в поверхность хвостовой части - под достаточно острым углом (см. рис. 13). В связи с этим у головной части пули возникает уплотненное воздуха, а у хвостовой - разреженное пространство. Поэтому сопротивление воздуха в головной части пули значительно превышает его сопротивление в хвостовой части. В результате этого скорость головной части уменьшается быстрее, чем скорость хвостовой части, что приводит к запрокидыванию головной части пули назад (опрокидыванию пули).

Опрокидывание пули назад приводит к ее беспорядочному вращению в полете, при этом в значительной степени уменьшаются дальность ее полета и точность попадания в цель.

Для того, чтобы пуля не опрокидывалась в полете под действием силы сопротивления воздуха, ей придается быстрое вращательное движение вокруг продольной оси. Это вращение формируется благодаря винтообразной нарезке в канале ствола оружия.

Пуля, проходя через канал ствола, под давлением пороховых газов входит в нарезы и заполняет их своим телом. В дальнейшем подобно болту в гайке, она одновременно продвигается вперед и вращается вокруг своей оси. На выходе из канала ствола пуля по инерции сохраняет как поступательное, так и вращательное движение. При этом скорость вращения пули достигает очень больших величин, для автомата Калашникова 3000, а для снайперской винтовки Драгунова - около 2600 оборотов в секунду.

Скорость вращения пули можно вычислить по формуле:

где Ѵвр - скорость вращения (оборотов в секунду), Vo - начальная скорость пули (мм/с), Ьнар - длина хода нарезов (мм).

При полете пули сила сопротивления воздуха стремится опрокинуть пулю головной частью вверх и назад. Но головная часть пули, быстро вращаясь, согласно свойству гироскопа стремится сохранить свое положение и отклониться не вверх, а незначительно в сторону своего вращения - вправо, под прямым углом к направлению силы сопротивления воздуха. При отклонении головной части вправо изменяется направление действия силы сопротивления воздуха, которая теперь стремится повернуть головную часть пули вправо и назад. Но в результате вращения головная часть пули поворачивается не вправо, а вниз и далее до описания ею полной окружности (см. рис. 14).

Рис. 14. Коническое вращение головной части пули

Таким образом, головная часть летящей и быстро вращающейся пули описывает окружность, а ее ось - конус с вершиной в центре тяжести. Происходит так называемое медленное коническое движение, при котором пуля летит головной частью вперед в соответствии с изменением кривизны траектории (см. рис. 15).

Рис. 15. Полет вращающейся пули в воздухе

Ось медленного конического вращения располагается выше касательной к траектории полета пули, поэтому нижняя часть пули в большей степени подвержена давлению встречного потока воздуха, чем верхняя. В связи с этим ось медленного конического вращения отклоняется в сторону вращения, т.е. вправо. Данное явление называется деривацией (см. рис. 16).

Деривация - это отклонение пули от плоскости стрельбы в сторону ее вращения.

Под плоскостью стрельбы понимается вертикальная плоскость в которой лежит ось канала ствола оружия.

Причинами деривации являются: вращательное движение пули, сопротивление воздуха и постоянное понижение под действием силы тяжести касательной к траектории полета пули.

При отсутствии хотя бы одной из этих причин деривации не будет. Например, при стрельбе вертикально вверх и вертикально вниз деривации не будет, так как сила сопротивления воздуха в этом случае направлена вдоль оси пули. Не будет деривации при стрельбе в безвоздушном пространстве ввиду отсутствия сопротивления воздуха и при стрельбе из гладкоствольного оружия в связи с отсутствием вращения пули.

Рис. 16. Явление деривации (вид траектории сверху)

В ходе полета пуля все больше отклоняется в сторону, при этом степень увеличения деривационных отклонений значительно превышает степень увеличения преодоленного пулей расстояния.

Деривация не имеет большого практического значения для стрелка при стрельбе на близкие и средние расстояния, ее необходимо учитывать только при особо точной стрельбе на дальние расстояния, внося определенные поправки в установку прицела в соответствии с таблицей деривационных отклонений для соответствующей дальности стрельбы.

Характеристики траектории полета пули

Для изучения и описания траектории полета пули используются следующие характеризующие ее показатели (см. рис. 17).

Точка вылета находится в центре дульного среза ствола, является началом траектории полета пули.

Горизонт оружия - это горизонтальная плоскость, проходящая через точку вылета.

Линия возвышения представляет собой прямую линию, являющуюся продолжением оси канала ствола наведенного на цель оружия.

Угол возвышения - это угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, например, при

стрельбе со значительной возвышенности вниз, он называется углом склонения (или снижения).

Рис. 17. Показатели траектории полета пули

Линия бросания представляет собой прямую линию, являющуюся продолжением оси канала ствола в момент вылета пули.

Угол бросания - это угол, заключенный между линией бросания и горизонтом оружия.

Угол вылета - это угол, заключенный между линией возвышения и линией бросания. Представляет собой разность между значениями углов бросания и возвышения.

Точкой падения - является точка пересечения траектории с горизонтом оружия.

Угол падения - это угол, расположенный в точке падения, заключенный между касательной к траектории полета пули и горизонтом оружия.

Окончателъная скорость пули - это скорость пули в точке падения.

Полное время полета - это время движения пули от точки вылета до точки падения.

Полная горизонтальная дальность - это расстояние от точки вылета до точки падения.

Вершиной траектории является ее наивысшая точка.

Высотой траектории является кратчайшее расстояние от ее вершины до горизонта оружия.

Восходящая ветвь траектории - это часть траектории от точки вылета до ее вершины.

Нисходящая ветвь траектории - это часть траектории от ее вершины до точки падения.

Точка встречи - это точка, лежащая на пересечении траектории полета пули с поверхностью цели (земли, преграды).

Угол встречи - это угол, заключенный между касательной к траектории полета пули и касательной к поверхности цели в точке встречи.

Точкой прицеливания (наводки) является точка на цели или вне ее, в которую наводится оружие.

Линия прицеливания - это прямая линия, проходящая от глаза стрелка через середину прорези прицела и вершину мушки в точку прицеливания.

Угол прицеливания - это угол, заключенный между линией прицеливания и линией возвышения.

Угол места цели - это угол, заключенный между линией прицеливания и горизонтом оружия.

Прицельная дальность - это расстояние от точки вылета до пересечения траектории с линией прицеливания.

Превышением траектории над линией прицеливания является кратчайшее расстояние от любой точки траектории до линии прицеливания.

При стрельбе на близкие расстояния значения превышения траектории над линией прицеливания будут достаточно низкими. Но при стрельбе на дальние расстояния они достигают значительных величин (см. табл. 1).

Таблица 1

Превышения траектории над линией прицеливания при стрельбе из автомата Калашникова (АКМ) и снайперской винтовки Драгунова (СВД) на расстояния 600 м и более

colspan=2 bgcolor=white>0
Для 7,62 мм АКМ
Дальность, м 100 200 300 400 500 600 700 800 900 1000
Прицел метры
6 0,98 1,8 2,2 2,1 1,4 0 -2,7 -6,4 - -
7 1,3 2,5 3,3 3,6 3,3 2,1 -3,5 -8,4 -
8 1,8 3,4 4,6 5,4 5,5 4,7 3,0 0 -4,5 -10,5
Для СВД с использованием оптического прицела
Дальность, 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Прицел метры
6 0,53 0,95 1,2 1,1 0,74 0 -1,3 - - - - - - -
7 0,71 1,3 1,7 1,9 1,6 1,0 0 -1,7 - - - - - -
8 0,94 1,8 2,4 2,7 2,8 2,4 1,5 0 -2,2 - - - - -
9 1,2 2,2 3,1 3,7 4,0 3,9 2,3 2,0 0 -2,9 - - - -
10 1,5 2,8 4,0 4,9 5,4 5,7 5,3 4,3 2,6 0 -3,7 - - -
11 1,8 3,5 5,0 6,2 7,1 7,6 7,7 7,1 5,7 3,4 0 -4,6 - -
12 2,2 4,3 6,2 7,8 9,1 10,0 10,5 10,0 9,2 7,3 4,3 0 -5,5 -
13 2,6 5,1 7,4 9,5 11 12,5 13,5 13,5 13,0 11,5 8,9 5,1 0 -6,6

Примечание: Количество единиц в значении прицела соответствует количеству сотен метров расстояния стрельбы, на которое рассчитан прицел

(6 - 600 м, 7 - 700 м и т.д.).

Из табл. 1 видно, что превышение траектории над линией прицеливания при стрельбе из АКМ на расстояние 800 м (прицел 8) превышает 5 метров, а при стрельбе из СВД на расстояние 1300 м (прицел 13) - траектория пули поднимается над линией прицеливания более, чем на 13 метров.

Прицеливание (наводка оружия)

Для того, чтобы пуля в результате выстрела попала в цель, предварительно нужно придать оси канала ствола соответствующее положение в пространстве.

Придание оси канала ствола оружия положения, необходимого для поражения заданной цели, называется прицеливанием или наводкой.

Данное положение должно быть придано как в горизонтальной плоскости, так и в вертикальной. Придание оси канала ствола необходимого положения в вертикальной плоскости является вертикальной наводкой, придание ей требуемого положение в горизонтальной плоскости является горизонтальной наводной.

Если ориентиром наводки является точка на цели или вблизи нее, такая наводка называется прямой. При стрельбе из стрелкового оружия применяется прямая наводка, выполняемая с помощью одной прицельной линии.

Прицельная линия - это прямая линия, соединяющая середину прорези прицела с вершиной мушки.

Для осуществления прицеливания необходимо предварительно путем перемещения целика (прорези прицела) придать прицельной линии такое положение, при котором между ней и осью канала ствола образуется в вертикальной плоскости угол прицеливания, соответствующий расстоянию до цели, а в горизонтальной плоскости - угол, равный боковой поправке, учитывающей скорость бокового ветра, деривацию и скорость бокового движения цели (см. рис. 18).

После этого, направляя прицельную линию в область, являющуюся ориентиром прицеливания, посредством изменения положения ствола оружия, оси канала ствола придается требуемое положение в пространстве.

При этом в оружии с постоянной установкой целика, как, например, у большинства пистолетов, для придания необходимого положения канала ствола в вертикальной плоскости выбирается точка прицеливания, соответствующая расстоянию до цели, и прицельная линия направляется в данную точку. В оружии с неподвижной в боковом положении прорезью прицела, как в автомате Калашникова, для придания необходимого положения канала ствола в горизонтальной плоскости выбирается точка прицеливания, соответствующая боковой поправке, и прицельная линия направляется в эту точку.

Рис. 18. Прицеливание (наводка оружия): О - мушка; а - целик; аО - прицельная линия; сС - ось канала ствола; оО - линия, параллельная оси канала ствола;

Н - высота прицела; М - величина перемещения целика; а - угол прицеливания; Уб - угол боковой поправки

Форма траектории полета пули и ее практическое значение

Форма траектории полета пули в воздухе зависит от угла, под которым она выпущена по отношению к горизонту оружия, ее начальной скорости, кинетической энергии и формы.

Для производства целенаправленного выстрела оружие наводится в цель, при этом прицельная линия направляется в точку прицеливания, а ось канала ствола в вертикальной плоскости приводится в положение, соответствующее необходимой линии возвышения. Между осью канала ствола и горизонтом оружия образуется необходимый угол возвышения.

При выстреле же под действием силы отдачи происходит смещение оси канала ствола на величину угла вылета, при этом она переходит в положение соответствующее линии бросания и образует с горизонтом оружия угол бросания. Под этим углом пуля и вылетает из канала ствола оружия.

В связи с незначительной разницей между углом возвышения и углом бросания их зачастую отождествляют, при этом, однако, правильнее в данном случае говорить о зависимости траектории полета пули от угла бросания.

При увеличении угла бросания высота траектории полета пули и полная горизонтальная дальность увеличиваются до определенной величины данного угла, после которой высота траектории продолжает увеличиваться, а полная горизонтальная дальность - уменьшается.

Угол бросания, при котором полная горизонтальная дальность полета пули является наибольшей, называется углом наибольшей дальности.

В соответствии с закономерностями механики в безвоздушном пространстве угол наибольшей дальности будет составлять 45°.

При полете пули в воздухе зависимость между величиной угла бросания и формой траектории полета пули аналогична зависимости данных характеристик, наблюдаемой при полете пули в безвоздушном пространстве, но, по причине влияния сопротивления воздуха, угол наибольшей дальности не достигает значения 45°. В зависимости от формы и массы пули его величина колеблется в пределах 30 - 35°. Для расчетов величина угла наибольшей дальности стрельбы в воздухе принимается равной 35°.

Траектории полета пули, возникающие при углах бросания меньших угла наибольшей дальности, называются настильными.

Траектории полета пули, возникающие при углах бросания больших угла наибольшей дальности, называются навесными (см. рис. 19).

Рис. 19. Угол наибольшей дальности, настильные и навесные траектории

Настильные траектории применяются при стрельбе прямой наводкой на достаточно небольшие расстояния. При стрельбе из ручного стрелкового оружия используются только данный вид траекторий. Настильность траектории характеризуется ее максимальным превышением над линией прицеливания. Чем меньше траектория поднимается над линией прицеливания при заданной дальности стрельбы, тем более она настильна. Также настильность траектории оценивается по величине угла падения: чем он меньше, тем траектория настильнее.

Чем настильнее используемая при стрельбе траектория, тем на большем расстоянии цель может быть поражена с одной установкой при-

цела, т.е. ошибки в установке прицела оказывают меньшее влияние на результативность стрельбы.

Навесные траектории не используются при стрельбе из ручного стрелкового оружия, в свою очередь, они имеют большое распространение в стрельбе снарядами и минами на большие расстояния вне прямой видимости цели, которая в данном случае задается по координатам. Навесные траектории используются при стрельбе из гаубиц, минометов и других видов артиллерийского вооружения.

Благодаря особенностям данного вида траектории, указанные виды вооружения могут поражать цели, находящиеся в укрытии, а также за естественными и искусственными преградами (см. рис. 20).

Траектории, имеющие одинаковую горизонтальную дальность при разных углах бросания, называются сопряженными. Одна из этих траекторий будет настильной, вторая навесной.

Сопряженные траектории можно получить при стрельбе из одного оружия, используя углы бросания больший и меньший угла наибольшей дальности.

Рис. 20. Особенности применения навесных траекторий

Выстрел, при котором превышение траектории над линией прицеливания на всем ее протяжении не достигает величин больших, чем высота цели, считается прямым выстрелом (см. рис. 21).

Практическое значение прямого выстрела заключается в том, что в пределах его дальности в напряженные моменты боя стрельбу допускается вести без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит, во-первых, от высоты цели и, во-вторых, от настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем расстоянии цель может быть поражена с одной установкой прицела.

Рис. 21. Прямой выстрел

Дальность прямого выстрела можно определить по таблицам, сопоставляя высоту цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

При стрельбе по цели, находящейся на расстоянии, превышающим дальность прямого выстрела, траектория вблизи вершины поднимается выше цели, и цель на определенном участке не будет поражаться при данной установке прицела. При этом около цели будет пространство, на котором нисходящая ветвь траектории будет пролегать в пределах ее высоты.

Расстояние, на котором нисходящая ветвь траектории находится в пределах высоты цели, называется поражаемым пространством (см. рис. 22).

Глубина (длина) поражаемого пространства напрямую зависит от высоты цели и настильности траектории. Также она зависит от угла наклона местности: при подъеме местности вверх она уменьшается, при скате вниз - увеличивается.

Рис. 22. Поражаемое пространство глубиной, равной отрезку АС, для цели

высотой, равной отрезку АВ

Если цель находится за укрытием, непробиваемым пулей, то возможность ее поражения зависит от того, в какой точке она располагается.

Пространство за укрытием от его гребня до точки встречи называется прикрытым пространством (см. рис. 23). Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория полета пули.

Часть прикрытого пространства, в котором цель не может быть поражена при данной траектории, называется мертвым (непоражаемым) пространством. Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Таким образом, глубина мертвого пространства представляет собой разность прикрытого и поражаемого пространства.

Рис. 23. Прикрытое, мертвое и поражаемое пространство

Форма траектории зависит также от начальной скорости пули, ее кинетической энергии и формы. Рассмотрим, каким образом данные показатели влияют на формирование траектории.

От начальной скорости пули напрямую зависит дальнейшая скорость ее полета, величина ее кинетической энергии при равных формах и размерах обеспечивает меньшую степень снижения скорости под действием сопротивления воздуха.

Таким образом, пуля, выпущенная под одинаковым углом возвышения (бросания), но с большей начальной скорость или с большей кинетической энергией в ходе дальнейшего полета будет иметь большую скорость движения.

Если мы представим определенную горизонтальную плоскость на некотором удалении от точки вылета, то при одинаковом значении угла возвыше-

ния (бросания) пуля, обладающая большей скоростью, достигнет ее быстрее пули, обладающей меньшей скоростью. Соответственно более медленная пуля, достигнув данной плоскости и затратив на это большее количество времени, успеет больше опуститься вниз под действием силы тяжести (см. рис. 24).

Рис. 24. Зависимость траектории полета пули от ее скорости

В дальнейшем также траектория полета пули, имеющей меньшие скоростные характеристики, будет располагаться ниже траектории полета более быстрой пули и под действием силы тяжести она быстрее по времени и ближе по расстоянию от точки вылета опустится до уровня горизонта оружия.

Таким образом, начальная скорость и кинетическая энергия пули напрямую влияют на высоту траектории и на полную горизонтальную дальность ее полета.

Внутренняя и внешняя баллистика.

Выстрел и его периоды. Начальная скорость пули.

Занятие № 5.

«ПРАВИЛА СТРЕЛЬБЫ ИЗ СТРЕЛКОВОГО ОРУЖИЯ»

1. Выстрел и его периоды. Начальная скорость пули.

Внутренняя и внешняя баллистика.

2. Правила стрельбы.

Баллистика – это наука о движении тел, брошенных в пространстве. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

Различают внутреннюю баллистику, занимающуюся исследованием движения снаряда в канале орудия, в противоположность внешней баллистике, исследующей движение снаряда по выходе из орудия.

Мы будем рассматривать баллистику как науку о движении пули при стрельбе.

Внутренняя баллистика – это наука, занимающаяся изучением процессов, которые проходят при выстреле и, в особенности, при движении пули по каналу ствола.

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона, посланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через отверстие в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (или т.н. боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на пулю, она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает отдачу – движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация) и гильзы, плотно прижимаясь к патроннику, препятствуют прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание.

При сгорании порохового заряда примерно 25-30% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15‑25% энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола, нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.



Выстрел проходит в очень короткий промежуток времени: 0,001‑0,06 секунды. При выстреле различают четыре периода:

Предварительный;

Первый (или основной);

Третий (или период последействия газов).

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы канала ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление (зависит от устройства нарезов, веса пули и твердости ее оболочки) называется давлением форсирования и достигает 250‑500 кг/см 2 . Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый (основной) период длится от начала движения пули до момента полного сгорания порохового заряда. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивает скорость ее движения. Скорость пули на вылете из канала ствола (дульная скорость ) несколько меньше начальной скорости.

Начальной скоростью называется скорость движения пули у дульного среза ствола, т.е. в момент её вылета из канала ствола. Она измеряется в метрах в секунду (м/с). Начальная скорость калиберных пуль и снарядов составляет 700‑1000 м/с.

Величина начальной скорости является одной из важнейших характеристик боевых свойств оружия. Для одной и той же пули увеличение начальной скорости приводит к увеличению дальности полета, пробивного и убойного действия пули , а также к уменьшению влияния внешних условий на ее полёт.

Пробивное действие пули характеризуется её кинетической энергией: глубиной проникновения пули в преграду определенной плотности.

При стрельбе из АК74 и РПК74 пуля со стальным сердечником 5,45 мм патрона пробивает:

o стальные листы толщиной:

· 2 мм на дальности до 950 м;

· 3 мм – до 670 м;

· 5 мм – до 350 м;

o стальной шлем (каска) – до 800 м;

o земляную преграду 20-25 см – до 400 м;

o сосновые брусья толщиной 20 см – до 650 м;

o кирпичную кладку 10-12 см – до 100 м.

Убойность пули характеризуется ее энергией (живой силой удара) в момент встречи с целью.

Энергия пули измеряется в килограмм-сила-метрах (1 кгс·м – энергия, которая необходима для совершения работы по подъему 1 кг на высоту 1 м). Для нанесения поражения человеку необходима энергия, равная 8 кгс·м, для нанесения такого же поражения животному – около 20 кгс·м. Энергия пули у АК74 на 100 м равна 111 кгс·м, а на 1000 м – 12 кгс·м; убойное действие пули сохраняется до дальности 1350 м.

Величина начальной скорости пули зависит от длины ствола, массы пули и свойств пороха. Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули.

У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, т.к. полного сгорания порохового заряда к моменту вылета пули из канала ствола не происходит.

Третий период (период последействия газов) длится от момента вылeтa пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают воздействовать на пулю и придают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола.

Раскаленные пороховые газы, истекающие из ствола вслед за пулей, при встрече с воздухом вызывают ударную волну, которая является источником звука выстрела. Смешивание раскаленных пороховых газов (среди которых есть окиси углерода и водорода) с кислородом воздуха вызывает вспышку, наблюдаемую как пламя выстрела.

Давление пороховых газов, действующее на пулю, обеспечивает придание ей поступательной скорости, а также скорости вращения. Давление, действующее в противоположную сторону (на дно гильзы), создает силу отдачи. Движение оружия назад под действием силы отдачи называется отдачей . При стрельбе из стрелкового оружия сила отдачи ощущается в виде толчка в плечо, руку, действует на установку или грунт. Энергия отдачи тем больше, чем мощнее оружие. У ручного стрелкового оружия отдача обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.

Рис. 1. Подбрасывание дульной части ствола оружия вверх при выстреле

в результате действия отдачи.

Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи, часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Поэтому энергия отдачи при выстреле из такого оружия меньше, чем при стрельбе из неавтоматического оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстия в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Образующаяся при этом динамическая пара сил приводит к возникновению углового перемещения оружия. Отклонения могут также происходить вследствие влияния действия автоматики стрелкового оружия и динамического изгиба ствола при движении по нему пули. Эти причины приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола – угла вылета . Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательное движение – вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п. Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным, когда ниже. Величина угла вылета дается в таблицах стрельбы.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при приведении его к нормальному бою (см. Руководство по 5,45‑мм автоматам Калашникова… – Глава 7 ). Однако при нарушении правил прикладки оружия, использования упора, а также правил ухода за оружием и его сбережения изменяются величина угла вылета и бой оружия.

В целях уменьшения вредного влияния отдачи на результаты в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства – компенсаторы.

Дульный тормоз-компесатор представляет собой специальное приспособление на дульной части ствола, действуя на которое, пороховые газы после вылета пули уменьшают скорость отдачи оружия. Кроме того, истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

В АК74 дульный тормоз-компенсатор уменьшает отдачу на 20%.

1.2. Внешняя баллистика. Траектория полёта пули

Внешняя баллистика – это наука, изучающая движение пули в воздухе (т.е. после прекращения действия на нее пороховых газов).

Вылетев из канала ствола под действием пороховых газов, пуля движется по инерции. Для того чтобы определить, как же движется пуля необходимо рассматривать траекторию ее движения. Траекторией называется кривая линия, описываемая центром тяжести пули во время полета.

Пуля при полете в воздухе подвергается действиям двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую.

Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду, поэтому в этой среде затрачивается часть энергии пули, что вызывается тремя основными причинами:

· трением воздуха;

· образованием завихрений;

· образованием баллистической волны.

Равнодействующая этих сил составляет силу сопротивления воздуха.

Рис. 2.Образование силы сопротивления воздуха.

Рис. 3.Действие силы сопротивления воздуха на полет пули:

ЦТ – центр тяжести; ЦС – центр сопротивления воздуха.

Частицы воздуха, соприкасающиеся с движущейся пулей создают трение и уменьшают скорость полета пули. Примыкающий к поверхности пули слой воздуха, в котором движение частиц изменяется в зависимости от скорости называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разряженное пространство, вследствие чего появляется разность давления на головную и донную части. Эта разность создает силу, направленную в сторону обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей повышается плотность воздуха и образуется звуковая волна. Поэтому полет пули сопровождается характерным звуком. При скорости полета пули, меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, т.к. волны распространяются быстрее скорости полета пули. При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, т.к. пуля тратит часть своей энергии на создание этой волны.

Действие силы сопротивления воздуха на полет пули очень велико: оно вызывает уменьшение скорости и дальности полета. Например, пуля при начальной скорости 800 м/с в безвоздушном пространстве полетела бы на дальность 32620 м; дальность же полета этой пули при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха в основном зависит от:

§ скорости полета пули;

§ формы и калибра пули;

§ от поверхности пули;

§ плотности воздуха

и возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны) выгодны пули с удлиненной остроконечной головной частью.

Таким образом, сила сопротивления воздуха уменьшает скорость движения пули и опрокидывает её. В результате этого пуля начинает «кувыркаться», возрастает сила сопротивления воздуха, уменьшается дальность полета и понижается её действие по цели.

Стабилизация пули в полете обеспечивается приданием пуле быстрого вращательного движения вокруг своей оси, а также – хвостовым оперением гранаты. Скорость вращения при вылете из нарезного оружия составляет: пуль 3000-3500 об/с, проворачивание оперенных гранат 10-15 об/с. Вследствие вращательного движения пули, воздействия силы сопротивления воздуха и силы тяжести происходит отклонение пули в правую сторону от вертикальной плоскости, проведенной через ось канала ствола, – плоскости стрельбы . Отклонение пули от нее при полете в сторону вращения называется деривацией .

Рис. 4. Деривация (вид траектории сверху).

В результате действия этих сил пуля совершает полет в пространстве по неравномерно изогнутой кривой линии, называемой траекторией .

Продолжим рассмотрение элементов и определений траектории пули.

Рис. 5. Элементы траектории.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Горизонтальная плоскость проходящая через точку вылета называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

наведенного оружия , называетсялинией возвышения .

Вертикальная плоскость, проходящая через линию возвышения называетсяплоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия называетсяуглом возвышения. Если этот угол отрицательный, то он называетсяуглом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули , называется линией бросания .

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета .

Точка пересечения траектории с горизонтом оружия называетсяточкой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия называетсяуглом падения.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули в точке падения называетсяокончательной скоростью.

Время движения пули от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называетсявершиной траектории.

Кратчайшее расстояние от вершины траектории до горизонта оружия называетсявысотой траектории.

Часть траектории от точки вылета до вершины называетсявосходящей ветвью, часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели (или вне её), в которую наводится оружие, называется точкой прицеливания (ТП).

Прямая линия от глаза стрелка до точки прицеливания называется линией прицеливания.

Расстояние от точки вылета до пересечения траектории с линией прицеливания, называетсяприцельной дальностью.

Угол, заключенный между линией возвышения и линией прицеливания, называетсяуглом прицеливания.

Угол, заключенный между линией прицеливания и горизонтом оружия называетсяуглом места цели.

Прямая, соединяющая точку вылета с целью, называется линией цели .

Расстояние от точки вылета до цели по линии цели называется наклонной дальностью . При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность – с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи .

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи .

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличивается. Но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности (величина этого угла составляет около 35°).

Различают настильные и навесные траектории:

1. Настильной – называется траектория, получаемая при углах возвышения меньших угла наибольшей дальности.

2. Навесной – называется траектория, получаемая при углах возвышения больших угла наибольшей дальности.

Настильная и навесная траектории, получаемые при стрельбе из одного и того же оружия при одной и той же начальной скорости и имеющие одинаковую полную горизонтальную дальность, называются – сопряжёнными .

Рис. 6. Угол наибольшей дальности,

настильные, навесные и сопряжённые траектории.

Траектория более настильна, если она меньше поднимается над линией цели, и чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, а также на величину поражаемого и мертвого пространства.

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывает ошибка в определении установки прицела): в этом заключается практическое значение траектории.

Пуля, получив при вылете из канала ствола определенную начальную скорость, стремиться по инерции сохранить величину и направление этой скорости.

Если бы полет пули совершался в безвоздушном пространстве, и на нее не действовала сила тяжести, пуля двигалась бы прямолинейно, равномерно и бесконечно. Однако на пулю, летящую в воздушной среде, действуют силы, которые изменяют скорость ее полета и направление движения. Этими силами являются сила тяжести и сила сопротивления воздуха (рис. 4).

Рис. 4. Силы, действующие на пулю во время ее полета

Вследствие совместного действия этих сил пуля теряет скорость и изменяет направление своего движения, перемещаясь в воздухе по кривой линии, проходящей ниже направления оси канала ствола.

Линия, которую описывает в пространстве движущаяся пуля (ее центр тяжести), называется траекторией .

Обычно баллистика рассматривает траекторию над горизонтом оружия - воображаемой бесконечной горизонтальной плоскостью, проходящей через точку вылета (рис. 5).

Рис. 5. Горизонт оружия

Движение пули, а следовательно, и форма траектории зависят от многих условий. Поэтому, чтобы уяснить себе, как образуется в пространстве траектория пули, необходимо рассмотреть прежде всего, как действуют на пулю в отдельности сила тяжести и сила сопротивления воздушной среды.

Действие силы тяжести. Представим себе, что на пулю после вылета ее из канала ствола не действует никакая сила. В этом случае, как говорилось выше, пуля двигалась бы по инерции бесконечно, равномерно и прямолинейно по направлению оси канала ствола; за каждую секунду она пролетела бы одинаковые расстояния с постоянной скоростью, равной начальной. В этом случае, если бы ствол оружия был направлен прямо в цель, пуля, следуя в направлении оси канала ствола, попала бы в нее (рис. 6).

Рис. 6. Движение пули по инерции (если бы не было силы тяжести и сопротивления воздуха)

Допустим теперь, что на пулю действует только одна сила тяжести. Тогда пуля начнет падать вертикально вниз, как и всякое свободно падающее тело.

Если предположить, что на пулю при ее полете по инерции в безвоздушном пространстве действует сила тяжести, то под действием этой силы пуля опустится ниже от продолжения оси канала ствола - в первую секунду - на 4,9 м, во вторую - на 19,6 м и т.д. В этом случае, если навести ствол оружия в цель, пуля никогда в нее не попадет, так как, подвергаясь действию силы тяжести, она пролетит под целью (рис.7).

Рис. 7. Движение пули (если бы на нее действовала сила тяжести,

но не действовало сопротивление воздуха)

Вполне очевидно, что для того, чтобы пуля пролетела определенное расстояние и попала в цель, необходимо направить ствол оружия куда-то выше цели. Для этого нужно, чтобы ось канала ствола и плоскость горизонта оружия составляли некоторый угол, который называется углом возвышения (рис. 8).

Как видно из рис. 8, траектория пули в безвоздушном пространстве, на которую действует сила тяжести, представляет собой правильную кривую, которая называется параболой . Самая высокая точка траектории над горизонтом оружия называется ее вершиной . Часть кривой от точки вылета до вершины называется восходящей ветвью . Такая траектория пули характерна тем, что восходящая и нисходящая ветви совершенно одинаковы, а угол бросания и падения равны между собой.

Рис. 8. Угол возвышения (траектория пули в безвоздушном пространстве)

Действие силы сопротивления воздушной среды. На первый взгляд кажется маловероятным, чтобы воздух, обладающий такой малой плотностью, мог оказывать существенное сопротивление движению пули и этим значительно уменьшать ее скорость.

Однако опытами установлено, что сила сопротивления воздуха, действующего на пулю, выпущенную из винтовки образца 1891/30 гг., представляет собой большую величину - 3,5 кг.

Учитывая, что пуля весит всего лишь несколько граммов, становиться вполне очевидным большое тормозящее действие, которое оказывает воздух на летящую пулю.

Во время полета пуля расходует значительную часть своей энергии на то, чтобы раздвинуть частицы воздуха, мешающие ее полету.

Как показывает фотоснимок пули, летящей со сверхзвуковой скоростью (свыше 340 м/с), перед ее головной частью образуется уплотнение воздуха (рис. 9). От этого уплотнения расходится во все стороны головная баллистическая волна. Частицы воздуха, скользя по поверхности пули и срываясь с ее боковых стенок, образуют позади пули зону разреженного пространства. Стремясь заполнить образовавшуюся пустоту позади пули, частицы воздуха создают завихрения, в результате чего за дном пули тянется хвостовая волна.

Уплотнение воздуха впереди головной части пули тормозит ее полет; разряженная зона позади пули засасывает ее и этим еще больше усиливает торможение; стенки пули испытывают трение о частицы воздуха, что также замедляет ее полет. Равнодействующая этих трех сил и составляет силу сопротивления воздуха.

Рис. 9. Фотоснимок пули, летящей со сверхзвуковой скоростью

(свыше 340 м/сек.)

Огромное влияние, оказываемое сопротивлением воздуха на полет пули, также видно из следующего примера. Пуля, выпущенная из винтовки Мосина образца 1891/30 гг. или из снайперской винтовки Драгунова (СВД). В обычных условиях (при сопротивлении воздуха), имеет наибольшую горизонтальную дальность полета 3400 м, а при стрельбе в безвоздушном пространстве она могла бы пролететь 76 км.

Следовательно, под действием силы сопротивления воздуха траектория пули теряет форму правильной параболы, приобретая форму несимметричной кривой линии; вершина делит ее на две неравные части, из которых восходящая ветвь всегда длиннее и отложе нисходящей. При стрельбе на средние дистанции можно условно принимать отношение длины восходящей ветви траектории к нисходящей, как 3:2.

Вращение пули вокруг своей оси. Известно, что тело приобретает значительную устойчивость, если ему придать быстрое вращательное движение вокруг своей оси. Примером устойчивости вращающегося тела может служить игрушка “волчок”. Невращающийся “волчок” не будет стоять на своей заостренной ножке, но если “волчку” придать быстрое вращательное движение вокруг своей оси, он будет устойчиво стоять на ней (рис. 10).

Чтобы пуля приобрела способность бороться с опрокидывающим действием силы сопротивления воздуха, сохранила устойчивость при полете, ей придают быстрое вращательное движение вокруг своей продольной оси. Это быстрое вращательное движение пуля приобретает благодаря винтообразным нарезам в канале ствола оружия (рис. 11). Под действием давления пороховых газов пуля продвигается по каналу ствола вперед, одновременно вращаясь вокруг своей продольной оси. По вылете из ствола пуля по инерции сохраняет полученное сложное движение - поступательное и вращательное.

Не вдаваясь в подробности объяснения физических явлений, связанных с действием сил на тело, испытывающее сложное движение, необходимо все же сказать о том, что пуля при полете совершает правильные колебания и своей головной частью описывает вокруг траектории окружности (рис. 12). При этом продольная ось пули как бы “следит” за траекторией, описывая вокруг нее коническую поверхность (рис. 13).

Рис. 12. Коническое вращение головной части пули

Рис. 13. Полет вращающейся пули в воздухе

Если применить законы механики к летящей пуле, то станет очевидным, что чем больше скорость ее движения и чем пуля длиннее, тем сильнее воздух стремиться ее опрокинуть. Поэтому пулям патронов разного типа необходимо придавать различную скорость вращения. Так, легкая пуля, выпущенная из винтовки, имеет скорость вращения 3604 об./сек.

Однако вращательное движение пули, столь необходимое для придания ей устойчивости во время полета, имеет и свои отрицательные стороны.

На быстро вращающуюся пулю, как уже было сказано, оказывает непрерывное опрокидывающее действие сила сопротивления воздуха, в связи с чем головная часть пули описывает вокруг траектории окружность. В результате сложения этих двух вращательных движений возникает новое движение, отклоняющее ее головную часть в сторону от плоскости стрельбы1 (рис. 14). При этом одна боковая поверхность пули подвергается давлению частиц больше, чем другая. Такое неодинаковое давление воздуха на боковые поверхности пули и отклоняет ее в сторону от плоскости стрельбы. Боковое отклонение вращающейся пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 15).

Рис. 14. В результате двух вращательных движений пуля постепенно поворачивает головную часть вправо (в сторону вращения)

Рис. 15. Явление деривации

По мере удаления пули от дульного среза оружия величина деривационного отклонения ее быстро и прогрессивно возрастает.

При стрельбе на ближние и средние расстояния деривация не имеет большого практического значения для стрелка. Так, при дальности стрельбы на 300 м деривационное отклонение равно 2 см, а на 600 м - 12 см. Деривацию приходится учитывать только при особо точной стрельбе на дальние расстояния, внося соответствующие поправки в установку прицела, сообразуясь с таблицей деривационных отклонений пули для определенной дальности стрельбы.

2.3.4 Зависимость формы траектории от угла бросания. Элементы траектории

Угол, образуемый горизонтом оружия и продолжением оси канала ствола до выстрела, называется углом возвышения .

Однако правильнее говорить о зависимости горизонтальной дальности стрельбы, а следовательно, и формы траектории от угла бросания , который является алгебраической суммой угла возвышения и угла вылета (рис. 48).

Рис. 48 - Угол возвышения и угол бросания

Итак, между дальностью полета пули и углом бросания существует определенная зависимость.


Согласно законам механики, наибольшая горизонтальная дальность полета в безвоздушном пространстве достигается, когда угол бросания равен 45°. С увеличением угла от 0 до 45° дальность полета пули возрастает, а от 45 до 90° - уменьшается. Угол бросания, при котором горизонтальная дальность полета пули наибольшая, называется углом наибольшей дальности .

При полете пули в воздухе угол наибольшей дальности не достигает 45°. Величина его для современного стрелкового оружия колеблется в пределах 30-35°, в зависимости от веса и формы пули.

Траектории, образуемые при углах бросания меньше угла наибольшей дальности (0-35°), называются настильными . Траектории, образуемые при углах бросания больше угла наибольшей дальности (35-90°), называются навесными (рис. 49).


Рис. 49 - Настильные и навесные траектории

При изучении движения пули в воздухе применяют обозначения элементов траектории, указанные на рис. 50.


Рис. 50 - Траектория и ее элементы:
точка вылета - центр дульного среза ствола; она является началом траектории;
горизонт оружия - горизонтальная плоскость, проходящая через точку вылета. На чертежах и рисунках, изображающих траекторию сбоку, горизонт имеет вид горизонтальной линии;
линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия;
линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент выстрела. Касательная к траектории в точке вылета;
плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения;
угол возвышения - угол, составленный линией возвышения и горизонтом оружия;
угол бросания - угол, составленный линией бросания и горизонтом оружия;
угол вылета - угол, составленный линией возвышения и линией бросания;
точка падения - точка пересечения траектории с горизонтом оружия;
угол падения - угол, составленный касательной к траектории в точке падения и горизонтом оружия;
горизонтальная дальность - расстояние от точки вылета до точки падения;
вершина траектории - наивысшая точка траектории над горизонтом оружия. Вершина делит траекторию на две части - ветви траектории;
восходящая ветвь траектории - часть траектории от точки вылета до вершины;
нисходящая ветвь траектории - часть траектории от вершины до точки падения;
высота траектории - расстояние от вершины траектории до горизонта оружия.

Поскольку при спортивной стрельбе дистанции для каждого вида оружия остаются в основном неизменными, многие стрелки вообще не задумываются, под каким углом возвышения или бросания нужно стрелять. В практике значительно удобнее оказалось угол бросания заменить другим, очень схожим с ним, - углом прицеливания (рис. 51). Поэтому, несколько отступая от изложения вопросов внешней баллистики, мы даем элементы наводки оружия (рис. 52).


Рис. 51 - Линия прицеливания и угол прицеливания


Рис. 52 - Элементы наводки оружия в цель:
линия прицеливания - прямая, проходящая от глаза стрелка через прорези прицела и вершину мушки в точку прицеливания;
точка прицеливания - точка пересечения линии прицеливания с целью или плоскостью цели (при выносе точки прицеливания);
угол прицеливания - угол, составленный линией прицеливания и линией возвышения;
угол места цели - угол, составленный линией прицеливания и горизонтом оружия;
угол возвышения - алгебраическая сумма углов прицеливания и угла места цели.

Стрелку не мешает знать и степень отлогости траекторий пуль, применяемых в спортивной стрельбе. Поэтому мы приводим графики, характеризующие превышение траектории при стрельбе из различных винтовок, пистолетов и револьверов (рис. 53-57).


Рис. 53 - Превышение траектории над линией прицеливания при стрельбе 7,6-мм тяжелой пулей из служебной винтовки


Рис. 54 - Превышение траектории пули над линией прицеливания при стрельбе из малокалиберной винтовки (при V 0 =300 м/сек)


Рис. 55 - Превышение траектории пули над линией прицеливания при стрельбе из малокалиберного пистолета (при V 0 =210 м/сек)


Рис. 56 - Превышение траектории пули над линией прицеливания при стрельбе:
а - из перествольного револьвера (при V 0 =260 м/сек); б - из пистолета ПМ (при V 0 =315 м/сек).


Рис. 57 - Превышение траектории пули над линией прицеливания при стрельбе из винтовки 5,6-мм спортивно-охотничьим патроном (при V 0 =880 м/сек)

2.3.5 Зависимость формы траектории от величины начальной скорости пули, ее формы и поперечной нагрузки

Сохраняя свои основные свойства и элементы, траектории пуль могут резко отличаться одна от другой по своей форме: быть длиннее и короче, иметь различную отлогость и кривизну. Эти многообразные изменения зависят от ряда факторов.

Влияние начальной скорости . Если под одним и тем же углом бросания выпустить с различными начальными скоростями две одинаковые пули, то траектория пули, обладающей большей начальной скоростью, окажется выше траектории пули, имевшей меньшую начальную скорость (рис. 58).


Рис. 58 - Зависимость высоты траектории и дальности полета пули от начальной скорости

Пуле, летящей с меньшей начальной скоростью, потребуется больше времени, чтобы долететь до мишени, поэтому под действием силы тяжести она успеет и значительно больше опуститься вниз. Очевидно также, что с увеличением скорости увеличится и дальность ее лёта.

Влияние формы пули . Стремление увеличить дальность и меткость стрельбы требовало придать пуле такую форму, которая позволила бы ей как можно дольше сохранять скорость и устойчивость в полете.

Сгущение частиц воздуха перед головной частью пули и зона разреженного пространства позади нее являются основными факторами силы сопротивления воздуха. Головная волна, резко увеличивающая торможение пули, возникает при ее скорости, равной скорости звука или превышающей ее (свыше 340 м/сек).

Если скорость пули меньше скорости звука, то она летит у самого гребня звуковой волны, не испытывая чрезмерно большого сопротивления воздуха. Если же она больше скорости звука, пуля обгоняет все звуковые волны, образующиеся перед ее головной частью. В этом случае возникает головная баллистическая волна, которая значительно сильнее тормозит полет пули, отчего она быстро теряет скорость.

Если взглянуть на очертания головной волны и завихрения воздуха, которые возникают при движении различных по форме пуль (рис. 59), то видно, что давление на головную часть пули тем меньше, чем острее ее форма. Зона разреженного пространства сзади пули тем меньше, чем больше скошена хвостовая ее часть; в этом случае сзади летящей пули будет также меньше завихрений.


Рис. 59 - Характер очертаний головной волны, возникающей при движении различных по форме пуль

И теория, и практика подтвердили, что наиболее удобообтекаема та форма пули, которая очерчена по так называемой кривой наименьшего сопротивления - сигаровидная. Опыты показывают, что коэффициент сопротивления воздуха в зависимости только от формы головной части пули может изменяться в полтора-два раза.

Различной скорости полета соответствует своя, наиболее выгодная, форма пули.

При стрельбе на небольшие расстояния пулями, имеющими небольшую начальную скорость, их форма незначительно влияет на форму траектории. Поэтому револьверные, пистолетные и малокалиберные патроны снаряжаются тупоконечными пулями: это удобнее для перезарядки оружия, а также способствует сохранению ее от повреждений (особенно безоболочечных - к малокалиберному оружию).

Учитывая зависимость точности стрельбы от формы пули, стрелку необходимо оберегать пулю от деформации, следить, чтобы на ее поверхности не появились царапины, забоины, вмятины и т.п.

Влияние поперечной нагрузки . Чем тяжелее пуля, тем большей кинетической энергией она обладает, следовательно, тем меньше влияет на ее полет сила сопротивления воздуха. Однако способность пули сохранять свою скорость зависит не просто от ее веса, а от отношения веса к площади, встречающей сопротивление воздуха. Отношение веса пули к площади ее наибольшего поперечного сечения называется поперечной нагрузкой (рис. 60).


Рис. 60 - Площадь поперечного сечения пуль:
а - к 7,62-мм винтовке; б - к 6,5-мм винтовке; в - к 9-мм пистолету; г - к 5,6-мм винтовке для стрельбы по мишени "Бегущий олень"; д - к 5,6-мм винтовке бокового огня (длинный патрон).

Поперечная нагрузка тем больше, чем больше вес пули и меньше калибр. Следовательно, при одинаковом калибре поперечная нагрузка больше у пули более длинной. Пуля с большей поперечной нагрузкой имеет и большую дальность полета, и более отлогую траекторию (рис. 61).


Рис. 61 - Влияние поперечной нагрузки пули на дальность ее полета

Однако есть и определенный предел увеличения этой нагрузки. Прежде всего, с увеличением ее (при том же калибре) возрастает общий вес пули, а значит, и отдача оружия. Кроме того, увеличение поперечной нагрузки за счет чрезмерного удлинения пули вызовет значительное опрокидывающее действие головной ее части назад силой сопротивления воздуха. Из этого и исходят, устанавливая наиболее выгодные габариты современных пуль. Так, поперечная нагрузка тяжелой пули (вес 11,75 г) для служебной винтовки равна 26 г/см 2 , малокалиберной пули (вес 2,6 г) - 10,4 г/см 2 .

Насколько велико влияние поперечной нагрузки пули на ее полет, видно из следующих данных: у тяжелой пули, имеющей начальную скорость порядка 770 м/сек, наибольшая дальность полета 5100 м, у легкой пули при начальной скорости 865 м/сек - всего 3400 м.

2.3.6 Зависимость траектории от метеорологических условий

Непрерывно меняющиеся во время стрельбы метеорологические условия могут оказывать существенное влияние на полет пули. Однако определенные знания и практический опыт помогают в значительной мере ослабить их вредное влияние на меткость стрельбы.

Поскольку дистанции спортивной стрельбы относительно невелики и пуля пролетает их за очень незначительное время, некоторые атмосферные факторы, например плотность воздуха, не окажут существенного влияния на ее полет. Поэтому в спортивной стрельбе приходится учитывать главным образом влияние ветра и в известной степени температуру воздуха.

Влияние ветра . Встречный и попутный ветры незначительно влияют на точность стрельбы, поэтому стрелки обычно пренебрегают их действием. Так, при стрельбе на дистанцию 600 м сильный (10 м/сек) встречный или попутный ветер изменяет СТП по высоте всего лишь на 4 см.

Боковой же ветер значительно отклоняет пулю в сторону, причем даже при стрельбе на близкие расстояния.

Ветер характеризуется силой (скоростью) и направлением.

Сила ветра определяется его скоростью в метрах в секунду. В стрелковой практике различают ветер: слабый - 2 м/сек, умеренный - 4-5 м/сек и сильный - 8-10 м/сек.

Силу и направление ветра стрелки практически определяют по раазличным местным признакам: с помощью флага, по движению дыма, колебанию травы, кустов и деревьев и т.д. (рис. 62).


Рис. 62 - Определение силы ветра по флагу и по дыму

В зависимости от силы и направления ветра следует либо производить боковую поправку прицела, либо выносить точку, прицеливая в сторону, противоположную его направлению (с учетом отклонения пуль под действием ветра - в основном при стрельбе по фигурным целям). В табл. 8 и 9 даны величины отклонений пуль под влиянием бокового ветра.

Отклонение пуль под влиянием бокового ветра при стрельбе из винтовок калибра 7,62 мм

Таблица 8

Дальность стрельбы, м Отклонение тяжелой пули (11,8 г), см
слабый ветер (2 м/сек) умеренный ветер (4 м/сек) сильный ветер (8 м/сек)
100 1 2 4
200 4 8 18
300 10 20 41
400 20 40 84
500 34 68 140
600 48 100 200
700 70 140 280
800 96 180 360
900 120 230 480
1000 150 300 590

Отклонение пуль под влиянием бокового ветра при стрельбе из малокалиберной винтовки

Как видно из этих таблиц, при стрельбе на малые расстояния отклонение пуль почти пропорционально силе (скорости) ветра. Из табл. 8 также видно, что при стрельбе из служебной и произвольной винтовок на 300 м боковой ветер, имеющий скорость 1 м/сек, сносит пулю в сторону на один габарит мишени №3 (5 см). Этими упрощенными данными и следует пользоваться в практике при определении величины поправок на ветер.

Косой ветер (под углом к плоскости стрельбы 45, 135, 225 и 315°) в два раза меньше отклоняет пулю, чем боковой.

Однако во время стрельбы производить поправку на ветер, так сказать, "формально" руководствуясь исключительно данными таблиц, конечно, нельзя. Эти данные должны служить только исходным материалом и помогать стрелку ориентироваться в сложных условиях стрельбы при ветре.

Практически редко бывает, чтобы на таком сравнительно малом участке местности, как стрельбище, ветер все время имел одно направление, а тем более одинаковую силу. Обычно он дует порывами. Поэтому стрелку необходимо умение приурочивать выстрел к моменту, когда сила и направление ветра станут приблизительно теми же, что и при предыдущих выстрелах.

На стрельбище обычно вывешивают флаги, чтобы спортсмен мог определять силу и направление ветра. Нужно научиться правильно руководствоваться показаниями флагов. Не следует целиком полагаться на показания флагов, если они высоко укреплены над линией мишеней и линией огня. Нельзя также ориентироваться по флагам, установленным у опушки леса, крутых обрывов, оврагов и ложбин, так как скорость ветра в разных слоях атмосферы, а также у неровностей местности, препятствий различна. В качестве примера на рис. 63 даны ориентировочные данные о скорости ветра летом на равнине на различной высоте от земли. Понятно, что показания флагов, установленных на высоком пулеприемном валу или на высокой мачте, не будут соответствовать истинной силе ветра, которая действует непосредственно на пулю. Нужно руководствоваться показаниями флагов, бумажных ленточек и т.д., установленных на том же уровне, на котором находится оружие во время стрельбы.


Рис. 63 - Ориентировочные данные о скорости ветра летом на различной высоте на равнине

Нужно также иметь в виду, что ветер, огибая неровности местности, препятствия, может создавать завихрения. Если флажки устанавливают по всей дистанции стрельбы, они нередко показывают совершенно различное, даже противоположное направление ветра. Поэтому нужно стараться определить главное направление и силу ветра по всей трассе стрельбы, внимательно наблюдая за отдельными местными ориентирами на участке местности, лежащем между стрелком и целью.

Естественно, чтобы делать точные поправки на ветер, необходим определенный опыт. А опыт не приходит сам собой. Стрелок должен постоянно внимательно наблюдать и тщательно изучать влияние ветра вообще и на данном стрельбище в частности, систематически записывать условия, при которых ведется стрельба. Со временем у него вырабатывается подсознательное чувство, появляется опыт, которые позволяют быстро ориентироваться в метеорологической обстановке и делать нужные поправки, обеспечивающие меткую стрельбу в сложных условиях.

Влияние температуры воздуха . Чем ниже температура воздуха, тем больше его плотность. Пуля, летящая в более плотном взодухе, на своем пути встречает большое количество его частиц, поэтому и быстрее теряет начальную скорость. Следовательно, в холодную погоду, при низкой температуре дальность стрельбы уменьшается и СТП понижается (табл. 10).

Перемещение средней точки попадания при стрельбе из винтовки калибра 7,62 мм под влиянием изменения температуры воздуха и порохового наряда на каждые 10°

Таблица 10

Дальность стрельбы, м Перемещение СТП по высоте, см
легкая пуля (9,6 г) тяжелая пуля (11,8 г)
100 - -
200 1 1
300 2 2
400 4 4
500 7 7
600 12 12
700 21 19
800 35 28
900 54 41
1000 80 59

Температура влияет и на процесс горения порохового заряда в стволе оружия. Как известно, с повышением температуры скорость горения порохового заряда увеличивается, так как уменьшается расход тепла, необходимый для нагревания и воспламенения пороховых зерен. Следовательно, чем ниже температура воздуха, тем медленнее идет процесс нарастания давления газов. В результате уменьшается и начальная скорость пули.

Установлено, что изменение температуры воздуха на 1° изменяет начальную скорость на 1 м/сек. Значительные температурные колебания между летом и зимой приводят к измениям начальной скорости в пределах 50-60 м/сек.

Учитывая это, для пристрелки оружия, составления соответствующих таблиц и т.д. принимают определенную "нормальную" температуру - +15°.

Учитывая зависимость между температурой порохового заряда и начальной скоростью пули, необходимо иметь в виду следующее.

При длительной стрельбе большими сериями, когда ствол винтовки сильно разогревается, не следует допускать, чтобы очередной патрон долго находился в патроннике: сравнительно высокая температура нагревшегося ствола, передаваясь через патронную гильзу пороховому заряду, повлечет за собой ускорение воспламенения пороха, что в конечном счете может привести к изменению СТП и "отрывам" вверх (в зависимости от продолжительности пребывания патрона в патроннике).

Поэтому если стрелок устал и ему необходим некоторый отдых перед очередным выстрелом, то во время такого перерыва в стрельбе патрон не должен находиться в патроннике; его следует извлекать либо вообще заменять другим патроном из пачки, то есть ненагретым.


2.3.7 Рассеивание пуль

Даже при самых благоприятных условиях стрельбы каждая из выпущенных пуль описывает свою траекторию, несколько отличающуюся от траекторий других пуль. Это явление называется естественным рассеиванием .

При значительном количестве выстрелов траектории в своей совокупности образуют сноп траекторий , который при встрече с мишенью дает ряд пробоин, более или менее удаленных друг от друга. Площадь, которую они занимают, называется площадью рассеивания (рис.64).


Рис. 64 - Сноп траекторий, средняя траектория, площадь рассеивания

Все пробоины располагаются на площади рассеивания вокруг некоторой точки, называемой центром рассеивания или средней точкой попадания (СТП ). Траектория, находящаяся в середине снопа и проходящая через среднюю точку попадания, называется средней траекторией . При внесении поправок в установку прицела в процессе стрельбы всегда подразумевается именно эта средняя траектория.

Для разных образцов оружия и патронов существуют определенные нормы рассеивания пуль, а также нормы рассеивания пуль по заводским техническим условиям и допускам при выпуске определенных образцов оружия и партий патронов.

При большом количестве выстрелов рассеивание пуль подчиняется определенному закону рассеивания, сущность которого заключается в следующем:

— пробоины располагаются на площади рассеивания неравномерно, наиболее густо группируясь вокруг СТП;

— пробоины располагаются относительно СТП симметрично, так как вероятность отклонения пули в любую сторону от СТП одинакова;

— площадь рассеивания всегда ограничена некоторым пределом и имеет форму эллипса (овала), вытянутого на вертикальной плоскости по высоте.

В силу этого закона в целом пробоины располагаются на площади рассеивания закономерно, в связи с чем в симметричных полосах равной ширины, одинаково удаленных от осей рассеивания, заключается одинаковое и определенное количество пробоин, хотя площади рассеивания могут иметь различные размеры (в зависимости от образца оружия и патронов). Мерой рассеивания служат: срединное отклонение, сердцевинная полоса и радиус круга, вмещающего лучшую половину пробоин (Р 50) или все попадания (Р 100). Следует подчеркнуть, что закон рассеивания полностью проявляет себя при большом количестве выстрелов. При спортивной стрельбе сравнительно небольшими сериями площадь рассеивания приближается к форме круга, поэтому и мерой рассеивания служит величина радиуса круга, вмещающего 100% пробоин (Р 100) или лучшую половину пробоин (Р 50) (рис. 65). Радиус круга, вмещающего все пробоины, примерно в 2,5 раза больше радиуса круга, вмещающего лучшую их половину. При заводских испытаниях патронов, когда отстрел ведется небольшими сериями (обычно 20) выстрелов, мерой рассеивания служит еще и круг, включающий в себя все пробоины - П 100 (поперечник, включающий все пробоины, см. рис. 16).


Рис. 65 - Большой и малый радиусы кругов, вмещающих 100 и 50% попаданий

Итак, естественное рассеивание пуль - объективный процесс, действующий независимо от воли и желания стрелка. Отчасти это так, и требовать от оружия и патронов того, чтобы все пули попадали в одну точку, - бессмысленно.

Вместе с тем стрелок должен помнить, что естественное рассеивание пуль отнюдь не является неизбежной нормой, раз и навсегда установленной для данного образца оружия и определенных условий стрельбы. Искусство меткой стрельбы и состоит в том, чтобы знать причины естественного рассеивания пуль и уменьшить их влияние. Практика убедительно доказала, насколько важны для уменьшения рассеивания правильная отладка оружия и подбор патронов, техническая подготовленность стрелка и опыт стрельбы в неблагоприятных метеорологических условиях.

Для успешного освоения техники стрельбы из любого стрелкового оружия, необходимо хорошо усвоить знания законов баллистики и ряда основных связанных с ней понятий. Без этого не обходился и не обходится ни один снайпер, без изучения этой дисциплины курс обучения снайпингу малополезен.

Баллистика - это наука о движении пуль и снарядов, выпущенных из стрелкового оружия при выстреле. Баллистика подразделяется на внешнюю и внутреннюю .

Внутренняя баллистика

Внутреняя баллистика изучает процессы, происходящие в канале ствола оружия во время выстрела, движение пули по каналу ствола и сопровождающих это явление -аэро и -термодинамических зависимостей как в канале ствола, так и за его пределами до окончания последействия пороховых газов.

Кроме того, внутренняя баллистика изучает вопросы наиболее рационального использования энергии порохового заряда во время выстрела с тем, чтобы пуле заданного калибра и веса сообщить оптимальную начальную скорость при соблюдении прочности ствола оружия: это дает исходные данные как для внешней баллистики, так и для проектирования оружия.

Выстрел

Выстрел - это выбрасывание пули из канала ствола оружия под воздействием энергии газов, образующихся при сгорании порохового заряда патрона.

Динамика выстрела . При ударе бойка по капсюлю боевого патрона, досланного в патронник, ударный состав капсюля взрывается, при этом, образуется пламя, которое через затравочные отверстия в дне гильзы передается пороховому заряду и воспламеняет его. При одномоментном сгорании боевого (порохового) заряда, образуется большое количество нагретых пороховых газов, которые создают высокое давление на дно пули, дно и стенки гильзы, а также на стенки канала ствола и затвор.

Под сильным давлением пороховых газов на дно пули, она отделяется от гильзы и врезается в каналы (нарезы) ствола оружия и, вращаясь по ним с постоянно нарастающей скоростью, выбрасывается наружу по направлению оси канала ствола.

В свою очередь, давление газов на дно гильзы вызывает движение оружия (ствола оружия) назад: это явление называют отдачей . Чем больше калибр оружия и, соответственно, боеприпаса (патрона) под него - тем больше сила отдачи (смотрите ниже).

При выстреле из автоматического оружия, принцип действия которого основан на использовании отводимых через отверстие в стенке ствола энергии пороховых газов, как например в СВД, часть пороховых газов после прохождения в газовую камеру ударяет в поршень и отбрасывает толкатель с затвором назад.

Выстрел происходит в сверхкороткий промежуток времени: от 0,001 до 0,06 секунды и делится на четыре последовательных периода:

  • предварительный
  • первый (основной)
  • второй
  • третий (период последействия пороховых газов)

Предварительный период выстрела. Длится с момента возгорания порохового заряда патрона до момента полного врезания пули в нарезы канала ствола. На протяжении этого периода, в канале ствола создается давление газов достаточное для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы канала ствола. Такой тип давления называется давлением форсирования , которое достигает значения 250 - 600 кг/см² в зависимости от веса пули, твердости ее оболочки, калибра, типа ствола, количества и типа нарезов.

Первый (основной) период выстрела. Длится от момента начала движения пули по каналу ствола оружия до момента полного сгорания порохового заряда патрона. В этот период, горение порохового заряда происходит в быстро изменяющихся объемах: в начале периода, когда скорость движения пули по каналу ствола еще относительно невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины - 2900 кг/см² для 7,62 мм винтовочного патрона: это давление называется максимальным давлением . Оно создается у стрелкового оружия при прохождении пулей 4 - 6 см пути.

Затем, вследствие очень быстрого увеличения скорости движение пули, объем запульного пространства увеличивается быстрее притока новых газов, вследствие чего давление начинает падать: к концу периода оно равно приблизительно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает приблизительно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период выстрела. Длится с момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода, приток пороховых газов прекращается, но сильно нагретые, сжатые газы расширяются и, оказывая давление на пулю - значительно увеличивают скорость ее движения. Спад давления во втором периоде происходит достаточно быстро и дульное давление у дульного среза ствола оружия составляет у различных образцов оружия 300 - 1000 кг/см². Дульная скорость , то есть скорость пули в момент вылета ее из канала ствола несколько меньше начальной скорости.

Третий период выстрела (период последействия пороховых газов). Длится от момента вылета пули из канала ствола оружия до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают действовать на пулю и сообщают ей дополнительную скорость. Максимальной скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола оружия. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет полностью уравновешено сопротивлением воздуха.

Начальная скорость пули

Начальная скорость пули - это скорость движения пули у дульного среза ствола оружия. За значение начальной скорости пули принимается условная скорость которая меньше максимальной, но больше дульной, что определяется опытным путем и соответствующими расчетами.

Этот параметр является одной из важнейших характеристик боевых свойств оружия. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет. Величина начальной скорости пули зависит от:

  • веса пули
  • длины ствола
  • температуры, веса и влажности порохового заряда
  • размеров и формы зерен пороха
  • плотности заряжания

Вес пули. Чем он меньше, тем больше ее начальная скорость.

Длина ствола. Чем она больше, тем больший промежуток времени пороховые газы действуют на пулю, соответственно, тем больше ее начальная скорость.

Температура порохового заряда. С понижением температуры, начальная скорость пули уменьшается, с повышением - увеличивается в связи с увеличением скорости горения пороха и значением давления. При нормальных погодных условиях, температура порохового заряда примерно равна температуре воздуха.

Вес порохового заряда. Чем больше вес порохового заряда патрона, тем большее воличество пороховых газов, воздействующих на пулю, тем большее давление в канале ствола и, соответственно - скорость полета пули.

Влажность порохового заряда. При ее повышении, уменьшается скорость горения пороха, соответственно, скорость пули снижается.

Размеры и форма зерен пороха. Зерна пороха различных размеров и формы имеют разную скорость горения, а это оказывает существенное влияние на начальную скорость пули. Оптимальный вариант подбирается на стадии разработки оружия и при его последующих испытаниях.

Плотность заряжания. Это соотношение веса порохового заряда к объему гильзы патрона при вставленной пуле: это пространство называется камерой сгорания заряда . При слишком глубокой посадке пули в гильзу патрона значительно увеличивается плотность заряжания: при выстреле, это может привести к разрыву ствола оружия вследствие резкого скачка давления внутри него, потому такие патроны нельзя использовать для стрельбы. Чем больше плотность заряжания - тем меньше начальная скорость пули, чем меньше плотность заряжания - тем больше начальная скорость пули.

Отдача

Отдача - это движение оружия назад в момент выстрела. Ощущается в виде толчка в плечо, руку, грунт или комбинации этих ощущений. Действие отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кг/м и воспринимается стрелком безболезненно.

Сила отдачи и сила сопротивления отдаче (упор приклада) расположены не на одной прямой: они направлены в противоположные стороны и образуют пару сил, под воздействием которой дульная часть ствола оружия отклоняется кверху. Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил. Кроме того, при выстреле ствол оружия вибрирует, то есть совершает колебательные движения. В результате вибрации, дульная часть ствола в момент вылета пули может также отклоняться от первоначального положения в любую сторону (вверх, вниз, влево, вправо).

Следует всегда помнить о том, что величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнения оружия, использования нестандартных патронов.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола: этот угол называется углом вылета .

Угол вылета считается положительным, если ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным - когда ниже. Влияние угла вылета на стрельбу устраняется при приведении его к нормальному бою. Но при нарушении правил ухода за оружием и его сбережением, правил прикладки оружия, использовании упора, изменяется величина угла вылета и бой оружия. С целью уменьшения вредного влияния отдачи на результаты стрельбы, применяются компенсаторы отдачи, находящиеся на дульной части ствола оружия либо съемные, крепящиеся на него.

Внешняя баллистика

Внешняя баллистика изучает процессы и явления сопровождающие движение пули, возникающие после того, как на нее прекращается воздействие пороховых газов. Основной задачей этой поддисциплины является изучение закономерностей полета пули и изучение свойств траектории ее полета.

Также, эта дисциплина дает данные для выработки правил стрельбы, составления таблиц стрельбы и расчета шкал прицелов оружия. Выводы из внешней баллистики издавна широко используются в бою при выборе прицела и точки прицеливания в зависимости от дальности стрельбы, скорости и направления ветра, температуры воздуха и других условий стрельбы.

Это кривая линия, описываемая центром тяжести пули в процессе полета.

Траектория полета пули, полет пули в пространстве

При полете в пространстве, на пулю воздействуют две силы: сила тяжести и сила сопротивления воздуха .

Сила тяжести заставляет пулю постепенно горизонтально снижаться по направлению к плоскости земли, а сила сопротивления воздуха перманентно (непрерывно) замедляет полет пули и стремится опрокинуть ее: как результат - скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и потому на движение в этой среде затрачивается некоторая часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными факторами:

  • трением воздуха
  • завихрениями
  • баллистической волной

Форма, свойства и типы траектории

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения, высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до определенного предела, по достижении которого высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности . Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Навесная траектория - это траектория, получаемая при углах возвышения больших угла наибольшей дальности.

Настильная траектория - траектория, получаемая при углах возвышения меньших угла наибольшей дальности.

Сопряженная траектория - траектория, имеющая одинаковую горизонтальную дальность при разных углах возвышения.

При стрельбе из оружия одной и той же модели (при одинаковых начальных скоростях пули), можно получить две траектории полета с одинаковой горизонтальной дальностью: навесную и настильную.

При стрельбе из стрелкового оружия используются только настильные траектории . Чем настильнее траектория, тем на большей дистанции может быть поражена цель с одной установкой прицела и тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела: в этом заключается практическое значение траектории.

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения : траектория тем более настильна, чем меньше угол падения.

Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Точка вылета - центр дульного среза ствола оружия. Точка вылета является началом траектории.

Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.

Линия возвышения - прямая линия, которая является продолжением оси канала ствола наведенного оружия.

Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.

Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения) .

Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.

Угол бросания

Угол вылета - угол, заключенный между линией возвышения и линией бросания.

Точка падения - точка пересечения траектории с горизонтом оружия.

Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.

Полная горизонтальная дальность - расстояние от точки вылета до точки падения.

Окончательная скорост ь - скорость пули в точке падения.

Полное время полета - время движения пули от точки вылета до точки падения.

Вершина траектории - наивысшая точка траектории над горизонтом оружия.

Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.

Восходящая ветвь траектории - часть траектории от точки вылета до вершины.

Нисходящая ветвь траектории - часть траектории от вершины до точки падения.

Точка прицеливания (точка наводки) - точка на цели (вне ее), в которую наводится оружие.

Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела на уровне с ее краями и вершины мушки в точку прицеливания.

Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.

Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.

Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.

Линия цели - прямая, соединяющая точку вылета с целью.

Наклонная дальность - расстояние от точки вылета до цели по линии цели.

Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).

Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Прямой выстрел, прикрытое пространство, поражаемое пространство, мертвое пространство

Это выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении.

Дальность прямого выстрела зависит от двух факторов: высоты цели и настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела.

Также, дальность прямого выстрела может определяться по стрелковым таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

В пределах дальности прямого выстрела, в напряженные моменты боя, стрельба может вестись без перестановки значений прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Практическое применение

Высота установки оптических прицелов над каналом ствола оружия в среднем составляет 7 см. На дистанции 200 метров и прицеле "2" наибольшие превышения траектории, 5 см на дистанции 100 метров и 4 см - на 150 метров практически совпадают с линией прицеливания - оптической осью оптического прицела . Высота линии прицеливания на середине дистанции 200 метров составляет 3,5 см. Происходит практическое совпадение траектории пули и линии прицеливания. Разницей в 1,5 см можно пренебречь. На дистанции 150 метров высота траектории 4 см, а высота оптической оси прицела над горизонтом оружия составляет 17-18 мм; разница по высоте составляет 3 см, что также не играет практической роли.

На дистанции 80 метров от стрелка высота траектории пули будет 3 см, а высота прицельной линии - 5 см, та же самая разница в 2 см не имеет решающего значения. Пуля ляжет всего на 2 см ниже точки прицеливания.

Вертикальный разброс пуль в 2 см настолько мал, что он принципиального значения не имеет. Поэтому, стреляя с делением "2" оптического прицела, начиная с 80 метров дистанции и до 200 метров, цельтесь противнику в переносицу - вы туда и попадете ±2/3 см выше ниже на всей этой дистанции.

На дистанции 200 метров пуля попадет строго в точку прицеливания. И даже далее, на дистанции до 250 метров, цельтесь с тем же прицелом "2" противнику в "макушку", в верхний срез шапки - пуля после 200 метров дистанции резко понижается. На 250 метров, целясь таким образом, вы попадете ниже на 11 см - в лоб или переносицу.

Вышеописанный способ ведения огня может пригодиться в уличных боях, когда относительно открытые для обзора расстояния в городе составляют примерно 150-250 метров.

Поражаемое пространство

Поражаемое пространство - это расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели.

При стрельбе по целям, находящимся на расстоянии большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Глубина поражаемого пространства зависит от:

  • высоты цели (чем больше высота, тем большее значение)
  • настильности траектории (чем настильнее траектория, тем большее значение)
  • угла наклона местности (на переднем скате она уменьшается, на обратном скате - увеличивается)

Глубину поражаемого пространства можно определить по таблицам превышения траектории над линией прицеливания путем сравнения превышения нисходящей ветви траектории на соответствующую дальность стрельбы с высотой цели, а в том случае, если высота цели меньше 1/3 высоты траектории - то по форме тысячной.

Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с линией прицеливания.

Прикрытое, поражаемое и мертвое пространство

Прикрытое пространство - это пространство за укрытием не пробиваемым пулей, от его гребня и до точки встречи.

Чем больше высота укрытия и чем настильнее траектория - тем больше прикрытое пространство. Глубину прикрытого пространства можно определить по таблицам превышения траектории над линией прицеливания: путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальность стрельбы.

Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Мертвое пространство - это часть прикрытого пространства, на котором цель не может быть поражена при данной траектории.

Чем больше высота укрытия, меньше высота цели и настильнее траектория - тем больше мертвое пространство.

П оражаемое пространство - это часть прикрытого пространства, на которой цель может быть поражена. Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины поражаемого пространства, прикрытого пространства, мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Это достаточно сложный процесс. Вследствие одновременного воздействия на пулю вращательного движения, придающего ей устойчивое положение в полете и сопротивления воздуха, стремящегося опрокинуть пулю головной частью назад, ось пули отклоняется от направления полета в сторону вращения.

В результате этого, пуля встречает большее сопротивление воздуха одной из своих сторон, а поэтому отклоняется от плоскости стрельбы все больше и больше в сторону вращения. Такое отклонение вращающейся пули в сторону от плоскости стрельбы называется деривацией .

Возрастает непропорционально расстоянию полета пули, вследствие чего последняя отклоняется все больше и больше в сторону от намеченной цели и ее траектория представляет собой кривую линию. Направление отклонения пули зависит от направления нарезов ствола оружия: при левосторонней нарезке ствола деривация уводит пулю в левую сторону, при правосторонней - в правую.

На дистанциях стрельбы до 300 метров включительно, деривация не имеет практического значения.

Дистанция, м Деривация, см Тысячные (горизонтальная поправка прицела) Точка прицеливания без поправок (винтовка СВД)
100 0 0 центр прицела
200 1 0 то же
300 2 0,1 то же
400 4 0,1 левый (от стрелка) глаз противника
500 7 0,1 в левую сторону головы между глазом и ухом
600 12 0,2 левый обрез головы противника
700 19 0,2 над центром погона на плече противника
800 29 0,3 без поправок точная стрельба не производится
900 43 0,5 то же
1000 62 0,6 то же