Что такое фотосинтез и хемосинтез. Разница между фотосинтезом и хемосинтезом. Метаболизм на уровне организма

Процесс хемосинтеза в биологии представляет собой в некотором смысле уникальное явление, ведь это необычный тип питания бактерий, основанный на усвоении углекислого газа СО 2 благодаря окислению неорганических соединений. Причем что интересно, по мнению ученых, хемосинтез это древнейший тип автотрофного питания (такого питания, когда организм сам синтезирует органические вещества из неорганических), который мог появиться даже раньше нежели .

История открытия хемосинтеза

Как биологическое явление хемосинтез бактерий был открыт русским биологом С. Н. Виноградским в 1888 году. Ученый доказал способность некоторых бактерий выделять углеводы используя химическую энергию. Им же был выделен ряд особых хемосинтизирующих бактерий, среди которых наиболее заметными являются серобактерии, железобактерии и нитрифицирующие бактерии.

Хемосинтез и фотосинтез: сходства и различия

Давайте теперь разберем в чем сходство хемосинтеза и фотосинтеза, а в чем различия между ними.

Сходство:

  • Как хемосинтез, так и фотосинтез являются типами автотрофного питания, когда организм выделяет органические вещества из неорганических.
  • Энергия такой реакции запасается в аденозинтрифосфорной кислоте (сокращено АТФ) и впоследствии используется для синтеза органических веществ.

Отличие фотосинтеза от хемосинтеза:

  • У них разный источник энергии, и как следствие разные окислительно-восстановительных реакции. При хемосинтезе первичным источником энергии является не солнечный свет, а по окислению определенных веществ.
  • Хемосинтез характерен исключительно для бактерий и арей.
  • При хемосинтезе клетки бактерий не содержат хлорофилла, при фотосинтезе наоборот – содержат.
  • Источником углерода для синтеза органики при хемосинтезе может быть не только лишь углекислый газ, но и окись углерода (СО), муравьиная кислота, уксусная кислота, метанол и карбонаты.

Энергия хемосинтеза

Свою энергию бактерии хемосинтетики получают благодаря окислению , марганца, железа, серы, аммиака и т. д. В зависимости от окисляемого субстрата упомянутые нами выше бактерии и получили свои названия: железобактерии, серобактерии, метанобразующие археи, нитрифицирующие бактерии, ну и так далее.

Значение хемосинтеза в природе

Хемотрофы – организмы, получающие жизненную энергию благодаря хемосинтезу, играют важную роль в круговороте веществ, особенно азота, в частности они поддерживают плодородность почв. Также благодаря деятельности бактерий-хемосинтетиков в природных условиях накапливаются большие запасы руды и селитры.

Реакции хемосинтеза

Теперь давайте более детально разберем существующие реакции хемосинтеза, все они отличаются в зависимости от бактерий-хемосинтетиков.

Железобактерии

К ним относятся нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы. Обитают они в пресных и морских водоемах. Благодаря реакции хемосинтеза образуют отложения железных руд путем окисления двухвалентного железа в трехвалентное.

4FeCO 3 + O 2 + 6H 2 O → Fe(OH) 3 + 4CO 2 + E (энергия)

Помимо энергии в этой реакции образуется углекислый газ. Также помимо бактерий окисляющих железо, есть бактерии окисляющие марганец.

Серобактерии

Иное их название – тиобактерии, представляют собой весьма большую группу микроорганизмов. Как это следует из их названия, эти бактерии получают энергию путем окисления соединений с восстановленной серой.

2S + 3O 2 + 2H 2 O → 2H 2 SO 4 + E

Полученная в результате реакции сера может, как накапливаться в самих бактериях, так и выделятся в окружающую среду в виде хлопьев.

Нитрифицирующие бактерии

Эти бактерии, обитающие в земле и воде, свою энергию получают за счет аммиака и азотистой кислоты, именно они играют очень важную роль в кругообороте азота.

2NH 3 + 3O 2 → HNO 2 + 2H 2 O + E

Азотистая кислота, полученная при такой реакции, образует в земле соли и нитраты, способствующие ее плодородию.

Хемосинтез, видео

И в завершение образовательное видео о сути хемосинтеза.


Эта статья доступна на английском языке — .

Выберите рубрику Биология Тесты по биологии Биология. Вопрос — ответ. Для подготовки к ЕНТ Учебно-методическое пособие по биологии 2008 г Учебная литература по биологии Биология-репетитор Биология. Справочные материалы Анатомия, физиология и гигиена человека Ботаника Зоология Общая биология Вымершие животные Казахстана Жизненные ресурсы человечества Действительные причины голода и нищеты на Земле и возможности их устранения Пищевые ресурсы Ресурсы энергии Книга для чтения по ботанике Книга для чтения по зоологии Птицы Казахстана. Том I География Тесты по географии Вопросы и ответы по географии Казахстана Тестовые задания, ответы по географии для поступающих в ВУЗы Тесты по географии Казахстана 2005 Информация История Казахстана Тесты по Истории Казахстана 3700 тестов по истории Казахстана Вопросы и ответы по истории Казахстана Тесты по истории Казахстана 2004 Тесты по истории Казахстана 2005 Тесты по истории Казахстана 2006 Тесты по истории Казахстана 2007 Учебники по истории Казахстана Вопросы историографии Казахстана Вопросы социально-экономического развития Советского Казахстана Ислам на территории Казахстана. Историография советского Казахстана (очерк) История Казахстана. Учебник для студентов и школьников. ВЕЛИКИЙ ШЕЛКОВЫЙ ПУТЬ НА ТЕРРИТОРИИ КАЗАХСТАНА И ДУХОВНАЯ КУЛЬТУРА В VI-XII вв. Древние государства на территории Казахстана: Уйсуны, Канглы, Хунну Казахстан в древности Казахстан в эпоху средневековья (XIII — 1 пол. XV вв.) Казахстан в составе Золотой Орды Казахстан в эпоху монгольского владычества Племенные союзы Саков и Сарматов Раннесредневековый Казахстан (VI-XII вв.) Средневековые государства на территории Казахстана в XIV-XV вв ХОЗЯЙСТВО И ГОРОДСКАЯ КУЛЬТУРА РАННЕСРЕДНЕВЕКОВОГО КАЗАХСТАНА (VI-XII вв.) Экономика и культура средневековых государств Казахстана XIII-XV вв. КНИГА ДЛЯ ЧТЕНИЯ ПО ИСТОРИИ ДРЕВНЕГО МИРА Религиозные верования. Распространение ислама Хунну: археология, происхождение культуры, этническая история Хуннский некрополь Шомбуузийн Бэльчээр в горах монгольского Алтая Школьный курс истории Казахстана Августовский переворот 19-21 августа 1991 года ИНДУСТРИАЛИЗАЦИЯ Казахско-китайские отношения в XIX веке Казахстан в годы застоя (60-80-е годы) КАЗАХСТАН В ГОДЫ ИНОСТРАННОЙ ИНТЕРВЕНЦИИ И ГРАЖДАНСКОЙ ВОЙНЫ (1918-1920 ГГ.) Казахстан в годы перестройки Казахстан в новое время КАЗАХСТАН В ПЕРИОД ГРАЖДАНСКОГО ПРОТИВОСТОЯНИЯ НАЦИОНАЛЬНО-ОСВОБОДИТЕЛЬНОЕ ДВИЖЕНИЕ 1916 ГОДА КАЗАХСТАН В ПЕРИОД ФЕВРАЛЬСКОЙ РЕВОЛЮЦИИ И ОКТЯБРЬСКОГО ПЕРЕВОРОТА 1917 г. КАЗАХСТАН В СОСТАВЕ СССР Казахстан во второй половине 40-х — середине 60-х годов. Общественно-политическая жизнь КАЗАХСТАНЦЫ В ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЕ Каменный век Палеолит (древнекаменный век) 2,5 млн.-12 тыс. до н.э. КОЛЛЕКТИВИЗАЦИЯ МЕЖДУНАРОДНОЕ ПОЛОЖЕНИЕ НЕЗАВИСИМОГО КАЗАХСТАНА Национально-освободительные восстания Казахского народа в ХVIII-ХIХ вв. НЕЗАВИСИМЫЙ КАЗАХСТАН ОБЩЕСТВЕННО-ПОЛИТИЧЕСКАЯ ЖИЗНЬ В 30-е ГОДЫ. НАРАЩИВАНИЕ ЭКОНОМИЧЕСКОЙ МОЩИ КАЗАХСТАНА. Общественно-политическое развитие независимого Казахстана Племенные союзы и ранние государства на территории Казахстана Провозглашение суверенитета Казахстана Регионы Казахстана в раннем железном веке Реформы управления Казахстаном СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ В ХIХ-НАЧАЛЕ XX ВЕКА Средние века ГОСУДАРСТВА В ПЕРИОД РАСЦВЕТА СРЕДНЕВЕКОВЬЯ (Х-ХIII вв.) Казахстан в XIII-первой половине XV веков Раннесредневековые государства (VI-IX вв.) Укрепление Казахского ханства в XVI-XVII веках ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ: УСТАНОВЛЕНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ История России ИСТОРИЯ ОТЕЧЕСТВА XX ВЕК 1917 ГОД НОВАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА ОТТЕПЕЛЬ ПЕРВАЯ РУССКАЯ РЕВОЛЮЦИЯ (1905-1907) ПЕРЕСТРОЙКА ПОБЕДИВШАЯ ДЕРЖАВА (1945-1953) РОССИЙСКАЯ ИМПЕРИЯ В МИРОВОЙ ПОЛИТИКЕ. ПЕРВАЯ МИРОВАЯ ВОЙНА РОССИЯ В НАЧАЛЕ XX ВЕКА Политические партии и общественные движения в начале XX века. РОССИЯ МЕЖДУ РЕВОЛЮЦИЕЙ И ВОЙНОЙ (1907-1914) СОЗДАНИЕ В СССР ТОТАЛИТАРНОГО ГОСУДАРСТВА (1928-1939) Обществознание Различные материалы по учебе Русский язык Тесты по русскому языку Вопросы и ответы по русскому языку Учебники по русскому языку Правила русского языка

Фотосинтез и хемосинтез – два закономерных природных процесса преобразования энергии. На них стоит фундамент жизнедеятельности окружающей среды, включающей живые организмы и микроорганизмы.

Описание фотосинтеза

Фотосинтез – это процесс, производимый некоторыми бактериями, микроорганизмами и зелёными частями растений, для химического преобразования органических веществ из неорганических веществ с помощью воздействия энергии света. В процессе фотосинтеза выделяется кислород из углевода, поглощённого из атмосферы. Сам процесс фотосинтеза впервые был обнаружен в 1770 году Джозефом Пристли. Своё название этот термина получил из двух древнегреческих слов, означающих «свет» и «совмещение». Фотосинтез у разных организмов проходит по-разному и имеет свои особенности. Так, высшие растения используют пигмент – хлорофилл, а бактерии – бактериохлорофилл. Причём у растений при данном преобразовании выделяется кислород, который затем попадает в атмосферу.

Фотосинтез у растений происходит так: фотоны, которые излучаются солнцем, попадают в пигмент листа – молекулу хлорофилла. Далее процесс распределяется на разделённые кластеры, находящиеся в свою очередь в молекулах. Условно кластеры принято называть фотосистемой 1 и 2. В них проходят определённые процессы, скачкообразно возрастает энергия и передаётся молекулам хлорофилла. Кроме того, необходимо знать, что фотосинтез проходит в две стадии – световую и темновую. В результате проходящих химических реакций теряется несколько электронов хлорофилла и расщепляется вода. Электроны водорода из расщеплённой воды становятся на место потерянных электронов. После этого происходит перекидывание электронов по молекулярной цепочке с дальнейшим преобразованием. В конце концов, энергия, содержащаяся в двух кластерах, запасается в молекулах и дополнительно появляется одна молекула кислорода.

Описание хемосинтеза

Хемосинтез – это процесс выработки органических веществ из неорганических веществ за счёт энергии, полученной в результате химической реакции окисления таких соединений, как: сероводород, водород, аммиак и т.д. Производится он бактериями, не содержащими хлорофиллы. Этот способ получения энергии - своего рода приспособление в тех местах, где солнечный свет, а значит и солнечная энергия, недоступны. Например, проявление хемосинтеза наблюдается на дне водоёма. Хемосинтез был открыт в 1887 году С.Н. Виноградским.

Различия и свойства фотосинтеза и хемосинтеза

Отличительной особенностью хемосинтеза и фотосинтеза является тот факт, что у последнего главным «рычагом» для работы является свет, и выделяемая им энергия. Действующим же стимулом для процесса хемосинтеза являются химические реакции из веществ, находящихся в окружающей среде.

Фотосинтез и хемосинтез очень важны для круговорота природы. С их помощью одни вещества не поглощаются другими и не исчезают. Без процесса фотосинтеза атмосфера не обновлялась бы кислородом, без которого не может жить ни одно живое существо на нашей планете. Процесс фотосинтеза активно влияет на сельскохозяйственные культуры. При его нарушении или недостаточности, спровоцированной отсутствием солнца, существенно падает урожай. Хемосинтез оказывает своё поистине «сказочное» влияние на среду в зависимости от того, какие соединения берутся в обработку теми или иными бактериями. От состава соединений зависит эффект и результат процесса. Так, бактерии могут очистить водоём при условии, что там есть соединения серы и сероводород. Бактерии, использующие соединения аммиака и азотной кислоты для хемосинтеза, являются главной причиной плодородия почвы. Бактерии, окисляющие железные соединения, способствуют отложению полезных руд и металлов.

Кто из нас не помнит определение «фотосинтез» из уроков ботаники в школе? «Процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов». Зная назубок это лаконичное определение, мало кто из нас задавался вопросом, а что же оно скрывает за собой?

По-существу, фотосинтез - это химическая реакция, в результате которой шесть молекул СО2 соединяются с шестью молекулами воды и формируется одна молекула глюкозы - строительный кирпичик нашего органического вещества. Образующийся в ходе фотосинтеза молекулярный кислород является всего лишь побочным продуктом. Однако этот самый «побочный продукт» является одним из основных источников атмосферного кислорода, столь необходимого для высших организмов.

Казалось бы, все очень просто: клетка фотосинтезирующего организма является своего рода «колбочкой» для химической реакции двух компонентов. Но на поверку механизм реакции оказывается куда более сложным. Оказывается, процесс состоит из двух реакций: «световой» и «темновой». Первая связана с расщеплением молекулы воды на водород и кислород при помощи энергии света. Солнечный свет поглощается специальным светопоглощающим пигментом клетки хлорофиллом (окрашен в зеленый цвет). Далее происходит перевод энергии в молекулы АТФ, которые высвобождают полученную энергию на второй стадии фотосинтеза - «темновой» реакции. «Темновая» реакция является непосредственно реакцией между углекислым газом и водородом с образованием глюкозы.

Фотосинтез могут осуществлять растения, водоросли и некоторые виды микроорганизмов. Благодаря их жизнедеятельности, становится возможным существование, например, животных, питание которых состоит из органических веществ. Но является ли фотосинтез единственной формой перевода углекислого газа в органическое вещество? Нет. Оказывается, природой предусмотрен и другой, альтернативный, путь образования органических веществ из СО2 - хемосинтез .

Отличием хемосинтеза от фотосинтеза является отсутствие «световой» реакции. В качестве источника энергии, клетки хемосинтезирующих организмов используют энергию не солнечного света, а энергию химических реакций. Каких именно? Реакции окисления водорода, окиси углерода, восстановления серы, железа, аммиака, нитрита, сурьмы.

Конечно, каждый хемосинтезирующий организм использует свою собственную химическую реакцию как источник энергии. Например, водородные бактерии окисляют водород, нитрифицирующие бактерии переводят аммиак в нитратную форму и т.д. Однако все они накапливают энергию, высвобождающуюся в процессе химической реакции, в виде молекул АТФ. Далее процесс протекает по типу реакций темновой стадии фотосинтеза.
Способностью к хемосинтезу обладают только некоторые виды бактерий. Роль их в природе колоссальна. Они не «производят» атмосферный кислород, не накапливают больших количеств органического вещества. Однако химические реакции, которые они используют в ходе своей жизнедеятельности, играют ключевую роль в биогеохимии, обеспечивая, в том числе, круговорот азота, серы и других элементов в природе.

Фотосинтез и хемосинтез являются одними из самых захватывающих процессов, которые происходят в живых организмах. Знание различий между этими двумя реакциями считается необходимым минимумом для учащегося старшей школы, но именно сравнение этих архиважных процессов зачастую вгоняет в ступор самых старательных и вдумчивых учеников.

Определение

Фотосинтез – процесс синтеза органического вещества, простимулированный энергией солнечного света.

Хемосинтез – процесс образования органических соединений, который «заводится» без обязательного наличия солнечных квантов.

Сравнение

Фотосинтез является источником жизнедеятельности живых существ-автотрофов, а именно подавляющего большинства представителей царства Растений и некоторых типов Бактерий, которые в свою очередь служат основным питанием или началом пищевой пирамиды для организмов-гетеротрофов и сапротрофов. Благодаря фотосинтезу на Земле ежегодно образуется 150 миллиардов тонн органического вещества, а атмосфера пополняется 200 миллиардами тонн кислорода, пригодного для дыхания прочих организмов.

Фотосинтез происходит в пластидах – органеллах клеток растений, обладающих пигментом хлорофиллом. В процессе окислительно-восстановительной реакции, коей является фотосинтез, происходит потребление растением воды и неорганических веществ, а именно углекислого газа. Стимулируется сей процесс наличием энергии солнечных квантов. В результате реакции выделяется кислород, а также синтезируются органические вещества – в большинстве случаев глюкоза, она же гексоза или виноградный сахар.

Благодаря хемосинтезу в биосфере происходит круговорот азота, серобактерии выветривают горные породы, создавая базу для образования почв, а водородные бактерии окисляют опасные объемы водорода, которые накапливаются в процессе жизнедеятельности некоторых микроорганизмов. Кроме того, нитрифицирующие бактерии способствуют повышению плодородия грунта, а серобактерии участвуют в очищении сточных вод.

Хемосинтез дислоцируется в клетках бактерий и архей. В процессе окислительно-восстановительных реакций происходит синтез органических веществ. Только не прямо, а через образование энергии АТФ, которая позже тратится на синтез органики. Для этого живые организмы используют CO 2 , водород и кислород, образованные при окислении аммиака, оксида железа, сероводорода и водорода. Учитывая то, что хемосинтез может происходить под землей, в глубинах Мирового океана, в середине других живых организмов, к энергии света он не привязан, им не «заводится», от Солнца не зависит.

Выводы сайт

  1. Фотосинтез невозможен без энергии солнечного света, хемосинтез в нем не нуждается.
  2. Фотосинтезируют растения и бактерии, хемосинтезируют – бактерии и археи.
  3. Оба процесса имеют разное биологическое значение.