Линией возвышения траектории пули гранаты называется. Формирование траектории полета пули. Внешняя баллистика. Траектория полёта пули

Пуля, получив при вылете из канала ствола определенную начальную скорость, стремиться по инерции сохранить величину и направление этой скорости.

Если бы полет пули совершался в безвоздушном пространстве, и на нее не действовала сила тяжести, пуля двигалась бы прямолинейно, равномерно и бесконечно. Однако на пулю, летящую в воздушной среде, действуют силы, которые изменяют скорость ее полета и направление движения. Этими силами являются сила тяжести и сила сопротивления воздуха (рис. 4).

Рис. 4. Силы, действующие на пулю во время ее полета

Вследствие совместного действия этих сил пуля теряет скорость и изменяет направление своего движения, перемещаясь в воздухе по кривой линии, проходящей ниже направления оси канала ствола.

Линия, которую описывает в пространстве движущаяся пуля (ее центр тяжести), называется траекторией .

Обычно баллистика рассматривает траекторию над горизонтом оружия - воображаемой бесконечной горизонтальной плоскостью, проходящей через точку вылета (рис. 5).

Рис. 5. Горизонт оружия

Движение пули, а следовательно, и форма траектории зависят от многих условий. Поэтому, чтобы уяснить себе, как образуется в пространстве траектория пули, необходимо рассмотреть прежде всего, как действуют на пулю в отдельности сила тяжести и сила сопротивления воздушной среды.

Действие силы тяжести. Представим себе, что на пулю после вылета ее из канала ствола не действует никакая сила. В этом случае, как говорилось выше, пуля двигалась бы по инерции бесконечно, равномерно и прямолинейно по направлению оси канала ствола; за каждую секунду она пролетела бы одинаковые расстояния с постоянной скоростью, равной начальной. В этом случае, если бы ствол оружия был направлен прямо в цель, пуля, следуя в направлении оси канала ствола, попала бы в нее (рис. 6).

Рис. 6. Движение пули по инерции (если бы не было силы тяжести и сопротивления воздуха)

Допустим теперь, что на пулю действует только одна сила тяжести. Тогда пуля начнет падать вертикально вниз, как и всякое свободно падающее тело.

Если предположить, что на пулю при ее полете по инерции в безвоздушном пространстве действует сила тяжести, то под действием этой силы пуля опустится ниже от продолжения оси канала ствола - в первую секунду - на 4,9 м, во вторую - на 19,6 м и т.д. В этом случае, если навести ствол оружия в цель, пуля никогда в нее не попадет, так как, подвергаясь действию силы тяжести, она пролетит под целью (рис.7).

Рис. 7. Движение пули (если бы на нее действовала сила тяжести,

но не действовало сопротивление воздуха)

Вполне очевидно, что для того, чтобы пуля пролетела определенное расстояние и попала в цель, необходимо направить ствол оружия куда-то выше цели. Для этого нужно, чтобы ось канала ствола и плоскость горизонта оружия составляли некоторый угол, который называется углом возвышения (рис. 8).

Как видно из рис. 8, траектория пули в безвоздушном пространстве, на которую действует сила тяжести, представляет собой правильную кривую, которая называется параболой . Самая высокая точка траектории над горизонтом оружия называется ее вершиной . Часть кривой от точки вылета до вершины называется восходящей ветвью . Такая траектория пули характерна тем, что восходящая и нисходящая ветви совершенно одинаковы, а угол бросания и падения равны между собой.

Рис. 8. Угол возвышения (траектория пули в безвоздушном пространстве)

Действие силы сопротивления воздушной среды. На первый взгляд кажется маловероятным, чтобы воздух, обладающий такой малой плотностью, мог оказывать существенное сопротивление движению пули и этим значительно уменьшать ее скорость.

Однако опытами установлено, что сила сопротивления воздуха, действующего на пулю, выпущенную из винтовки образца 1891/30 гг., представляет собой большую величину - 3,5 кг.

Учитывая, что пуля весит всего лишь несколько граммов, становиться вполне очевидным большое тормозящее действие, которое оказывает воздух на летящую пулю.

Во время полета пуля расходует значительную часть своей энергии на то, чтобы раздвинуть частицы воздуха, мешающие ее полету.

Как показывает фотоснимок пули, летящей со сверхзвуковой скоростью (свыше 340 м/с), перед ее головной частью образуется уплотнение воздуха (рис. 9). От этого уплотнения расходится во все стороны головная баллистическая волна. Частицы воздуха, скользя по поверхности пули и срываясь с ее боковых стенок, образуют позади пули зону разреженного пространства. Стремясь заполнить образовавшуюся пустоту позади пули, частицы воздуха создают завихрения, в результате чего за дном пули тянется хвостовая волна.

Уплотнение воздуха впереди головной части пули тормозит ее полет; разряженная зона позади пули засасывает ее и этим еще больше усиливает торможение; стенки пули испытывают трение о частицы воздуха, что также замедляет ее полет. Равнодействующая этих трех сил и составляет силу сопротивления воздуха.

Рис. 9. Фотоснимок пули, летящей со сверхзвуковой скоростью

(свыше 340 м/сек.)

Огромное влияние, оказываемое сопротивлением воздуха на полет пули, также видно из следующего примера. Пуля, выпущенная из винтовки Мосина образца 1891/30 гг. или из снайперской винтовки Драгунова (СВД). В обычных условиях (при сопротивлении воздуха), имеет наибольшую горизонтальную дальность полета 3400 м, а при стрельбе в безвоздушном пространстве она могла бы пролететь 76 км.

Следовательно, под действием силы сопротивления воздуха траектория пули теряет форму правильной параболы, приобретая форму несимметричной кривой линии; вершина делит ее на две неравные части, из которых восходящая ветвь всегда длиннее и отложе нисходящей. При стрельбе на средние дистанции можно условно принимать отношение длины восходящей ветви траектории к нисходящей, как 3:2.

Вращение пули вокруг своей оси. Известно, что тело приобретает значительную устойчивость, если ему придать быстрое вращательное движение вокруг своей оси. Примером устойчивости вращающегося тела может служить игрушка “волчок”. Невращающийся “волчок” не будет стоять на своей заостренной ножке, но если “волчку” придать быстрое вращательное движение вокруг своей оси, он будет устойчиво стоять на ней (рис. 10).

Чтобы пуля приобрела способность бороться с опрокидывающим действием силы сопротивления воздуха, сохранила устойчивость при полете, ей придают быстрое вращательное движение вокруг своей продольной оси. Это быстрое вращательное движение пуля приобретает благодаря винтообразным нарезам в канале ствола оружия (рис. 11). Под действием давления пороховых газов пуля продвигается по каналу ствола вперед, одновременно вращаясь вокруг своей продольной оси. По вылете из ствола пуля по инерции сохраняет полученное сложное движение - поступательное и вращательное.

Не вдаваясь в подробности объяснения физических явлений, связанных с действием сил на тело, испытывающее сложное движение, необходимо все же сказать о том, что пуля при полете совершает правильные колебания и своей головной частью описывает вокруг траектории окружности (рис. 12). При этом продольная ось пули как бы “следит” за траекторией, описывая вокруг нее коническую поверхность (рис. 13).

Рис. 12. Коническое вращение головной части пули

Рис. 13. Полет вращающейся пули в воздухе

Если применить законы механики к летящей пуле, то станет очевидным, что чем больше скорость ее движения и чем пуля длиннее, тем сильнее воздух стремиться ее опрокинуть. Поэтому пулям патронов разного типа необходимо придавать различную скорость вращения. Так, легкая пуля, выпущенная из винтовки, имеет скорость вращения 3604 об./сек.

Однако вращательное движение пули, столь необходимое для придания ей устойчивости во время полета, имеет и свои отрицательные стороны.

На быстро вращающуюся пулю, как уже было сказано, оказывает непрерывное опрокидывающее действие сила сопротивления воздуха, в связи с чем головная часть пули описывает вокруг траектории окружность. В результате сложения этих двух вращательных движений возникает новое движение, отклоняющее ее головную часть в сторону от плоскости стрельбы1 (рис. 14). При этом одна боковая поверхность пули подвергается давлению частиц больше, чем другая. Такое неодинаковое давление воздуха на боковые поверхности пули и отклоняет ее в сторону от плоскости стрельбы. Боковое отклонение вращающейся пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 15).

Рис. 14. В результате двух вращательных движений пуля постепенно поворачивает головную часть вправо (в сторону вращения)

Рис. 15. Явление деривации

По мере удаления пули от дульного среза оружия величина деривационного отклонения ее быстро и прогрессивно возрастает.

При стрельбе на ближние и средние расстояния деривация не имеет большого практического значения для стрелка. Так, при дальности стрельбы на 300 м деривационное отклонение равно 2 см, а на 600 м - 12 см. Деривацию приходится учитывать только при особо точной стрельбе на дальние расстояния, внося соответствующие поправки в установку прицела, сообразуясь с таблицей деривационных отклонений пули для определенной дальности стрельбы.

Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории

Внешняя баллистика

Внешняя баллистика - это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Траектория пули (вид сбоку)

Образование силы сопротивления воздуха

Траектория и ее элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете.

Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха - баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.

Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 15° и начальной скорости 800 м/сек в безвоздушном пространстве полетела бы на дальность 32 620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха.

Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Действие силы сопротивления воздуха на полет пули: ЦТ - центр тяжести; ЦС - центр сопротивления воздуха

Чем глаже поверхность пули, тем меньше сила трения и. сила сопротивления воздуха.

Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.

Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение.

Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклонится не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т. е. вправо. Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха - она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д. Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось - конус с вершиной в центре тяжести. Происходит так называемое медленное коническое, или прецессионное, движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории.

Медленное коническое движение пули


Деривация (вид траектории сверху)

Действие силы сопротивления воздуха на полет гранаты

Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией.

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.

В таблицах стрельбы деривация дается как поправка направления в тысячных. Однако при стрельбе из стрелкового оружия величина деривации незначительная (например, на дальности 500 м она не превышает 0,1 тысячной) и ее влияние на результаты стрельбы практически не учитывается.

Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты.

Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед.

Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому стрельбы улучшается.

Для изучения траектории пули (гранаты) приняты следующие определения.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.


Элементы траектории

Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения.

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения. Если этот угол отрицательный, то он называется углом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания.

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

Точка пересечения траектории с горизонтом оружия называется точкой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули (гранаты) в точке падения называется окончательной скоростью.

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называется вершиной траектории.

Кратчайшее расстояние от вершины траектории до горизонта оружия называется высотой траектории.

Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания.

Угол, заключенный между линией прицеливания и горизонтом оружия, называется углом места цели. Угол места цели считается положительным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия. Угол места цели может быть определен с помощью приборов или по формуле тысячной.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели. Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Траектория пули в воздухе имеет следующие свойства :

Нисходящая ветвь короче и круче восходящей;

Угол падения больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания - на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания - в точке падения;

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей;

Траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

Траектория гранаты (вид сбоку)

Траекторию гранаты в воздухе можно разделить на два участка: активный - полет гранаты под действием реактивной силы (от точки, вылета до точки, где действие реактивной силы прекращается) и пассивный - полет гранаты по инерции. Форма траектории гранаты примерно такая же, как и у пули.

Форма траектории

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол наибольшей дальности, настильные, навесные и сопряженные траектории

Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными.

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибки в определении установки прицела); в этом заключается практическое значение настильной траектории.

Превышение траектории полета пули над точкой прицеливания

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания . При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.

Траекторией называется кривая линия, описываемая центром тяжести пули в полете.
Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными. При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Элементы траектории

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории.
Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.
Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия.
Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.
Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения).
Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.
Угол бросания
Угол вылета - угол, заключенный между линией возвышения и линией бросания.
Точка падения - точка пересечения траектории с горизонтом оружия.
Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.
Полная горизонтальная дальность - расстояние от точки вылета до точки падения.
Окончательная скорость - скорость пули (гранаты) в точке падения.
Полное время полета - время движения пули (гранаты) от точки вылета до точки падения.
Вершина траектории - наивысшая точка траектории над горизонтом оружия.
Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.
Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории.
Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие.
Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания.
Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.
Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.
Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.
Линия цели - прямая, соединяющая точку вылета с целью.
Наклонная дальность - расстояние от точки вылета до цели по линии цели.
Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).
Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

Внутренняя и внешняя баллистика.

Выстрел и его периоды. Начальная скорость пули.

Занятие № 5.

«ПРАВИЛА СТРЕЛЬБЫ ИЗ СТРЕЛКОВОГО ОРУЖИЯ»

1. Выстрел и его периоды. Начальная скорость пули.

Внутренняя и внешняя баллистика.

2. Правила стрельбы.

Баллистика – это наука о движении тел, брошенных в пространстве. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

Различают внутреннюю баллистику, занимающуюся исследованием движения снаряда в канале орудия, в противоположность внешней баллистике, исследующей движение снаряда по выходе из орудия.

Мы будем рассматривать баллистику как науку о движении пули при стрельбе.

Внутренняя баллистика – это наука, занимающаяся изучением процессов, которые проходят при выстреле и, в особенности, при движении пули по каналу ствола.

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона, посланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через отверстие в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (или т.н. боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на пулю, она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает отдачу – движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация) и гильзы, плотно прижимаясь к патроннику, препятствуют прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание.

При сгорании порохового заряда примерно 25-30% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15‑25% энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола, нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.



Выстрел проходит в очень короткий промежуток времени: 0,001‑0,06 секунды. При выстреле различают четыре периода:

Предварительный;

Первый (или основной);

Третий (или период последействия газов).

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы канала ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление (зависит от устройства нарезов, веса пули и твердости ее оболочки) называется давлением форсирования и достигает 250‑500 кг/см 2 . Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый (основной) период длится от начала движения пули до момента полного сгорания порохового заряда. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивает скорость ее движения. Скорость пули на вылете из канала ствола (дульная скорость ) несколько меньше начальной скорости.

Начальной скоростью называется скорость движения пули у дульного среза ствола, т.е. в момент её вылета из канала ствола. Она измеряется в метрах в секунду (м/с). Начальная скорость калиберных пуль и снарядов составляет 700‑1000 м/с.

Величина начальной скорости является одной из важнейших характеристик боевых свойств оружия. Для одной и той же пули увеличение начальной скорости приводит к увеличению дальности полета, пробивного и убойного действия пули , а также к уменьшению влияния внешних условий на ее полёт.

Пробивное действие пули характеризуется её кинетической энергией: глубиной проникновения пули в преграду определенной плотности.

При стрельбе из АК74 и РПК74 пуля со стальным сердечником 5,45 мм патрона пробивает:

o стальные листы толщиной:

· 2 мм на дальности до 950 м;

· 3 мм – до 670 м;

· 5 мм – до 350 м;

o стальной шлем (каска) – до 800 м;

o земляную преграду 20-25 см – до 400 м;

o сосновые брусья толщиной 20 см – до 650 м;

o кирпичную кладку 10-12 см – до 100 м.

Убойность пули характеризуется ее энергией (живой силой удара) в момент встречи с целью.

Энергия пули измеряется в килограмм-сила-метрах (1 кгс·м – энергия, которая необходима для совершения работы по подъему 1 кг на высоту 1 м). Для нанесения поражения человеку необходима энергия, равная 8 кгс·м, для нанесения такого же поражения животному – около 20 кгс·м. Энергия пули у АК74 на 100 м равна 111 кгс·м, а на 1000 м – 12 кгс·м; убойное действие пули сохраняется до дальности 1350 м.

Величина начальной скорости пули зависит от длины ствола, массы пули и свойств пороха. Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули.

У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, т.к. полного сгорания порохового заряда к моменту вылета пули из канала ствола не происходит.

Третий период (период последействия газов) длится от момента вылeтa пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают воздействовать на пулю и придают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола.

Раскаленные пороховые газы, истекающие из ствола вслед за пулей, при встрече с воздухом вызывают ударную волну, которая является источником звука выстрела. Смешивание раскаленных пороховых газов (среди которых есть окиси углерода и водорода) с кислородом воздуха вызывает вспышку, наблюдаемую как пламя выстрела.

Давление пороховых газов, действующее на пулю, обеспечивает придание ей поступательной скорости, а также скорости вращения. Давление, действующее в противоположную сторону (на дно гильзы), создает силу отдачи. Движение оружия назад под действием силы отдачи называется отдачей . При стрельбе из стрелкового оружия сила отдачи ощущается в виде толчка в плечо, руку, действует на установку или грунт. Энергия отдачи тем больше, чем мощнее оружие. У ручного стрелкового оружия отдача обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.

Рис. 1. Подбрасывание дульной части ствола оружия вверх при выстреле

в результате действия отдачи.

Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи, часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Поэтому энергия отдачи при выстреле из такого оружия меньше, чем при стрельбе из неавтоматического оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстия в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Образующаяся при этом динамическая пара сил приводит к возникновению углового перемещения оружия. Отклонения могут также происходить вследствие влияния действия автоматики стрелкового оружия и динамического изгиба ствола при движении по нему пули. Эти причины приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола – угла вылета . Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательное движение – вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п. Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным, когда ниже. Величина угла вылета дается в таблицах стрельбы.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при приведении его к нормальному бою (см. Руководство по 5,45‑мм автоматам Калашникова… – Глава 7 ). Однако при нарушении правил прикладки оружия, использования упора, а также правил ухода за оружием и его сбережения изменяются величина угла вылета и бой оружия.

В целях уменьшения вредного влияния отдачи на результаты в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства – компенсаторы.

Дульный тормоз-компесатор представляет собой специальное приспособление на дульной части ствола, действуя на которое, пороховые газы после вылета пули уменьшают скорость отдачи оружия. Кроме того, истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

В АК74 дульный тормоз-компенсатор уменьшает отдачу на 20%.

1.2. Внешняя баллистика. Траектория полёта пули

Внешняя баллистика – это наука, изучающая движение пули в воздухе (т.е. после прекращения действия на нее пороховых газов).

Вылетев из канала ствола под действием пороховых газов, пуля движется по инерции. Для того чтобы определить, как же движется пуля необходимо рассматривать траекторию ее движения. Траекторией называется кривая линия, описываемая центром тяжести пули во время полета.

Пуля при полете в воздухе подвергается действиям двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую.

Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду, поэтому в этой среде затрачивается часть энергии пули, что вызывается тремя основными причинами:

· трением воздуха;

· образованием завихрений;

· образованием баллистической волны.

Равнодействующая этих сил составляет силу сопротивления воздуха.

Рис. 2.Образование силы сопротивления воздуха.

Рис. 3.Действие силы сопротивления воздуха на полет пули:

ЦТ – центр тяжести; ЦС – центр сопротивления воздуха.

Частицы воздуха, соприкасающиеся с движущейся пулей создают трение и уменьшают скорость полета пули. Примыкающий к поверхности пули слой воздуха, в котором движение частиц изменяется в зависимости от скорости называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разряженное пространство, вследствие чего появляется разность давления на головную и донную части. Эта разность создает силу, направленную в сторону обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей повышается плотность воздуха и образуется звуковая волна. Поэтому полет пули сопровождается характерным звуком. При скорости полета пули, меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, т.к. волны распространяются быстрее скорости полета пули. При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, т.к. пуля тратит часть своей энергии на создание этой волны.

Действие силы сопротивления воздуха на полет пули очень велико: оно вызывает уменьшение скорости и дальности полета. Например, пуля при начальной скорости 800 м/с в безвоздушном пространстве полетела бы на дальность 32620 м; дальность же полета этой пули при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха в основном зависит от:

§ скорости полета пули;

§ формы и калибра пули;

§ от поверхности пули;

§ плотности воздуха

и возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны) выгодны пули с удлиненной остроконечной головной частью.

Таким образом, сила сопротивления воздуха уменьшает скорость движения пули и опрокидывает её. В результате этого пуля начинает «кувыркаться», возрастает сила сопротивления воздуха, уменьшается дальность полета и понижается её действие по цели.

Стабилизация пули в полете обеспечивается приданием пуле быстрого вращательного движения вокруг своей оси, а также – хвостовым оперением гранаты. Скорость вращения при вылете из нарезного оружия составляет: пуль 3000-3500 об/с, проворачивание оперенных гранат 10-15 об/с. Вследствие вращательного движения пули, воздействия силы сопротивления воздуха и силы тяжести происходит отклонение пули в правую сторону от вертикальной плоскости, проведенной через ось канала ствола, – плоскости стрельбы . Отклонение пули от нее при полете в сторону вращения называется деривацией .

Рис. 4. Деривация (вид траектории сверху).

В результате действия этих сил пуля совершает полет в пространстве по неравномерно изогнутой кривой линии, называемой траекторией .

Продолжим рассмотрение элементов и определений траектории пули.

Рис. 5. Элементы траектории.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Горизонтальная плоскость проходящая через точку вылета называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

наведенного оружия , называетсялинией возвышения .

Вертикальная плоскость, проходящая через линию возвышения называетсяплоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия называетсяуглом возвышения. Если этот угол отрицательный, то он называетсяуглом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули , называется линией бросания .

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета .

Точка пересечения траектории с горизонтом оружия называетсяточкой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия называетсяуглом падения.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули в точке падения называетсяокончательной скоростью.

Время движения пули от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называетсявершиной траектории.

Кратчайшее расстояние от вершины траектории до горизонта оружия называетсявысотой траектории.

Часть траектории от точки вылета до вершины называетсявосходящей ветвью, часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели (или вне её), в которую наводится оружие, называется точкой прицеливания (ТП).

Прямая линия от глаза стрелка до точки прицеливания называется линией прицеливания.

Расстояние от точки вылета до пересечения траектории с линией прицеливания, называетсяприцельной дальностью.

Угол, заключенный между линией возвышения и линией прицеливания, называетсяуглом прицеливания.

Угол, заключенный между линией прицеливания и горизонтом оружия называетсяуглом места цели.

Прямая, соединяющая точку вылета с целью, называется линией цели .

Расстояние от точки вылета до цели по линии цели называется наклонной дальностью . При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность – с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи .

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи .

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличивается. Но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности (величина этого угла составляет около 35°).

Различают настильные и навесные траектории:

1. Настильной – называется траектория, получаемая при углах возвышения меньших угла наибольшей дальности.

2. Навесной – называется траектория, получаемая при углах возвышения больших угла наибольшей дальности.

Настильная и навесная траектории, получаемые при стрельбе из одного и того же оружия при одной и той же начальной скорости и имеющие одинаковую полную горизонтальную дальность, называются – сопряжёнными .

Рис. 6. Угол наибольшей дальности,

настильные, навесные и сопряжённые траектории.

Траектория более настильна, если она меньше поднимается над линией цели, и чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, а также на величину поражаемого и мертвого пространства.

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывает ошибка в определении установки прицела): в этом заключается практическое значение траектории.

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете. Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты). Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны. Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться. Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.
Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называютсянастильными . Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными . При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными . При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории. Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Для изучения траектории пули приняты следующие определения:

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории. Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета. Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия. Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения. Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения). Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули. Угол бросания Угол вылета - угол, заключенный между линией возвышения и линией бросания. Точка падения - точка пересечения траектории с горизонтом оружия. Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия. Полная горизонтальная дальность - расстояние от точки вылета до точки падения. Окончательная скорость - скорость пули (гранаты) в точке падения. Полное время полета - время движения пули (гранаты) от точки вылета до точки падения. Вершина траектории - наивысшая точка траектории над горизонтом оружия. Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия. Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории. Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие. Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания. Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания. Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия. Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания. Линия цели - прямая, соединяющая точку вылета с целью. Наклонная дальность - расстояние от точки вылета до цели по линии цели. Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды). Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

2.6 Прямой выстрел- выстрел, при котором вершина траектории полета пули не превышает высоты цели.

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Порядок неполной разборки АК-74:

Отсоединяем магазин, снимаем с предохранителя и передергиваем затворную раму, производим контрольный спуск, правой рукой нажимаем на упор пружины и снимаем крышку коробки, отсоединяем раму с поршнем, извлекаем из затворной рамы затвор, отсоединяем газовую трубку, отсоединяем дульный тормоз-компенсатор, извлекаем шомпл.

2.7 Пространство за укрытием,не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством

Часть прикрытого пространства на котором цель не может быть поражена при данной траектории называется мертвым пространством (тем больше, чем больше высота укрытия)

Часть прикрытого пространства на котором цель может быть поражена называется поражаемым пространством

Дерива́ция (от лат.derivatio - отведение, отклонение) в военном деле - отклонение траектории полёта пули или артиллерийского снаряда (это касается только нарезного оружия или специальных боеприпасов гладкоствольного оружия) под воздействием вращения, придаваемого нарезами ствола, наклонными соплами или наклонными стабилизаторами самого боеприпаса, то есть вследствиегироскопического эффекта и эффекта Магнуса. Явление деривации при движении продолговатых снарядов было впервые описано в трудах российского военного инженера генерала Н. В. Маиевского.

3.1 Какие уставы входят в состав ову вс рф,

Устав внутренней службы вооруженных сил рф

Дисциплинарный устав вооруженных сил рф

Устав горнизонной, комендатской и караульной служб вс рф

Строевой устав вс рф

3.2 Воинская дисциплина есть строгое и точное соблюдение всеми военнослужащими порядка и правил, установленных законами Российской Федерации, общевоинскими уставами Вооруженных Сил Российской Федерации (далее - общевоинские уставы) и приказами командиров (начальников).

2. Воинская дисциплина основывается на осознании каждым военнослужащим воинского долга и личной ответственности за защиту Российской Федерации. Она строится на правовой основе, уважении чести и достоинства военнослужащих.

Основным методом воспитания у военнослужащих дисциплинированности является убеждение. Однако это не исключает возможности применения мер принуждения к тем, кто недобросовестно относится к выполнению своего воинского долга.

3. Воинская дисциплина обязывает каждого военнослужащего:

быть верным Военной присяге (обязательству), строго соблюдать Конституцию Российской Федерации, законы Российской Федерации и требования общевоинских уставов;

выполнять свой воинский долг умело и мужественно, добросовестно изучать военное дело, беречь государственное и военное имущество;

беспрекословно выполнять поставленные задачи в любых условиях, в том числе с риском для жизни, стойко переносить трудности военной службы;

быть бдительным, строго хранить государственную тайну;

поддерживать определенные общевоинскими уставами правила взаимоотношений между военнослужащими, крепить войсковое товарищество;

оказывать уважение командирам (начальникам) и друг другу, соблюдать правила воинского приветствия и воинской вежливости;

вести себя с достоинством в общественных местах, не допускать самому и удерживать других от недостойных поступков, содействовать защите чести и достоинства граждан;

соблюдать нормы международного гуманитарного права в соответствии с Конституцией Российской Федерации.

4. Воинская дисциплина достигается:

воспитанием у военнослужащих морально-психологических, боевых качеств и сознательного повиновения командирам (начальникам);

знанием и соблюдением военнослужащими законов Российской Федерации, других нормативных правовых актов Российской Федерации, требований общевоинских уставов и норм международного гуманитарного права;

личной ответственностью каждого военнослужащего за исполнение обязанностей военной службы;

поддержанием в воинской части (подразделении) внутреннего порядка всеми военнослужащими;

четкой организацией боевой подготовки и полным охватом ею личного состава;

повседневной требовательностью командиров (начальников) к подчиненным и контролем за их исполнительностью, уважением личного достоинства военнослужащих и постоянной заботой о них, умелым сочетанием и правильным применением мер убеждения, принуждения и общественного воздействия коллектива;

созданием в воинской части (подразделении) необходимых условий военной службы, быта и системы мер по ограничению опасных факторов военной службы.

5. За состояние воинской дисциплины в воинской части (подразделении) отвечают командир и заместитель командира по воспитательной работе, которые должны постоянно поддерживать воинскую дисциплину, требовать от подчиненных ее соблюдения, поощрять достойных, строго, но справедливо взыскивать с нерадивых.

Воинская дисциплина должна соблюдаться в подразделении, является необходимым условием жизнедеятельности армии.

Эффективность работы по укреплению воинской дисциплины в вс, во много зависит от деятельности офицера руководителя, а состояние правопорядка и дисциплины среди подчиненных главный критерий оценки повседневной деятельности командиров.

28 % от числа погибших, идет числом самоубийц.

Выдержанность, и привычка к строгому порядку.

Дисциплина это Учение, наука.

Характерными чертами воинской дисциплины являются:

    Единоначалие

    Строгая регламентация всех сторон жизни и деятельности военнослужащих

    Обязательность и безусловная исполнительность

    Четкая субординация

    Неотвратимость и строгость мер принуждения к нарушителям воинской дисциплины.

Для формирования коллектива существенными факторами являются:

    Высокая исполнительность

    Здоровое общественное мнение(учитывать мнение коллектива)

    Чувство ответсвенности

    Общий оптимистический настрой коллектива

    Готовность к преодолению трудностей

Анализ состояния воинской дисциплины:

    Требования к офицеру: должен логически мыслить, правильно строить рассуждения, рассуждать, делать выводы.

    Владеть нормами формальной логики

Этапы аналит работы по изучению состояния воинской дисциплины:

    Составление плана

    Сбор сведений

    Обработка данных

    Выявление причин нарушения воинских дисциплин

3.3 Внутренний порядок и чем он достигается. Мероприятия пожарной безопасности в В.Ч. и подразделениях

Внутренний порядок - это строгое соблюдение определенных воинскими уставами правил размещения, повседневной деятельности, быта военнослужащих в воинской части (подразделении) и несения службы суточным нарядом.

Внутренний порядок достигается:

    глубоким пониманием, сознательным и точным выполнением всеми военнослужащими обязанностей, определенных законами и воинскими уставами;

    целенаправленной воспитательной работой, сочетанием высокой требовательности командиров (начальников) с постоянной заботой о подчиненных и сохранением их здоровья;

    четкой организацией боевой подготовки;

    образцовым несением боевого дежурства и службы суточным нарядом;

    точным выполнением распорядки дня и регламента служебного времени;

    выполнением правил эксплуатации (использования) вооружения, военной техники и других материальных средств; созданием в местах расположения военнослужащих условий для их повседневной деятельности, жизни и быта, отвечающих требованиям воинских уставов;

    соблюдением требований пожарной безопасности, а также принятием мер по охране окружающей среды в районе деятельности воинской части.

Мероприятия по пожарной безопасности:

    Территория воинской части должна постоянно очищаться от мусора и сухой травы.

    военное имущество должно быть оборудовано молниезащитными устройствами и другими инженерными системами, обеспечивающими её пожаро - и взрывобезопасность в соответствии с требованиями действующих норм и правил.

    Подъезды к источникам пожарного водоснабжения, к зданиям и все проезды по территории должны быть всегда свободными для движения пожарных машин. Так же проходы в пределах части и подразделения должны быть незагроможденными.

Запрещено разводить огонь и держать открытый огонь ближе чем в 50м от в.ч. Пользоваться неисправным оборудованием и использовать легко воспламеняемые средства. У телефонных аппаратов должны быть надписи с указанием номера телефона ближайшей пожарной команды, а на территории воинской части для подачи сигнала пожарной тревоги должны быть средства звуковой сигнализации. Эти и прочие нормы пожарной безопасности должны ежедневно проверяться дежурным.

Приказ - распоряжение командира начальника обращенный к подчиненным и требующий обязательного выполнения определенных действий,соблюдения правил или устанавливающие какой либо порядок его отдачи.Письменно усно или по техн ср связи одному либо группе военнослужащих.Обсуждение приказа не допустимо.Неисполнение приказа отданного в установленном порядке является преступлением против военной службы.

Приказание - форма доведения ком начальником задач до подчиненных по частным вопросам.Отдается письменно или устно.В письменной форме издается начальником штаба,является распорядительным документом и отдается от имение командира части

Отдавая приказа ком не должен злоупотреблять должностными полномочиями.Не отдавать приказа не имеющей отношения к ведению военной службы.

Приказ формулируется ясно четко кратко.Отдаются в порядке подчиненности.

Выполнен беспрекословно точно и в срок.

Военнослужащий отвечает "есть".

Единоначалие

Заключается в наделении командира (начальника) всей полнотой распорядительной власти по отношению к подчиненным и возложении на него персональной ответственности за все стороны жизни и деятельности воинской части, подразделения и каждого военнослужащего.

определяет построение армии как централизованного военного организма, единство обучения и воспитания личного состава, организованность и дисциплину и в конечном счете высокую боеготовность войск. Необходимо отметить, что оно наилучшим образом обеспечивает единство воли и действий всего личного состава, строгую централизацию, максимальную гибкость и оперативность руководства войсками. Единоначалие позволяет командиру действовать смело, решительно, проявлять широкую инициативу, возлагая на командира персональную ответственность за все стороны жизнедеятельности войск, способствует развитию у офицеров необходимых командирских качеств. Оно создает условия для высокой организованности, строгой воинской дисциплины и твердого порядка.