Понятие о спрединге, субдукции и коллизии; места их проявления. Коллизия литосферных плит

Литосферу можно назвать своеобразным панцирем нашей планеты. В ее составе находится земная кора и верхний сегмент мантии. В структуру литосферы входят более-менее устойчивые участки - платформы, а также нестабильные (сейсмически активные области).

Согласно теории, описывающей дрейф литосферных плит, земная корочка не совсем цельной "скорлупой" покрывает недра нашей планеты . Она состоит из непомерного размера частей, называющихся литосферными плитами . Они, словно льдины в океане, медленно перемещаются по вязкой мантии. Этот процесс приводит к тому, что появляются стыки и "пропасти" между плитами. При различных взаимных видах воздействия плит может возникнуть совершенно разного рода рельеф.

Следствиями этих процессов являются возникновения глубочайших впадин (в местах перемещения в разные стороны) или же горных систем, таких как горные хребты (в местах "встречи"). Результатом столкновения континентальных плит является образование складчатых гор, при ударах океанических с земной корой - вулканы и горы. Если имела место быть "встреча" океанических плит, то в итоге получаются субаквальные вулканы и горные хребты, размещенные в глубинах океанов, которые более известны под названием "срединно-океанические".


А теперь перейдем от теоретической к практической части

Подтвердить на практике этот довод можно, если просто взглянуть на:

    тектоническую карту (если объяснить проще - карта, на которой указано взаимное расположение плит литосферы);

    физическую (карта, где показывается расположение рельефа, водных ресурсов и прочего в общих масштабах);

    топографическую (более подробно уделено внимание состоянию земной поверхности, чем на физической).

После осмотра нужно сопоставить увиденное. Пограничные области на краях литосферных плит называются сейсмическими поясами , в пределах которых зачастую располагаются вулканы, нередко случаются подземные толчки . В случае, если речь идет о глубоководном желобе, сотрясение земной поверхности под слоем воды чревато таким разрушительным последствием, как цунами - огромная океаническая волна. Она являет собой последствия субаквальных подземных толчков или выброса лавы вулканами).

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами — глубинными разломами — разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Особенность литосферных плит — их жесткость и способность при отсутствии внешних воздействий длительное время сохранять неизменными форму и строение.

Литосферные плиты подвижны. Их перемещение по поверхности астеносферы происходит под влиянием конвективных течений в мантии. Отдельные литосферные плиты могут расходиться, сближаться или скользить друг относительно друга. В первом случае между плитами возникают зоны растяжения с трещинами вдоль границ плит, во втором — зоны сжатия, сопровождаемые надвиганием одной плиты на другую (надвигание — обдукция; поддвигание — субдукция), в третьем — сдвиговые зоны — разломы, вдоль которых происходит скольжение соседних плит.

В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. Так возникла, например, на границе Евразийской и Индо-Австралийской плиты горная система Гималаи (рис. 1).

Рис. 1. Столкновение континентальных литосферных плит

При взаимодействии континентальной и океанической плит, плита с океанической земной корой пододвигается под плиту с континентальной земной корой (рис. 2).

Рис. 2. Столкновение континентальной и океанической литосферных плит

В результате столкновения континентальной и океанической литосферных плит образуются глубоководные желоба и островные дуги.

Расхождение литосферных плит и образование в результате этого земной коры океанического типа показано на рис. 3.

Для осевых зон срединно-океанических хребтов характерны рифты (от англ. rift - расщелина, трещина, разлом) — крупная линейная тектоническая структура земной коры протяженностью в сотни, тысячи, шириной в десятки, а иногда и сотни километров, образовавшаяся главным образом при горизонтальном растяжении коры (рис. 4). Очень крупные рифты называются рифтовыми поясами, зонами или системами.

Так как литосферная плита представляет собой единую пластину, то каждый ее разлом — это источник сейсмической активности и вулканизма. Эти источники сосредоточены в пределах сравнительно узких зон, вдоль которых происходят взаимные перемещения и трения смежных плит. Эти зоны получили название сейсмических поясов. Рифы, срединно-океанические хребты и глубоководные желоба являются подвижными областями Земли и располагаются на границах литосферных плит. Это свидетельствует о том, что процесс формирования земной коры в этих зонах в настоящее время происходит очень интенсивно.

Рис. 3. Расхождение литосферных плит в зоне среди нно-океанического хребта

Рис. 4. Схема образования рифта

Больше всего разломов литосферных плит на дне океанов, где земная кора тоньше, однако встречаются они и на суше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км.

В настоящее время можно выделить семь наиболее крупных плит (рис. 5). Из них самая большая по площади — Тихоокеанская, которая целиком состоит из океанической литосферы. Как правило, к крупным относят и плиту Наска, которая в несколько раз меньше по размерам, чем каждая из семи самых крупных. При этом ученые предполагают, что на самом деле плита Наска гораздо большего размера, чем мы видим ее на карте (см. рис. 5), так как значительная часть ее ушла под соседние плиты. Эта плита также состоит только из океанической литосферы.

Рис. 5. Литосферные плиты Земли

Примером плиты, которая включает как материковую, так и океаническую литосферу, может служить, например, Индо-Авст- ралийская литосферная плита. Почти целиком состоит из материковой литосферы Аравийская плита.

Теория литосферных плит имеет важное значение. Прежде всего, она может объяснить, почему в одних местах Земли расположены горы, а в других — равнины. С помощью теории литосферных плит можно объяснить и спрогнозировать катастрофические явления, происходящие на границах плит.

Рис. 6. Очертания материков действительно представляются совместимыми

Теория дрейфа материков

Теория литосферных плит берет свое начало из теории дрейфа материков. Еще в XIX в. многие географы отмечали, что при взгляде на карту можно заметить, что берега Африки и Южной Америки при сближении кажутся совместимыми (рис. 6).

Появление гипотезы движения материков связывают с именем немецкого ученого Альфреда Вегенера (1880-1930) (рис. 7), который наиболее полно разработал эту идею.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков..., когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка — Лавразия и Гондвана.

Лавразия — это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк — Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс — Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент — Пангею (Пан — всеобщий, Ге — земля) (рис. 8).

Рис. 8. Существование единого материка Пангеи (белое — суша, точки — неглубокое море)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым — Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

Рис. 9. Расположение и направления дрейфа континентов в меловой период 180 млн лет назад

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных — листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

Глобальным рельеф - это совокупность неровностей суши, дна океанов и морей на территории всего земного шара. Глобальный рельеф включает крупнейшие формы земной поверхности: материки (материковые выступы) и океаны (океанические впадины). Материков шесть, они расположены в Северном и Южном полушариях (Австралия, Африка, Антарктида, Евразия, Южная Америка, Северная.Америка). Четыре океана (Тихий, Атлантический, Индийский, Северный Ледовитый) образуют Мировой океан.

Некоторые ученые выделяют также пятый Южный океан, омывающий Антарктиду. Его северная граница проходит в пределах параллелей от 57 до 48° ю. ш.

Географические закономерности рельефа Земли как части географической оболочки выражаются в своеобразном расположении материков и океанов на планете. На глобусе хорошо видны особенности рельефа Земли: Северное полушарие выделяется как материковое, а Южное - как океаническое. Восточное полушарие - это в большей степени суша, а Западное - в основном водные пространства. Большинство материков имеют клиновидную форму, сужаются к югу.

Гипотеза А. Вегенера

Существует несколько гипотез и теорий о формировании рельефа Земли, в том числе о развитии его крупнейших форм - материков и океанов. Немецкий ученый А. Вегенер выдвинул гипотезу (научное предположение) дрейфа материков. Она состояла в том, что на Земле в геологическом прошлом существовал единый суперконтинент Пангея, окруженный водами океана Панталасса. Около 200 млн лет назад Пангея раскололась на два материка - Лавразию (из нее образовались большая часть Евразии, Северная Америка, Гренландия) и Гондвану (образовались Южная Америка, Африка, Антарктида, Австралия, полуострова Индостан и Аравийский), разделяемые океаном Тетис (рис. 3). Материки постепенно расходились в разные стороны и приняли современные очертания.

Теория литосферных плит

Позже учеными выяснилось, что гипотеза А. Вегенера оправдала себя лишь частично. Она не смогла объяснить механизм и причины вертикальных движений в литосфере. Возникали и развивались новые взгляды на происхождение материков и океанов. В начале 60-х годов XX столетия с появлением новых данных о строении океанов ученые пришли к выводу о существовании литосферных плит, которые участвуют в движении. Литосферные плиты - устойчивые блоки земной коры, разделенные подвижными областями и гигантскими разломами, медленно движущиеся по пластичному слою в верхней мантии. Литосферные плиты включают океаническую и материковую земную кору и самую верхнюю часть мантии.

Крупнейшие литосферные плиты - это Евразиатская, Индо-Австралийская, Северо-Американская, Южно-Американская, Африканская, Антарктическая, Тихоокеанская. Срединно-океанические хребты и глубоководные желоба являются границами литосферных плит и крупными формами рельефа Земли.

Плиты лежат на астеносфере и скользят по ней. Астеносфера - пластичный слой верхней мантии пониженной твердости, прочности и вязкости (под материками на глубине 100-150 км, под океанами - примерно 50 км).

Силы, вызывающие скольжение плит по астеносфере, образуются под действием внутренних сил, возникающих во внешнем ядре Земли, и при вращении Земли вокруг своей оси. Важнейшая причина скольжения - накопление тепла в недрах Земли при распаде радиоактивных элементов.

Наиболее значимы горизонтальные движения литосферных плит. Плиты перемещаются в среднем со скоростью до 5 см в год: они сталкиваются, расходятся или скользят одна относительно другой.

В месте столкновения литосферных плит образуются глобальные складчатые пояса, представляющие собой систему горных образований между двумя платформами.

Если сближаются две литосферные плиты с континентальной земной корой, то их края вместе с накопленными на них осадочными породами сминаются в складки и образуются горы. Так, например, возник Альпийско-Гималайский горный пояс на стыке Индо-Австралийской и Евразиатской литосферных плит (рис. 4а).

Если литосферные плиты, одна из которых имеет более мощную континентальную земную кору, а другая менее мощную океаническую земную кору, сближаются, то океаническая плита словно «ныряет» под континентальную. Это объясняется тем, что океаническая плита имеет большую плотность, и как более тяжелая она опускается. В глубинных слоях мантии океаническая плита снова расплавляется. При этом возникают глубоководные желоба, а на суше - горы (см. рис. 4б).

В этих местах происходят почти все природные катастрофы, связанные с внутренними силами Земли. У берегов Южной Америки находятся глубоководные Перуанский и Чилийский желоба, а высокогорные районы Анд, протянувшиеся вдоль побережья, изобилуют действующими и потухшими вулканами.

В случае надвигания океанической коры на другую океаническую кору край одной плиты несколько поднимается, образуя островную дугу, а другой погружается, формируя желоба. Так в Тихом океане образовались Алеутские острова и обрамляющий их желоб, Курильские острова и Курило-Камчатский желоб, Японские острова, Марианские острова и желоб, в Атлантическом - Антильские острова и желоб Пуэрто-Рико.

В местах расхождения плит возникают разломы в литосфере, образующие глубокие понижения в рельефе - рифты. Происходит поднятие расплавленной магмы, излияние лавы по трещинам-разломам и постепенное ее охлаждение (см. рис. 4в). В местах разрывов на дне океана земная кора наращивается и обновляется. Примером может служить срединно-океанический хребет - область расхождения литосферных плит, расположенная на дне Атлантического океана.

Рифт разделяет Северо-Американскую и Евразиатскую плиты в северной части Атлантического океана и Африканскую плиту от Южно-Американской в южной. В зоне осевых срединно-океанических хребтов рифты представляют крупные линейные тектонические структуры земной коры длиной в сотни и тысячи, шириной в десятки и сотни километров. Вследствие перемещения плит изменяются очертания материков и расстояния между ними.

Данные Международной космической орбитальной станции позволяют рассчитать место расхождения литосферных плит. Это помогает предсказывать землетрясения и извержения вулканов, другие явления и процессы на Земле.

На Земле продолжают развиваться глобальные складчатые пояса, образованные в течение длительного времени, - Тихоокеанский и Альпийско-Гималайский. Первый опоясывает Тихий океан, образуя Тихоокеанское «огненное кольцо». В него входят горные цепи Кордильер, Анды, горные системы Малайского архипелага, Японские, Курильские острова, полуостров Камчатка, Алеутские острова.

Альпийско-Гималайский пояс по Евразии протягивается от Пиреней на западе до Малайского архипелага на востоке (Пиренеи, Альпы, Кавказ, Гималаи и др.). Здесь продолжаются активные горообразовательные процессы, сопровождающиеся и извержениями вулканов.

Альпийско-Гималайский и Тихоокеанский складчатые пояса - это молодые горы, окончательно не сформированные и не успевшие разрушиться. В основном они сложены молодыми осадочными породами морского происхождения, покрывающими древние кристаллические ядра складок. Вулканические породы перекрывают осадочные или внедрены в их толщу. К складчатым поясам приурочены месторождения железных и полиметаллических руд, олова и вольфрама.

Глобальный рельеф Земли включает крупнейшие формы земной поверхности: материки (материковые выступы) и океаны (океанические впадины). Северное полушарие Земли выделяется как материковое, а Южное - преимущественно как океаническое, Восточное - в большей степени суша, Западное - в основном водные пространства.

Привет дорогие читатели! Сегодня я хотела бы поговорить о том, какие существуют основные формы рельефа. Так что же, начнем?

Рельеф (франц. relief, от латинского relevo – поднимаю) – это совокупность неровностей суши, дна морей и океанов, различных по контурам, размерами, происхождению, возрасту и истории развития.

Состоит из позитивных (выпуклых) и негативных (вогнутых) форм. Рельеф образуется главным образом вследствие длительного одновременного влияния на земную поверхность эндогенных (внутренних) и экзогенных (внешних) процессов.

Основную структуру земного рельефа создают силы, которые таятся глубоко в недрах Земли. Изо дня в день на нее воздействуют внешние процессы, неустанно видоизменяя, прорезая глубокие долины и сглаживая горы.

Геоморфология – это наука об изменениях земного рельефа. Геологи знают, что старый эпитет «вечные горы» далек от истины.

Горы (подробнее о горах и их видах Вы можете ) вовсе не вечны, даже несмотря на то, что геологическое время их формирования и разрушения может измеряться сотнями миллионов лет.

В середине 1700-х годов началась промышленная революция. И с того момента немаловажную роль в преображении лика Земли играет деятельность человека, что, иногда, приводит к неожиданным результатам.

Свое нынешнее место на планете и облик континенты обрели вследствие тектоники, то есть, движения геологических плит, которые образуют твердую внешнюю оболочку Земли.

Перемещения, которые являются самыми недавними по времени, произошли в пределах последних 200 млн. лет, — сюда можно отнести соединение Индии с остальной частью Азии (подробнее об этой части света ) и образование впадины Атлантического океана.

Наша планета за всю свою историю существования претерпела немало других изменений. Результатом всех этих схождений и расхождений огромных массивов, перемещений стали многочисленные складки и разломы земной коры (более подробную информацию о земной коре ), а также мощные нагромождения пород, из которых были сформированы горные системы.

Я приведу для Вас 3 ярких примера недавнего горообразования или орогенеза, как его называют геологи. В результате столкновения Европейской плиты с Африканской - возникли Альпы. Когда Азия столкнулась с Индией — взмыли до небес Гималаи.

Анды вытолкнули вверх сдвиг Антарктической плиты и плиты Наска, которые вместе образуют часть Тихоокеанской впадины, под плиту, на которой покоится Южная Америка.

Эти горные системы все являются сравнительно молодыми. Их резкие очертания не успели смягчить те химические и физические процессы, которые и сегодня продолжают изменять земной облик.

Землетрясения наносят огромный ущерб и редко имеют долговременные последствия. Но зато вулканическая деятельность впрыскивает в земную кору из недр мантии свежие горные породы, зачастую заметно изменяя привычный облик гор.

Основные формы рельефа.

В пределах суши земная кора состоит из разнообразных тектонических структур, которые более или менее отделены одна от другой, и отличаются от смежных участков геологическим строением, составом, происхождением и возрастом горных пород.

Для каждой тектонической структуры свойственна определенная история движений земной коры, ее интенсивность, режим, накопление, проявления вулканизма и другие особенности.

Характер рельефа поверхности Земли тесно связан с этими тектоническими структурами, и с составом горных пород, которые их образуют.

Поэтому самые главные области Земли с однородным рельефом и близкой историей своего развития – так называемые морфоструктурные области – прямо отображают основные тектонические структурные элементы земной коры.

Процессы на земной поверхности, которые влияют на главные формы рельефа, образованные внутренними, то есть эндогенными процессами, также тесно связаны с геологическими структурами.

Отдельные детали больших форм рельефа формируют внешние, или экзогенные, процессы, ослабляя или усиливая действие эндогенных сил.

Эти детали больших морфоструктур называются морфоскульптурами. По размаху тектонических движений, по их характеру и активности различают две группы геологических структур: движущиеся орогенные пояса и стойкие платформы.

Также они отличаются толщиной земной коры, ее строением и историей геологического развития. Рельеф у них также неодинаковый – это разные морфоструктуры.

Равнинные территории разного типа с малыми амплитудами рельефа свойственны платформам. Равнины выделяют высокие (Бразильская – 400-1000 м абсолютной высоты, то есть высоты над уровнем моря, Африканская) и низкие (Российская равнина – 100-200 м абсолютной высоты, Западно-Сибирская равнина).

Больше половины всей площади суши занимают морфоструктуры платформенных равнин. Для таких равнин характерен сложный рельеф, формы которого образовались в ходе разрушения высот и переотложения материалов их разрушения.

На больших просторах равнин, как правило, оголяются одни и те же слои горных пород, а это обуславливает появление однородного рельефа.

Среди платформенных равнин различают молодые и древние участки. Молодые платформы могут прогибаться и они более подвижны. Древним платформам свойственна жесткость: они опускаются или поднимаются как единый больший блок.

4 / 5 поверхности всех равнин суши приходится на часть таких платформ. На равнинах эндогенные процессы проявляются в виде слабых вертикальных тектонических движении. Разнообразие их рельефа связанно с поверхностными процессами.

Тектонические движения так же на нах влияют: на поднимающихся участках преобладает денудация, или процессы разрушения, а на участках, которые снижаются, — аккумуляция, или накопление.

С климатическими особенностями местности тесно связаны внешние, или экзогенные, процессы – работа ветра (эоловые процессы), размывание текущими водами (эрозия), растворительное действия подземных вод (подробнее о подземных водах ) (карст), смывание дождевыми водами (делювиальные процессы) и другие.

Рельеф горных стран отвечает орогенным поясам. Горные страны занимают больше трети площади суши. Как правило, рельеф этих стран сложный, сильно расчлененный и с большими амплитудами высот.

Различные типы горного рельефа зависят от горных пород, которые их составляют, от высоты гор, от современных особенностей природы района и от геологической истории.

В горных странах со сложным рельефом выделяются отдельные хребты, горные массивы и разные межгорные понижения. Горы образованы согнутыми и наклоненными слоями пород.

Сильно согнутые в складки, смятые горные породы перемежаются с магматическими кристаллическими породами, в которых отсутствует слоеность (базальт, липарит, гранит, андезит и т. п.).

Горы возникли в таких местах земной поверхности, которые подверглись интенсивному тектоническому поднятию. Этот процесс сопровождался смятием слоев осадочных пород. Они разрывались, растрескивались, сгибались, уплотнялись.

Из недр Земли сквозь разрывы поднималась магма, которая остывала на глубине или изливалась на поверхность. Неоднократно происходили землетрясения.

Образование больших форм рельефа суши – низменностей, равнин, горных хребтов – прежде всего, связано с глубинными геологическими процессами, которые формировали земную поверхность на протяжении всей геологической истории.

Во время различных экзогенных процессов образуются численные и разнообразные скульптурные или мелкие формы рельефа – террасы, речные долины, карстовые пропасти, и т. д…

Для практической деятельности людей имеет очень большое значение изучение больших форм рельефа Земли, их динамики и разных процессов, которые изменяют поверхности Земли.

Выветривание горных пород.

Земная кора состоит из горных пород. Более мягкие субстанции, которые называются почвами, образуются также из них.

Процесс под названием выветривание является основным процессом, который изменяет облик горных пород. Он происходит под воздействием атмосферных процессов.

Существует 2 формы выветривания: химическое, при котором разлагается и механическое, при котором он крошится на кусочки.

Формирование горных пород происходит под высоким давлением. В результате остывания, глубоко в недрах Земли, расплавленной магмы, образуются вулканические породы. А на дне морей из обломков горных пород, органических остатков и отложений ила формируются осадочные породы.

Воздействие погоды.

Часто в горных породах встречаются многослойные горизонтальные напластования и трещины. Они со временем поднимаются на поверхность земли, где давление гораздо ниже. Камень расширяется по мере снижения давления, и все в нем трещины соответственно.

Воздействию погодных факторов камень легко подвергается благодаря естественно образованным трещинам, напластованиям и соединениям. Например, вода, которая замерзла в трещине, расширяется, раздвигая ее края. Этот процесс называется морозным расклиниванием.

Действие корней растений, которые прорастают в щелях и, словно клинья, их раздвигают, можно назвать механическим выветриванием.

При посредничестве воды происходит химическое выветривание. Вода, протекая по поверхности или впитываясь в горную породу, заносит в нее химические вещества. К примеру, кислород воды вступает в реакцию с железом, которое содержится в породе.

Поглощенная из воздуха двуокись углерода, присутствует в дождевой воде. Она образует угольную кислоту. Эта слабая кислота растворяет известняк. С ее помощью формируется характерный карстовый рельеф, который свое название получил от местности в Югославии, а также огромные лабиринты подземных пещер.

С помощью воды растворяются многие минералы. А минералы, в свою очередь, вступают в реакцию с горными породами и разлагают их. Атмосферные соли и кислоты также в этом процессе играют не последнюю роль.

Эрозия.

Эрозия – это разрушение пород льдом, морем, водными потоками или ветром. Из всех процессов, которые изменяют земной облик, лучше всего мы знаем именно ее.

Речная эрозия – это сочетание химических и механических процессов. Вода не только перемещает породы, и даже огромные валуны, но, как мы видели, растворяет их химические компоненты.

Реки (подробнее о реках ) размывают поймы, вынося почву далеко в океан. Там она оседает на дне, со временем превращаясь в осадочные породы. Море (о том что такое море можете ) постоянно и неустанно трудится над переделкой береговой линии. В одних местах что-то наращивает, а в других – что-то срезает.

Ветер на невероятно далекие расстояния переносит мелкие частицы, вроде песка. К примеру, в южную Англию ветер приносит, время от времени, песок из Сахары, покрывая тончайшим слоем красноватой пыли крыши домов и автомобилей.

Воздействие гравитации.

Гравитация при оползнях заставляет сползать вниз по склону твердые породы, изменяя рельеф местности. В результате выветривания образуются обломки горных пород, которые составляют основную массу оползня. Вода действует как смазка, уменьшая трение между частицами.

Движутся оползни иногда медленно, но иногда, они мчатся со скоростью 100 м/сек и больше. Крип – это самый медленный оползень. Такой оползень проползает всего несколько сантиметров за год. И только лишь через несколько лет, когда деревья, заборы и стены склоняются под напором несущей земли, его и можно будет заметить.

Сель или грязевой поток может вызвать перенасыщенность глины или почвы (подробнее о почве ) водой. Бывает, что годами земля держится прочно на месте, но небольшого подземного толчка бывает достаточно для того, чтобы ее обрушить по склону вниз.

В ряде недавних катастроф, вроде извержения вулкана Пинатубо на Филиппинах в июне 1991 года, главной причиной жертв и разрушений стали грязевые потоки, которые залили многие дома до самой крыши.

В результате схода лавин (каменных, снежных или тех и других) происходят аналогичные бедствия. Обвал или грязевой оползень является самой распространенной формой оползня.

На обрывистом берегу, который подмыт рекой, где пласт грунта откололся от основы, иногда можно заметить следы оползня. К значительным изменениям рельефа может привести крупный оползень.

Камнепады нередки на крутых каменистых склонах, в глубоких ущельях или горах, особенно в тех местах, где преобладают разрушенные или мягкие горные породы.

Масса, которая сползла вниз, у подножья горы образует пологий склон. Длинными языками щебенистых осыпей покрыты многие горные склоны.

Ледниковые периоды.

К значительным изменениям земного рельефа также привели и многовековые климатические колебания.

В ледяных полярных шапках, во время последнего ледникового периода, были связаны огромные массы воды. Северная шапка простиралась далеко на юг Северной Америки и Европейского континента.

Лед покрывал около 30% суши на Земле (для сравнения, сегодня это только 10%). Уровень моря в ледниковый период (более подробную информацию о ледниковом периоде ) был примерно на 80 метров ниже, чем сегодня.

Лед таял, и это привело к колоссальным изменениям рельефа поверхности Земли. Например, к таким: между Аляской и Сибирью появился Берингов пролив, Великобритания и Ирландия оказались островами, которые стаи отделенными от всей Европы, участок суши между Новой Гвинеей и Австралией ушел под воду.

Ледники.

В покрытых льдом приполярных регионах и в высокогорных районах планеты, находятся ледники (подробнее о ледниках ) – ледяные реки. Ледники Антарктики и Гренландии ежегодно сбрасывают в океан (о том что такое океан можете ) огромные массы льда, образуя айсберги, которые представляют опасность для судоходства.

В ледниковый период ледники сыграли главную роль в придании рельефу северных регионов Земли знакомого нам облика.

Проползая гигантским рубанком по земной поверхности, они вытесывали впадины долин и срезали горы.

Под тяжестью ледников, старые горы, например горы на севере Шотландии, растеряли свою резкость очертаний и былую высоту.

Ледники во многих местах срезали начисто многометровые слои горных пород, которые накопились за миллионы лет.

Ледник, по мере своего движения, захватывает, в так называемую область аккумуляции, множество скальных обломков.

Туда попадают не только камни, но также и вода в виде снега, которая превращается в лед и формирует тело ледника.

Ледниковые наносы.

Миновав границу снежного покрова на склоне горы, ледник смещается в зону абляции, то есть постепенного таяния и размывания. Ледник, ближе к концу этой зоны, начинает оставлять на земле притащенные наносы горных пород. Их называют моренами.

То место, в котором ледник окончательно тает и превращается в обычную реку, часто обозначают конечной мореной.

Те места, в которых закончили свое существование давно исчезнувшие ледники, можно найти по таким моренам.

Ледники, как и реки, имеют главное русло и притоки. В главное русло ледниковый приток впадает из боковой долины, которая им проложена.

Обычно ее дно расположено выше дна главного русла. Ледники, которые полностью растаяли, после себя оставляют главную долину в форме буквы U, а также несколько боковых, откуда низвергаются живописные водопады.

В Альпах часто можно встретить такие пейзажи. Разгадка движущей силы ледника кроется в присутствии так называемых эрратических валунов. Это отдельные обломки породы, отличные от пород ледникового ложа.

Озера (более подробную информацию об озерах ) с геологической точки зрения – это недолговечные формы рельефа. Они со временем заполняются наносами рек, которые в них впадают, их берега разрушаются и вода уходит.

Ледники сформировали бесчисленные озера в Северной Америке, Европе (более подробно об этой части света вы можете ) и Азии, вытесав ложбины в горных породах, или перегородив долины конечными моренами. В Финляндии и Канаде находится великое множество ледниковых озер.

Например, другие озера, такие как Кратер-Лейк в Орегоне (США) (подробнее об этой стране ), образуются в кратерах потухших вулканов по мере их заполнения водой.

Сибирский Байкал и Мертвое море, между Иорданией и Израилем, возникли в глубоких трещинах земной коры, которые образовались доисторическими землетрясениями.

Антропогенные формы рельефа.

Трудами строителей и инженеров создаются новые формы рельефа. Нидерланды – замечательный тому пример. Нидерландцы гордо говорят, что собственными руками создали свою страну.

Около 40% территории они смогли отвоевать у моря, благодаря мощной системе дамб и каналов. Потребность в гидроэлектроэнергии и пресной воде заставила людей построить немалое количество искусственных озер или водохранилищ.

В штате Невада (США) есть озеро Мид, оно было образовано в результате перекрытия плотиной Гувер-Дам, реки Колорадо.

После возведения высотной Асуанской плотины на Ниле, в 1968 году возникло озеро Насер (вблизи границы Судана с Египтом).

Главной задачей этой плотины было регулярное обеспечение водой сельского хозяйства и регулирование ежегодных паводков.

Извечно Египет страдал от перепадов уровня нильских паводков, и было принято решение, что эту многовековую проблему поможет решить плотина.

Обратная сторона медали.

Но Асуанская плотина является ярким примером того, что шутки с природой плохи: она не потерпит необдуманных действий.

Вся проблема заключается в том, что эта плотина перекрывает ежегодные наносы свежего ила, который удобрял сельскохозяйственные угодья, и по сути, который сформировал Дельту.

Теперь за стеной Асуанской плотины накапливается ил, и тем самым это ставит под угрозу существование озера Насер. Значительных перемен можно ожидать в египетском рельефе.

Облику Земли новых черт придают железные и шоссейные дороги, возведенные человеком, с их подрезанными склонами и насыпями, а также шахтные терриконы, которые издавна уродуют пейзаж в некоторых индустриальных странах.

К эрозии приводит вырубка деревьев и других растений (их корневая система скрепляет подвижные почвы).

Именно эти непродуманные действия человека привели, в середине 1930-х годов, к возникновению Пылевого котла на Великих равнинах, а сегодня грозят бедой бассейну Амазонки в Южной Америке.

Ну что же дорогие друзья, на этом у меня пока все. Но уже скоро ждите новые статьи 😉 Надеюсь, что эта статья Вам помогла разобраться в том, какие бывают формы рельефа.

Спрединг, субдукция – см.93

КОЛЛИЗИЯ – столкновение двух континентальных плит, которые в силу относительной легкости не могут погрузиться друг под друга, а сталкиваясь образуют горно-складчатый пояс с очень сложным внутренним строением. Так возникли Гималайские горы.

№96. Геохронология. Методы установления относительного возраста пород.

1)Стратиграфический метод: исслед.напластования осадочных горн.пород, образ.в морских или континентальных условиях;

2)Литологический метод: сравнение горных пород по их составу;

3)Палеонтологический метод: изучение окаменелых остатков животных и растений, живших в прошлые геол.эпохи;

На основе 1) и 3) была создана стратиграфическая шкала. Ранги шкалы: эонотема; эратема; система; отделы; ярусы и более мелки подразделения. Каждому рангу соответствует геохронологический подраздел: эон; эра; период; эпоха; век.

№97. Возраст Земли. Методы установления абсолютного возраста пород.

Калий-аргоновый – изучение радиоактивного превращения изотопа калия с атомным весом 40. (К 40 +е=Ar 40). Создатель Э.К.Герлинг.

Рубидиево-стронцевый – применяют для минералов и горных пород; радиоактивный распад Rb 87 и превращение его в Sr 87 .

Углеродный – для молодых антропогеновых отложений; радиоактивный распад C 14 ; при жизни растений радиоактивного нарадиоак.углерода в них одинаково, после отмирания происходит распад; знаю период полураспада и соотношение в отмерших растениях определяют возраст отложений.

Возраст Земли: с помощью радиологических методов Полканов и Герлинг установили возраст древнейших сильно метаморфизированных горн.пород-3500 млн лет; Соботович определил возраст сланцев из Охотского массива-4000 млн лет; Максимальное значение абсолютного возраста каменных метеоритов-4550-4600 млн лет (Луна тоже примерно этого возраста).

№101. Общая характеристика четвертичного периода.

Четвертичный период – самый молодой, продолжающийся и до настоящего времени этап в геологической истории Земли (0,8 – 3,5 млн лет). Следует сразу за неогеном.

Признаки:

Появление человека и его культуры (остатки культуры дают хронологическую шкалу, эквивалента которой нет в более древних периодах)

Резкое изменение климата, образование и широтное распространение ледниковых покровов на большей части территории северного полушария.

Отложения развиты повсеместно (например, МГУ стоит на морене ледникового происхождения). Все отложения являются материнскими породами для развития почв. Серьезное изучение отложений началось в 20-30-е годы 20 столетия.

1825 год – Ж.Денуайе выделил послетретичные отложения в самостоятельную четвертичную систему.

1839 год – Ч.Лайель ввел термин «плейстоцен» для обозначения отложений моложе плиоценовых.

1888 год – утверждено официальное название «четвертичный период».

1919 год – А.П.Павлов предложил заменить «четвертичный» на «антропогеновый».

Полезные ископаемые периода:

Строительные материалы

Драгоценные металлы

Железо-марганцевые конкреции

№102.Изменения климата, структуры земной коры в четвертичном периоде.

Изменение климата: на протяжении кайнозоя климат ухудшался и становился холоднее. В начале неогена Антарктида покрылась льдом. Поверхность Земли неоднократно покрывалась мощными ледниками. Последняя ледниковая эпоха закончилась 10-12 тыс лет назад, современный климат является межледниковым. По сравнению с неогеном температура понизилась на 8 градусов. В данный момент наблюдается глобальное потепление на фоне глобального похолодания (потепление только на фоне парникового эффекта).

Причины изменения климата:

Внеземные (солнечная активность)

Земные (угол наклона земной оси; положение в пространстве; форма орбиты)

Техногенные факторы (выбросы газов и фреонов в атмосферу)

Изменение структуры земной коры: Горы выросли на 2-3 км. Поднимались платформенные равнины. Уменьшилась площадь морей и океанов. Контрастность рельефа – 20 км. Раскрываются рифты (9 см/год). Высокая скорость движения разломов (горизонтальные движения). Происходит общее поднятие суши и прогибание океанов.

№103. Гипотезы о причинах оледенений в четвертичном периоде.

Согласно сводке М.Шварцбаха (1955) различные ученые доказывают, что ледниковые периоды возникали по следующим причинам:

1. Вследствие суровых зим (Кроль, Пильгрим).

2. Вследствие мягких зим (Кеппен).

3. По причине ослабления интенсивности солнечной радиации (Дюбуа).

4. В связи с усилением интенсивности солнечной радиации (Симпсон).

5. Вследствие ослабления влияния теплого течения Гольфстрим (Вундт).

6. В связи с усилением влияния теплого течения Гольфстрим (Берман).

7. Вследствие усиления вулканической деятельности (Хантингтон).

8. По причине ослабления вулканической деятельности (Фрех).

По такому же принципу построены и гипотезы о причинах прекращения ледниковых периодов. Одни ученые считают, что ледниковые покровы исчезли вследствие потепления климата и повышения температур, а другие (А.А.Величко) - по причине похолодания климата и резкого понижения температур.

Теория великих оледенений занимает почетное место среди предсказателей и популяризаторов науки. Появилось немало изданий (особенно на западе), в которых предсказывается скорое наступление нового ледникового периода. Н.Колдер в книге “Машина времени и ледяная угроза” предвещает приход ледникового периода в любой момент, так как по его мнению в последние десятилетия увеличились объемы снегопадов, верный признак начала оледенения. Дж.Гриббин в книге “Климатическая угроза” дает землянам определенную передышку. По его утверждению ледники покроют Европу и Северную Америку не раньше, чем через несколько столетий. Наш советский Семен Барраш отдаляет ледяную угрозу на несколько тысячелетий, но предупреждает, что, вычисленный им 400-тысячелетний ритм глобальных катаклизмов заканчивается.

№104.Эвстатические колебания уровня океанов и морей в четвертичном периоде. Гляциоизостазия.

С оледенением связаны вертикальные движения земной коры, вызванные нарушением ее изостатического равновесия – гляциостазия. Под тяжестью льдов кора прогибается (Антарктида прогнута более, чем на 1 км – скорость поднятия 3 мм/год). Таяние ведет к поднятию земной коры. Такие движения характерны для районов, бывших главными центрами древних материковых оледенений – Скандинавского и Канадского щитов. Считается, что сегодняшние движения еще не компенсируют эффект предшествующих ледниковых нагрузок.

Во время оледенений идет резкое снижение уровня океана. Чем древнее оледенение, тем оно мощнее. Во время таяния уровень морей и океана повышается. За последние 100 лет уровень океана повысился на 12 см. Если растают все льды, то уровень океана повысится на 66 метров.

№105. Особенности развития органического мира в четвертичном периоде.

Животный мир сформировался из исходный фауны – гиппарионовой, обитавшей в неогене (трехпалая лошадь, газели, жирафы, саблезубый тигр, мастодонты). В связи с изменениями климата фауна сильно изменилась. Распространились холодоустойчивые виды (мамонт, северный олень, шерстистый носорог). Ареалы тоже сильно поменялись. Голоценовая – современная – фауна представляет собой обедненную фауну плейстоцена.

Сформировались ландшафтные зоны. Во времена межледниковий тундра почти исчезала, а тропики расширялись. В ледниковья исчезали теплолюбивые растения. В московских отложениях много бука, граба и тиса, что свидетельствует о том, что раньше на этой территории был более теплый климат.

№106.Основные этапы развития человека в четвертичном периоде.

Первые человекообразные обезьяны (ромапитеки) появились 8-14 млн лет назад в миоцене. 5 млн лет назад появился австралопитек (южные обезьяны). 3 млн лет назад появились первые представители рода гоминид – человек умелый.

Остатки ископаемого человека очень редки. Гораздо чаще встречаются следы его деятельности, культурные остатки.

Этапы развития:

Около 2 млн лет назад – изготовление каменных орудий труда. Эпохи: археолит, палеолит, мезолит, неолит.

13 тыс лет назад – появление «человека разумного».

13-9 тыс лет назад – лук, стрелы, крючки.

10-6 тыс лет назад – появление цветоводства и земледелия.

5 тыс лет назад – сплавы из меди.

3 лет назад – «Бронзовый век».

2 тыс лет назад – «Железный век».

№107. Влияние климатического и тектонического факторов на формирование четвертичных отложений.

Тектоника создает все формы рельефа. Положительные формы – области разрушения. Они поставляют четвертичные отложения во впадины. Поднятия представлены высокими плато, кряжами, хребтами. Понижения – межгорные и предгорные впадины, котловины. Сейсмические явления формируют сейсмоотложения (коллювиальный ряд – обвалы, оползни, осыпи). Новейшая тектоника определяет энергетику осадконакопления и распределения областей денудации и аккумуляции.

Климат распределяет отложения по поверхности земли. Определяет нахождения климатических поясов. Вертикальная поясность обусловлена тем, что каждый километр температура понижается на 5-6 градусов. От климата зависят характер и скорость выветривания и разрушения пород древнего субстрата, способ транспортировки материала, условия и механизмы его аккумуляции (в полярном климате-промерзание верх.части земн.коры и форм.зона мерзлых пород; в аридном климате-сухой ветер как агент денудации-разрушает и переносит материал.).

№108. Голоцен - самый молодой раздел четвертичной системы. Климатические условия и отложения.

Самый молодой раздел - голоцен - имеет продолжительность около 10 тыс. лет. Он индексируется как Q4 и IV. Голоцен состоит из одного звена - современного. Ископаемая фауна относится к современному комплексу.

Горно-складчатые системы Средней Азии в голоценовое время остаются тектонически. О продолжающихся и в настоящее время тектонических движениях свидетельствует деформация современных террас и высокая сейсмичность

Озерно-болотные голоценовые отложения слагают с поверхности низменных болотистых террас.

Элювиально-делювиальные отложения развиты в горной части региона и на денудационных равнинах запада Камчатки.

Болотные голоценовые отложения развиты на западном побережье Камчатки, где протягиваются почти сплошной полосой шириной от 5 до 50 км вдоль Охотского побережья.

Озерно-болотные голоценовые отложения (перекрывают с поверхности различные породы. Они представлены, в основном, торфами различного типа, мощность которых меняется от 2 до 4 - 6 м и более. Аллювиальные голоценовые отложения, слагающие I террасу и пойму, развиты в долинах всех рек региона.

Аллювиальные голоценовые отложения представлены преимущественно песчано-гравийно-галечным материалом со сложным фащтльньш строением.

Поздние плейстоценовые и голоценовые отложения представлены широким спектром генетических типов, характерных для господствующего здесь в это время умеренного гуммидного климата: аллювиальных, озерных, болотных и др. Общая мощность четвертичных отложений региона колеблется от 3 - 80 м на водоразделах.

Аллювиально-пролювиальные плейстоценовые и голоценовые отложения распространены в южной части депрессии. Аллювиальные и пролювиальные голоценовые отложения представлены гравиино-галечниковым материалом с разнозернистым песком, реже песками с прослоями супесей, суглинков, илов, гравия.

Морские и аллювнально-морские верхнеплейстоценовые и голоценовые отложения развиты вдоль морского побережья. Первые слагают террасы высотой до 40 м и участки равнин. Аллювиально-морские отложения развиты в приустьевых частях наиболее крупных рек, образуя аккумулятивные равнины, и представлены переслаиванием песков с галькой, суглинков, глин и илов.

Наиболее чувствительны к любым климатическим изменениям при снятии растительного и почвенного покрова песчаные голоценовые отложения.

В соответствии с общим похолоданием, наступившим после термического максимума, происходит промерзание верхней части протаявших в термический максимум и вновь образовавшихся голоценовых отложений.

В период голоцена происходили:

Формирование почвы

Формирование пойменного аллювия, предгорного пролювия.

В среднем голоцене (самый теплый) почти исчезла тундра.

Последнее межледниковье (наст.время) длится 10 тыс лет.

Уровень воды в Каспие поднимается и он затопляет пребрежные постройки.

№109. Методы стратиграфического расчленения четвертичных отложений.

Для расчленения четвер.отложений по возрасту используют две группы методов, дающих относительный и абсолютный возраст.

Региональные стратиграфические подразделения – это комплекс пород, отражающих особенности осадконакопления и развития флора и фауны на данном участке.

Основным региональным подразделением является горизонт (отложения, обр.в течение одной эпохи или фазы климата). Горизонты имеют местные названия (географ.пункты, где они впервые были выделены), индексы. Кроме горизонтов есть свиты, толщи, слои и т.д.

На геол.картах четверт.отложения показываются только там, где мощность составляет сотни метров. Это прибрежья морей, дельты крупных рек, впадины в горах. Цвет отложений на карте обычно светло-серый, голубовато-серый, как это принято в общей геохронологической шкале.

На картах четвертичных отложений цвет отражает генезис отложений. Ледниковые отложения – коричневый. Аллювиальные – зеленый. Морские – синий. Эоловые – желтый. Коллювиальные – красный. Делювиальные – оранжевый. Хемогенные – серый. Вулканогенные – яркозеленый.

Возраст отражается интенсивностью цвета – чем моложе, тем светлее.

Помимо цвета у отложений есть свои индексы.

Кроме отложений на картах отмечаются фации. Фации обозначаются начальными буквами из латинского названия.

№110. Методы определения относительного возраста четвертичных отложений и условий их формирования.

1) Климатографические:

Литолого-генетический метод (чередование в разрезе «холодных» и «теплых» отложений)

Криологический метод (выделение в разрезе следов ископаемой мерзлоты)

Педологический метод (выделение в разрезе погребенных почв)

2) Палеонтологические:

Палеофаунистический метод

Карпологический метод (семена растений)

Палинологический метод (споры и пыльца растений)

Диатомовый (остатки водорослей)

3) Геоморфологический (выделение одновозрастных форм рельефа разного происхождения)

4) Археологический (ископаемые остатки человека и следов его жизнедеятельности)

№111. Методы определения абсолютного возраста четвертичных отложений.

1) Варвохронологический (подсчет годичных слоев глин определяет накопления толщи озерных осадков)

2) Дендрохронологический (подсчет годовых колец ископаемой древесины в четвер.отложениях)

3) Лихенометрический (основан на изучении сорости роста лишайников на валунах морен)

4) Радиологический (радиоуглеродный, уран-ионевый, калий-аргоновый – основаны на радиактивном распаде изотопов)

5) Палеомагнитный (основан на способности минералов сохранять намагниченность той эпохи, в которой они образовались)

6) Термолюминисцентный (основан на способности минералов «светиться»)

№112. Схема стратиграфии четвертичных отложений для Европейской части России.

Система (Период) Отдел. Надраздел(Эпоха) Подотдел. Раздел (Фаза) Звено (Пора) Ступень (Термохрон. Криохрон)
квартерили четвертичная (квартер или четвертичный) голоцен (голоценовая ) - - -
плейстоцен (плейстоценовая ) неоплейстоцен (неоплейстоценовая ) верхнее (поздняя ) четвёртая (поздний криоген )
третья (поздний термоген )
вторая (ранний криоген )
первая (ранний термохрон )
среднее (средняя ) -
нижнее (ранняя ) -
эоплейстоцен (эоплейстоценовая ) верхнее (поздняя ) -
нижнее (ранняя ) -
Система Надраздел Раздел Звено Ступень Межрегиональные корреляционные горизонты. Европейская часть России(Постановление МСК, 2007) Урал (Постановление МСК, 1995) Западная Сибирь (Постановление МСК, 2000)
четвертичная голоцен шуваловский горбуновский современный
плейстоцен неоплейстоцен верхнее осташковский полярно- уральский сартанский
ленинградский невьянский каргинский
калининский ханмейский ермаковский
мезинский стрелецкий казанцевский
среднее московский леплинский тазовский
горкинский ницинский ширтинский
днепровский вильгортовский самаровский
чекалинский сылвицкий тобольский
калужский
лихвинский
нижнее окский карпинский шайтанский
мучкапский чернореченский
донской лозьвинский
окатовский батуринский талагайкин-ский
сетуньский
красиковский
покровский тыньинский
акуловский сарыкульский
Эоплейстоцен верхнее криницкий чумлякский кочковский
Нижнее толучеевский увельский

№113. Понятие о генетических типах и фациях четвертичных отложений.

Основа ген.класс-ии четвер.отложений была создана А.П.Павловым. По Павлову ген.тип – это отложения, сформ. в рез-те деятельности геолог.агентов. Павлов ввел в класс-ию типов делювий и пролювий.

Е.В.Шанцер предложал другое определение: ген.тип – совок. осадочных или вулканогенных накоплений, формир.в ходе аккумуляции, особенности которой определяют общность главных черт их строения как закономерность сочетаний определенных осадков и горных пород.

Ген.типы делятся на фации (комплекс одновозрастных отложений одного ген.типа, отличающихся составом и условиями формирования – Г.Ф.Крашенников).

Под генетическими типами понимаются комплексы осадочных образований, образующих тесные сочетания, причинно обусловленные деятельностью определенного ведущего фактора аккумуляции.

Все континентальные четвертичные отложения подразделяются на два класса: кор выветривания и осадочных отложений. Класс кор выветривания включает элювиальный ряд; класс осадочных отложений – пять рядов: субаэрально-фитогенный, склоновый, водный, ледниковый и ветровой. Отложения подземно-водного ряда, включающего осадочные отложения пещер и источников, играют незначительную роль в общем четвертичном покрове суши.

№115. Четвертичные образования элювиального ряда.

Этот ряд выделяется в особый класс кор выветривания. Процесс формирования элювиальных образований связан с выветриванием различных горных пород под влиянием физических, химических и биогенных факторов. В пределах элювиального ряда выделяется две генетических группы: собственно элювий и почвы.
Элювий – топографически не смещенные продукты изменения коренных пород. Чаще всего - рыхлые образования, располагающиеся на материнских коренных породах, продуктами разрушения которых являются.

Элювиальные образования являются одним из основных источников исходного материала, разносимого различными агентами денудации.
Почвы – особая генетическая группа элювиального ряда, представляющая собой поверхностную часть кор выветривания. Важное значение имеет сложное сочетание химического разложения минеральной основы почв (образование почвенного элювия) и накопления перегноя, или гумуса.
Таким образом, почва является сложной геобиологической системой, существенно отличающейся от подпочвенной зоны.

Почвы подразделяются на две подгруппы:
автоморфные (зональные ) – наиболее широко развиты и формируются в условиях, когда положение уровня грунтовых вод и высота их капиллярного поднятия располагается глубже нижней границы почвы. гидроморфные (интразональные ) – приурочены в основном к различным понижениям. Главное значение в их формировании имеет высокое приповерхностное положение уровня подземных грунтовых вод и зон их капиллярного поднятия. Продукты выветривания не удаляются из почвы, а окисные соединения железа переходят в закисные.

№116. Генетические типы четвертичных отложений склонового (коллювиального) ряда.

Обвальные накопления наиболее выражены в горных районах. Они играют подчиненную роль в комплексе склоновых отложений горных стран. Только у подножия крупных уступов с активно развивающимися разрывными нарушениями они развиты на зничительной площади и имеют большую мощность.
Осыпные накопления образуются у подножия горных склонов в результате периодического скатывания разноразмерного материала, отделяющегося от скальных склонов вследствие физического выветривания.

Оползневые накопления (деляпсий ) – это смещенные массы горных пород, слагающих берега рек, озер, морей. Оползнеобразование происходит под влиянием комплекса факторов, одним из которых является крутизна склонов и состав слагающих их пород.

Солифлюкционные накопления образуются в результате медленного вязкопластического течения рыхлых сильно переувлажненных дисперсных отложений на склонах крутизной 3-10 о. Наиболее широко развиты в зоне распространения многолетнемерзлых горных пород.

Делювий – отложения, образующиеся на склонах в результате плоскостного стока вод, возникающего периодически при выпадении атмосферных осадков и таянии снега. Плоскостной сток происходит в виде тонкой пелены или густой сети струек, которые переносят материал (в основном супесчано-суглинистый) вниз по склону. У подошвы склона течение воды замедляется и материал начинает откладываться непосредственно у подножия и в прилегающей части склона. Делювиальные отложения образуют полого наклоненные вогнутые шлейфы. Наибольшая мощность отложений (5-10 м и более) наблюдается у основания склона, постепенно уменьшаясь вверх по склону и вниз, в сторону днища долины.

№117. Генетические типы четвертичных отложений водного (аквального) типа.

Аллювий слагает русла, поймы и надпойменные террасы разных уровней.

Русловой аллювий представлен хорошо промытыми косослоистыми песками различной зернистости, иногда с гравием; в основании обычно залегают более грубые отложения – базальный горизонт размыва .
Над русловым аллювием залегают отложения пойменного аллювия, которые накапливаются в половодья.

Пролювий – отложения, образующиеся путем наземного устьевого выноса различного материала временными потоками и постоянными реками, особенно широко развитые у подножия гор в условиях аридного климата. Они слагают мощные конусы выноса и подгорные волнистые шлейфы, образующиеся от их слияния.
Состав пролювиальных отложений меняется от вершины конуса к его периферии от гальки и валунов с песчано-глинистым заполнителем до тонких и отсортированных осадков (песчаных, супесчаных), нередко в краевой части – до лессовидных супесей и суглинков.

Озерные отложения (лимний ). Осадконакопление в озерах зависит от климата, который определяет их гидрологический и гидрохимический режим. Выделяют три типа озерных осадков:
1 – терригенные - образующиеся за счет привноса обломочного материала;
2 – хемогенные – за счет осаждения растворенных в воде солей и коллоидов;
3 – органогенные – образующиеся за счет различных организмов.

№118. Четвертичные отложения ледникового (гляциального) ряда.

В ледниковый ряд входят две парагенетически связанные группы отложений: собственно ледниковая и водно-ледниковая (флювиогляциальная).
Группа собственно ледниковых отложений.
Основная (донная) морена по данным Ю.А.Лаврушина подразделяется на монолитную и чешуйчатую.
^ Монолитная основная морена образуется под покровом медленно движущегося ледника из материала, заключенного в придонных частях льда.

^ Чешуйчатые основные морены возникают в результате напора масс льда и образования внутренних сколов. При этом происходит перемещение донной морены по линии внутренних сколов.

Абляционные морены обычно связаны с периферическими зонами ледников при их деградации. В этих условиях имеющийся внутри ледника или на его поверхности материал подвергается влиянию движущихся ледниковых вод, выносящих мелкозем.

Краевые (конечные) морены образуются при длительном стационарном положении края ледника. В краевой части ледника происходит сгруживание приносимого обломочного материала – образуется насыпная конечная морена .