Радиочастотная идентификация

Из всем полюбившейся (по крайней мере, я на это очень надеюсь) серии «Взгляд изнутри» - больше полугода. Не то, чтобы не было, о чём написать или рассказать, просто одолели дела, которые станут предметом одной из следующих моих статей на Хабре (надеюсь, что её не отправят в утиль, так как посвящена она будет не совсем ИТ-тематике). А пока есть свободная минуточка, давайте разберёмся, что же такое RFID (Radio-frequency identification) – к ним примкнут более простые метки – или как один небольшой шаг в технологиях круто изменил жизнь миллионов и даже миллиардов людей по всему миру.

Предисловие

Сразу хотелось бы оговориться.

Перед началом работы над этой статьёй, я очень надеялся, что по микрофотографиям, а особенно по оптике, информации, найденной на просторах Интернета, и некоторому багажу знаний от прошлых публикаций удастся определить, где и какие элементы микросхемы находятся. Хотя бы на «бытовом» уровне: мол, вот это - память, вот это - схема питания, а вот тут происходит обработка информации. Действительно, казалось бы, RFID – простейшее устройство, самый простейший «компьютер», который только можно придумать…

Однако жизнь внесла свои коррективы и всё, что удалось мне найти: общая схема устройства нового поколения меток , фотографии того, как, например, должна выглядеть память – даже не знаю, почему я не уделил этому внимание (может быть ещё представится возможность исправиться?!), ну и скандалы-интриги-разоблачения процессоров A5 от chipworks .

Часть теоретическая

По традиции начнём с некоторой вводной части.
RFID
История технологии радиочастотного распознавания – пожалуй, именно так можно назвать все мыслимые и немыслимые варианты RFID (radio-frequency identification) – уходит своими корнями в 40-ые года XX века, когда в СССР, Европе и США активно велись разработки вообще любых видов электронной техники.

В то время, любое изделие, работающее на электричестве, было всё ещё в диковинку, так что перед учёными лежало не паханое поле: куда не ткни, как в Черноземье, черенок от лопаты – вырастет дерево. Судите сами: свои законы Максвелл предложил всего-навсего полвека назад (в 1884 году). А теории на основе этих уравнений стали появляться спустя 2-3 десятилетия (между 1900 и 1914), в том числе и теории радиоволн (от их открытия, до моделей модуляции сигнала и т.д.). Плюс подготовка и ведение второй мировой войны наложили свой отпечаток на данную область.

В результате к концу 40-х годов были разработаны системы распознавания «свой-чужой», которые были несколько побольше, чем описанные , но работали фактически по тому же принципу, что и современные RFID-метки.

Первая демонстрация близких к современных RFID была проведена в 1973 году в Исследовательской Лаборатории Лос Аламоса, а один из первых патентов на подобного рода систему идентификации получен спустя десятилетие – в 1983 году. Более подробно с историей RFID можно ознакомиться на Wiki и некоторых других сайтах ( и ).

Активные метки за счёт встроенной батарейки имеют существенно больший радиус работы, габариты, более сложную «начинку» (можно дополнить метку термометром, гигрометром, да хоть целый чип GPS-позиционирования) и соответствующую цену.

Классифицировать метки можно по-разному: по рабочей частоте (LF – низкочастотные ~130КГц, HF – высокочастотные ~14MГц и UHF – ультравысокочастотные ~900МГц), по типу памяти внутри метки (только чтение, однократно записываемая и многократно записываемая). Кстати, так любимый всеми производителями и продвигаемый NFC относится к HF диапазону, который имеет ряд хорошо известных проблем.

Прочие метки
К сожалению, стоимость RFID-меток по сравнению с другими видами идентификации довольно высока, поэтому, например, продукты питания и прочие «ходовые» товары мы по-прежнему покупаем с помощью баркодов (или штрих-кодов), иногда QR-кодов, а защиту от краж обеспечивают так называемые противокражные метки (или EAS – electronic article surveillance)

Самых распространённых три вида (все фото взяты с Wiki):

Впереди нас ждёт много чудных открытий, подчас совершенно неожиданных и конечно же hard geek porn в формате HD !

Если кому-то показалось мало теории, добро пожаловать на данный англоязычный сайт .

Часть практическая

Итак, какие метки удалось найти в окружающем нас мире:


Левый столбец сверху вниз: карта московского метро, проездной аэроэкспресс, пластиковая карта для прохода в здание, RFID-метка, представленная компанией Перекрёсток на выставке РосНаноФорум-2011. Правый столбец сверху вниз: радиочастотная EAS-метка, акустомагнитная EAS-метка, бонусный билет на общественный транспорт Москвы с магнитной полосой, RFID-карта посетителя РосНаноФорума содержит даже две метки.

Первой заявлена карточка московского метрополитена – приступим.

В круге первом. Билет московского метрополитена
Сначала вымачиваем карту в обычной воде, чтобы удалить бумажные слои, скрывающие самое сердце данной «метки».


Раздетая карта московского метрополитена

Теперь аккуратненько посмотрим на неё при небольшом увеличении в оптический микроскоп:


Микрофотографии чипа карты для прохода в московский метрополитен

Чип закреплён довольно основательно и хочу обратить внимание, что все 4 «ноги» присоединены к антенне – это нам пригодится далее для сравнения с другой RFID-меткой. Сложив пластиковую основу пополам в месте, где находится чип, и слегка покачав из стороны в сторону, он легко высвобождается. В итоге имеем чип размером с игольчатое ушко:


Оптические микрофотографии чипа сразу после отделения от антенны

Что ж, поиграемся с фокусом:


Изменение положения фокуса с нижнего слоя на верхний

Теперь немного интриг.

Ходят слухи, что Микрон разрабатывает и производит чипы для московского метро собственного силам по сходной технологии Mifare (как минимум, различается крепление к антенне – ножки другой формы). 22 августа без объявления войны и вероломно направил обращение в Микрон за разъяснениями, можно ли где-то в принципе увидеть данный чип, к 3.11 ответа не поступило. Один из журналистов (а именно, Александр Эрлих) на форуме IXBT тоже собирался уточнить данную информацию у представителей Микрона, но на данный момент воз и ныне там, то есть официальные представители Микрон уклоняются от ответа на прямо поставленный вопрос.

Рассмотренный выше билет, по всей видимости, изготовлен (или только смонтирован на антенну?) на предприятии Микрон (г. Зеленоград) - см. ссылки ниже - по технологии известной в RFID-кругах фирмы NXP, о чём собственно недвусмысленно намекают 3 огромные буквы и год выпуска технологии (а может и год производства) на верхнем слое металлизации чипа. Если полагать, что 2009 относится к году запуска технологии, а аббревиатуру CUL1V2 расшифровать как Circuit ULtralite 1 Version 2 (данное предположение также подтверждается этой новостью), то на сайте NXP можно найти подробное описание данных чипов (последние две строки в списке)

Кстати, в прошлом году для участников Интернет-олимпиады по Нанотехнологиям была организована экскурсия на завод Микрон (фото- и видео отчёты), поэтому говорить, что там оборудование простаивает смысла нет, но и заявление «дядечки в белом халате», что производят они метки по стандартам 70 нм, я бы поставил под сомнение…

Согласно статистике, собранной после анализа чипов 109 билетов метро (довольно репрезентативная выборка), согласно нормальному распределению шансы найти «необычный» билет ~109^1/2 или около 10%, но они тают с каждым вскрытым билетиком…

Внимательный взгляд уже приметил главное отличие двух чипов Mifare – надпись Philips2001. В самом деле, в далёком 1998 году компания Philips купила американского производителя микроэлектроники – Mikron (не путать с нашим, зеленоградским Микроном). А в 2006 году от Philips отпочковалась компания NXP.

Также несложно заметить пометку CLU1V1C, что, исходя из вышеописанного, означает Circuit ULtralite 1 Version 1C. То есть эта метка является предшественницей Mifare, используемой московским метрополитеном, а, следовательно, совместима с ней по основным параметрам. Однако, как и в предыдущем случае 2001 – это указание на год разработки и внедрения технологии или год производства. Странно, что Аэроэкспресс использует устаревшие метки…

В круге третьем. Пластиковая карта
Как-то раз, решил я одной своей знакомой показать статьи и фотографии на Хабрахабре. После чего спросил, а есть ли у неё какая-нибудь ненужная карта для следующей статьи про RFID. Она к тому времени как раз перебралась учиться в EPFL и подарила мне карточку, по которой осуществляется проход в одно из зданий МГУ. Карта, соответственно, без какой-либо маркировки, и я даже не уверен, что на ней записано хоть что-то, кроме обычно ключа для прохода в здание.
Карточка полностью пластиковая, поэтому сразу кладём её в ацетон буквально на пару десятков минут:


Принимаем ацетоновые ванны

Внутри всё довольно стандартно – антенна да чип, правда, он оказался на маленьком кусочке текстолита. К сожалению, без каких-либо опознавательных знаков – типичный китайский noname. Единственное, что можно узнать об этом чипе и карте, что они изготовлены/относятся к некоторому стандарту TK41. Таких карт полно на распродажах типа ali-baba и dealextreme.

В круге четвёртом. Перекрёсток
Далее я хочу рассмотреть две метки, представленные на выставке РосНаноФорум 2011. Первую из них представили с большим пафосом, сказав, что это чуть ли не панацея от воров и краж в магазинах. Да и вообще, данная метка позволит полностью перевести магазины на самообслуживание. К сожалению, эффективный менеджер оказался чуть более, чем полностью некомпетентен в вопросах школьной физики. И после предложение проверить эффективность его и метки с помощью сильного магнита, приложенного к метке, быстро замял тему…

После пары покупок в SmartShop, у меня в распоряжении осталось несколько меток. Очистив одну из них от клея и белого защитного слоя видим следующее:


Новая метка сети магазинов «Перекрёсток»

Поступаем так же как и Mifare аккуратно отсоединяем от полимерной основы и антенны и кладём на столик оптического микроскопа:


Оптические микрофотографии метки, предполагаемой к использованию в SmartShop

По счастливой случайности (то ли клей подкачал, то ли так задумано), метку удалось оторвать от основы быстро, а поверхность её осталась без каких-либо следов клея. Хотелось бы обратить внимание, что если у Mifare все 4 контакта прикреплены к антенне (по 2 контакта на каждый её конец), то здесь мы видим, что два контакта присоединены к двум небольших площадкам, которые не контактирую с антенной.

Немножко поиграем с фокусом в разных частях метки:


Меняем фокусировку…


Максимальное увеличение оптического микроскопа

На последнем фото слева вверху, по всей видимости, запечатлён модуль EEPROM памяти, так как он занимает около трети поверхности чипа и имеет «регулярную» структуру.

Технология RFID (Radio Frequency Identification — радиочастотная идентификация) основанна на использовании радиочастотного электромагнитного излучения. RFID применяется для идентификации и учета объектов.

RFID — технология идентификации, которая предоставляет большие возможности. Наиболее распространенные RFID-метки, как и многие штрих-коды, представляют собой самоклеящиеся этикетки. Но если на штрих-коде информация хранится в графическом виде, то на метку данные заносятся и считываются при помощи радиоволн.

Как это работает

RFID-метка - миниатюрное запоминающее устройство. Она состоит из микрочипа, который хранит информацию, и антенны, с помощью которой метка передает и получает данные. Иногда RFID-метка имеет собственный источник питания (активная), но большинство меток во внешнем питании не нуждаются (пассивная).

В памяти RFID-метки хранится уникальный номер и информация. Когда метка попадает в зону регистрации, эта информация принимается RFID-считывателем.

Для передачи данных пассивные RFID-метки используют энергию поля считывателя. Накопив необходимое количество энергии, метка начинает передачу. Дистанция регистрации пассивных меток 0,05 - 8 метров, в зависимости от типа RFID-считывателя и архитектуры метки.

Где это применяется

Сфера применения RFID постоянно расширяется. Технология востребована в отраслях, где требуется контроль перемещения объектов, интеллектуальные решения автоматизации, способность работать в жестких условиях эксплуатации, безошибочность, скорость и надежность.

На производстве с помощью RFID ведется учет сырья, контролируются технологические операции, обеспечиваются принципы JIT/JISи FIFO. RFID-решения на производстве обеспечивают высокий уровень и стабильность качества продукции.

На складе с помощью RFID в реальном времени отслеживается перемещение товаров, ускоряются процессы приема и отгрузки, повышается надежность и прозрачность операций и снижается влияние человеческого фактора. RFID-решения на складе обеспечивает защиту от воровства и хищений продукции.

В индустрии потребительских товаров и розничных продаж RFID-системы отслеживают товар на этапах поставки, от производителя до прилавка. Товар вовремя выставляется на полку, не залеживается на складе и отправляется в те магазины, где на него высокий спрос.

В библиотеке RFID помогает найти в хранилище и выдать читателю книги, предотвратить хищения. Исчезают очереди на выдаче. Сокращается время подбора и поиска нужного издания, упрощается инвентаризация.

RFID-метки применяются в маркировке шуб и других меховых изделий. Каждое изделие маркируется Контрольным (идентификационным) знаком (КиЗ) со встроенной в него RFID-меткой.

Множество областей бизнеса и повседневной жизни можно улучшить благодаря RFID-технологии. Потенциал применения RFID огромен.

Компоненты RFID-системы

  • RFID-метки — устройства, способные хранить и передавать данные. В памяти меток содержится уникальный идентификационный код. У некоторых RFID-меток память может перезаписываться.
  • RFID-считыватели — приборы, которые читают информацию с меток и записывают в них данные. Подключаются к учетной системе и работают автономно.
  • Учетная система — программное обеспечение, которое накапливает и анализирует полученную с меток информацию и связывает все элементы в единую систему. Современные учетные системы (программы семейства 1С, корпоративные информационные системы — MS Axapta, R3Com) совместимы с RFID-технологией и не требуют специальной доработки.

Преимущества радиочастотной идентификации

  1. Данные RFID-метки перезаписываются и дополняются много раз, тогда как данные на штрих-коде неизменны — они записываются сразу при печати.
  2. RFID-считывателю не требуется прямая видимость метки, чтобы считать ее данные. Взаимная ориентация метки и считывателя не играет роли. Метки читаются через упаковку, что делает возможным скрытое размещение. Для чтения данных метке достаточно попасть в зону регистрации, в том числе при перемещении на высокой скорости. Устройству считывания штрих-кода необходима прямая видимость штрих-кода для чтения.
  3. RFID-метка считывается на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя радиус считывания составляет до нескольких десятков метров.
  4. . RFID-метка может хранить значительно больше информации, чем штрих-код. До 10 000 байт могут храниться на микросхеме площадью в 1 квадратный сантиметр, а штриховые коды вмещают 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.
  5. Промышленные RFID-считыватели одновременно считывают десятки RFID-меток в секунду, используя антиколлизионную функцию. Устройство считывания штрих кода может единовременно сканировать только один штрих-код.
  6. Для автоматического считывания штрихового кода, комитетами по стандартам (в том числе EAN International) разработаны правила размещения штрих-кодов на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие — нахождение метки в зоне действия RFID-считывателя.
  7. RFID-метки обладают повышенной прочностью и сопротивляемостью жестким условиям среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах, где один и тот же объект используется много раз (например, при идентификации паллет или возвратной тары), радиочастотная метка - лучшее средство идентификации, так как не требует размещение на внешней стороне упаковки. Пассивные RFID-метки неограничены сроком эксплуатации.
  8. RFID-метка используется не только как хранитель информации, это интеллектуальное устройство широкого спектра применения с уникальным идентификатором. У штрих-кода нет интеллекта и он просто хранит данные.
  9. Неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует защиту меток от подделки. Данные на метке легко шифруются. Как цифровое устройство, радиочастотная метка при необходимости защищается паролем и зашифровывается. В одной метке можно одновременно хранить открытые и закрытые данные.

Что нужно помнить при внедрении RFID

При работе с радиочастотной идентификацией нужно учитывать некоторые ограничения: относительно высокая стоимость, невозможность размещения под металлическими и экранирующими поверхностями, взаимные коллизии.

Относительно высокая стоимость RFID-меток. Цена пассивной RFID-метки начинается с 0,15 доллара (при приобретении свыше 1 000 000 шт.) до 3 долларов (при приобретении 1 шт.). В случае с метками защищенного исполнения (или на металл) эта цена достигает 7 долларов и выше. Таким образом, стоимость RFID-меток выше стоимости этикеток со штриховым кодом. Использование радиочастотных меток целесообразно для защиты дорогих товаров от краж или для сохранности изделий, переданных на гарантийное обслуживание. В логистике и транспортировке грузов стоимость радиочастотной метки незначительна по сравнению со стоимостью содержимого контейнера, поэтому использование радиочастотных меток оправдано на упаковочных ящиках, паллетах и контейнерах.

Возможное экранирование при размещении на металлических поверхностях. RFID-метки подвержены влиянию металла (это касается упаковок определенного вида — металлических контейнеров или упаковки жидких пищевых продуктов, запечатанных фольгой). Это не исключает применение RFID, но приводит к необходимости использования меток, разработанных специально для установки на металлические поверхности или к нестандартным способам закрепления меток на объекте.

Радиочастотная идентификация

История RFID меток

Патент США Марио Кардулло (Mario Cardullo ) № 3,713,148 от 1973 («Пассивный радиопередатчик с памятью»), был, по сути, прародителем современной RFID-технологии. Впервые пассивное устройство на отражённой энергии было продемонстрировано в 1971 году властям Нью-Йорка и другим потенциальным покупателям как устройство с 16 битами памяти для взимания пошлины на дорогах. Патент Кардулло покрывает использование радиоволн, света и звука в качестве средства передачи информации.

Оригинальный бизнес-план был представлен инвесторам в 1969 для использования в сфере транспорта (идентификация самоходных машин, автоматическая платёжная система (система взимания пошлины), электронные номерные знаки, электронные платёжные ведомости, вождение машин, мониторинг состояния транспортных средств), в банковском деле (электронные книги проверок, электронные кредитные карты), в сфере безопасности (персональная идентификация, автоматические ворота, наблюдение) и в медицине (идентификация пациента, истории болезни).

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской Лаборатории Лос Аламоса (англ. Los Alamos Scientific Laboratory ) в 1973 году . Портативная система работала на частоте 915 МГц и использовала 12 битные метки.

Первый патент, связанный собственно с названием RFID, был выдан Чарльзу Уолтону (Charles Walton ) в 1983 году (патент США за № 4,384,288).

Классификация RFID-меток

Существует несколько способов систематизации RFID-меток и систем:

  • По рабочей частоте
  • По источнику питания
  • По типу памяти
  • По исполнению

По источнику питания

По типу источника питания RFID-метки делятся на:

  • Пассивные
  • Активные
  • Полупассивные

Пассивные

RFID-антенна

Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток , индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого CMOS -чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу.

На данный момент основная проблема RFID-устройств заключается в том, что для них требуется внешняя антенна, которая по размерам превосходит чип в лучшем случае в 80 раз.

Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как , Target , Metro AG в Германии, составляет примерно 5 центов за метку фирмы SmartCode (при покупке от 100 млн штук) . К тому же, из-за разброса размеров антенн, и метки имеют различные размеры - от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от Alien Technology под названием Fluidic Self Assembly , от SmartCode - Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies - PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology в настоящее время использует процессы FSA и HiSam для изготовления меток, в то время как PICA - процесс от Symbol Technologies - находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс - более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам - самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС монтаж (англ. Pick and place ) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks ) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки изготавливаются из полимерных полупроводников. В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13.56 МГц. были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончится тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды , и они станут такими же дешёвыми.

Активные метки обычно имеют гораздо больший радиус считывания (до 300 м) и объём памяти, чем пассивные, и способны хранить больший объём информации для отправки приёмопередатчиком. В настоящее время, активные метки делают размерами не больше обычной пилюли и продают по цене в несколько долларов.

Полупассивные

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батарей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

По типу используемой памяти

По типу используемой памяти RFID-метки делятся на:

  • RO (англ. Read Only ) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.
  • WORM (англ. Write Once Read Many ) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.
  • RW (англ. Read and Write ) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По рабочей частоте

Метки диапазона LF (125-134 кГц)

RFID-метка 125 кГц

Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных , людей и рыб. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона HF (13,56 МГц)

Системы 13МГц дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight , введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart , позднее была взломана считавшаяся более надёжной карта Mifare Classic .

Как и для диапазона LF, в системах, построенных в HF-диапазоне, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона UHF (860-960 МГц)

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколизионные механизмы. Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code ) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, совсем недавно компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0 , но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID ), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита - под уникальный номер самого чипа. Поле TID - неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки.

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон СВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне - 863-868 МГЦ.

Радиочастотные UHF-метки ближнего поля

Стандарты

Негативное отношение к технологии RFID усугубляется пробелами, существующими во всех нынешних стандартах. Хотя процесс совершенствования стандартов не закончился, во многих прослеживается тенденция скрывать от публики часть команд меток. Например, команда Аутентификация в фирменной технологии MIFARE, использующей стандарт ISO/IEC 14443, после которой метка должна шифровать свои ответы и воспринимать только шифрованные команды, может быть нейтрализована некоторой командой, которую фирма-разработчик держит в секрете. После выполнения этой команды возможно успешно использование ReadBlock , фиктивно зашифрованной на константе (которая используется для подсчёта CRC в стандарте ISO/IEC 14443). Таким образом можно прочитать MIFARE-карточку. Более того, анализируя потребляемый карточкой ток, инженер-схемотехник может прочитать все пароли доступа ко всем блокам MIFARE-карточки (в силу относительной прожорливости EEPROM ячеек и схемотехнической реализации чтения памяти в чипе). Так, в наиболее распространённых RFID-карточках может изначально содержаться закладка.

Часть подозрений в отношении RFID может быть снята выработкой полных и открытых стандартов, отсутствие каковых вызывает подозрения и недоверие к технологии.

Применение меток диапазона СВЧ в Российской Федерации в настоящее время регулируется СанПиН 2.1.8/2.2.4.1383-03, утвержденными Постановлением Главного государственного санитарного врача РФ № 135 от 09.06.2003 г. Несмотря на распостраняемое заблуждение о несоответствии данного оборудования стандартам , при реальных расчётах учитывается напряжение электромагнитного поля и плотность потока, издаваемые оборудованием, а не выходная мощность прибора, как это было установлено в СанПиН 2.2.4/2.1.8.055-96, утративших силу с 30.06.2003 г.; фактические значения для расчета предельно допустимого уровня в реально существующем в России UHF-оборудовании примерно в 10-20 раз, чем установленные санитарно-гигиеническими нормами.

Развитие RFID-рынка

Мировой рынок RFID-систем

По оценке аналитиков Deutche Bank Research , к ёмкость рынка RFID-систем составит 22 млрд евро по сравнению с 1,5 млрд евро в . Один из источников роста - применение RFID-технологий в паспортах и иных удостоверениях. Ещё в 1998 году паспорта со встроенными RFID-чипами начала выдавать своим гражданам Малайзия

Применения

Станция выдачи книг в библиотеке СПБГУ

На текущий момент RFID-технологии применяются в самых разнообразных сферах человеческой деятельности:

  1. Медицина - мониторинг состояния пациентов, наблюдение за перемещением по зданию больницы.
  2. Библиотеки - станции автоматической книговыдачи, быстрая инвентаризация.

В первую очередь, используется следующий функционал RFID:

  • Информация об объекте, его свойствах, качествах и т. п.
  • Информация о положении объекта.

RFID часто используется в системах безопасности магазинов розничной торговли для предотвращения краж.

Стандарты

Основная статья : Стандарты RFID

Международные стандарты RFID, как составной части технологии автоматической идентификации, разрабатываются и принимаются международной организацией ISO совместно с IEC. Подготовка проектов (разработка) стандартов производится в тесном взаимодействии с инициативными заинтересованными организациями и компаниями.

Организации-разработчики стандартов

AIM Global - международная торговая ассоциация, представляющая поставщиков автоматической идентификации и мобильных технологий. Ассоциация активно поддерживает развитие AIM стандартов за счёт собственного Technical Symbology Committee, Global Standards Advisory Groups и группы экспертов RFID, а также через участие в промышленных, национальных (ANSI) и международных (ISO) группах разработок.

В России разработка стандартов в области RFID поручена Ассоциации UNISCAN/GS1 Russia.

EPC Gen2

EPC Gen2 - сокращение от EPCglobal Generation 2 .

Деление меток на классы было принято задолго до появления инициативы EPCglobal , однако не существовало общепринятого протокола обмена между считывателями и метками. Это приводило к несовместимости считывателей и меток различных производителей. В г. ISO/IEC приняла единый международный стандарт ISO 18000, описывающий протоколы обмена (радиоинтерфейсы, англ. air interface ) во всех частотных диапазонах RFID от 135 кГц до 2,45 ГГц. Диапазону УВЧ (860-960) МГц соответствует стандарт ISO 18000-6А/В. С учётом технических проблем, проявлявшихся при считывании меток классов 0 и 1 первого поколения, в 2004 г. специалисты Hardware Action Group EPCglobal создали новый протокол обмена между считывателем и меткой УВЧ диапазона - Class 1 Generation 2. В г. предложение EPC Gen2 с незначительными изменениями было принято ISO/IEC в качестве дополнения С к существующим вариантам А и В стандарта

Особенности

id

Метки Gen 2 выпускаются как с записанным производителем номером, так и без него. Записанный производителем товара номер можно заблокировать так же, как и изначально встроенный.

Антиколлизионный механизм (меток)

Современные метки стандарта Gen 2 используют эффективный антиколлизионный механизм, основанный на развитой технологии «слотов» - многосессионном управлении состоянием меток во время «инвентаризации», - то есть, считывании меток в зоне регистрации. Данный механизм позволяет увеличить скорость считывания-инвентаризации меток до 1500 меток/сек (запись - до 16 меток/сек) при использовании промышленных портальных считывателей, например, компании алгоритм работает гораздо быстрее алгоритма, используемого в Gen1, так как в первом случае считыватель побитно перебирает до 64-х бит, а во втором работает теория вероятности и имеется механизм регулировки.

Антиколлизионный механизм (считывателей)

Кроме того, Gen 2 метки позволяют эффективно использовать в перекрывающихся и близких зонах несколько считывателей одновременно (технология англ. Dense Reader Mode ) за счёт разнесения друг от друга частотных каналов считывателей.

Цена

Метки стандарта Gen2 в настоящее время уже существенно дешевле меток предыдущего поколения, что также делает их использование предпочтительным, а оборудование (считыватели) первого поколения в большинстве случаев требуют для работы с новыми стандартами лишь перепрограммирования встроенной программы (перепрошивки).

Пароли

Как и метки предыдущего стандарта , Gen2 обладают возможностью установки 32х-битного access-пароля. Кроме того, для каждой метки возможна установка килл-пароля (англ. "kill" password ), после введения которого метка навсегда прекратит обмен информацией со считывателями.

ISO 15693

В настоящее время в качестве международного стандарта в области RFID выступает ISO 15693. Данный стандарт описывает принцип передачи информации, временные параметры передачи сигналов в RFID-системах и т. д.

Примечания

  1. Раздел сайта, посвящённый RFID (англ.) . EFF . Проверено 14 октября 2008.
  2. Пересказ содержания Обращения Священного Синода Русской Православной Церкви к органам власти стран Содружества Независимых Государств и Балтии от 6 октября 2005 года (рус.) . Официальный сайт Московской Патриархии (17 октября 2005 г.). Проверено 14 октября 2008.
  3. История технологии (рус.) . Scale Company. Проверено 14 октября 2008.
  4. Hitachi µ-Chip (рус.) . Проверено 14 октября 2008.
  5. Hitachi разработала самые маленькие чипы RFID (рус.) . CNews (21 февраля 2007). Проверено 14 октября 2008.
  6. Mark Roberti A 5-Cent Breakthrough (англ.) . RFID Journal. Проверено 14 октября 2008.
  7. Locating, Responding, Optimizing in Real Time. RFID System for the Locating (англ.) .
  8. Киви Берд Маленькие секреты больших технологий (рус.) . Компьютерра (17 февраля 2008 года). Проверено 13 февраля 2009.
  9. Киви Берд Ясно, что небезопасно (рус.) . Компьютерра (30 марта 2008 года). Проверено 13 февраля 2009.
  10. Киви Берд И грянул гром (рус.) . Компьютерра (28 марта 2008 года). Проверено 13 февраля 2009.
  11. Иван Боенко Уникальность или универсальность? (рус.) . журнал "Information Security" №3 за апрель-май 2008. Проверено 13 февраля 2009.
  12. Министерство связи и массовых коммуникаций Российской Федерации 28 апреля под председательством Министра информационных технологий и связи Российской Федерации Л.Д. Реймана прошло заседание Государственной комиссии по радиочастотам (ГКРЧ) (рус.) . Проверено 16 февраля 2009.

Пока в стране идут новогодние праздники и все отдыхают наконец соберу весь накопленный материал в одну кучку. Я давно не писал в блог, постараюсь исправиться в нынешнем году. Я не пишу о политике, философии, событиях моей жизни, только о железках. Увы о железах на работе я писать не могу в силу определенных причин, но копится материал научно-популярного и просветительского толка. Очень сложно написать лучше, чем уже написано в той же википедии.

RFID – R adio F requency ID entification – радиочастотная идентификация. На сегодня RFID метки это более широкое понятие и сюда приплетают в том числе и беспроводные сенсоры, хотя идентификация – не их основное занятие. RFID метка – это небольшое устройство, которое позволяет на расстоянии, в отсутствие прямой видимости считать сохраненные на нем данные, тем самым идентифицировать объект. Это как штрихкод, наклеенный на товар, только работающий по радио.

RFID метки бывают разных типов. По способу электропитания различают пассивные (полностью получают питание для работы от излучения считывателя) и активные (имеют на себе батарейку). Само собой у пассивных дальность действия ниже, зато срок службы ничем не ограничен. У активных все лучше, и дальность действия, и начинка поинтеллектуальнее, но батарейку нужно будет менять.

По радиочастотному диапазону различают LF (125 кГц), HF (13.56 МГц) и UHF (860-960 МГц).

Принцип действия

Считыватель и метка имеют катушки индуктивности, образующие колебательный контур. Когда считыватель создает переменное магнитное поле своей катушкой, магнитный поток проходя через катушку метки возбуждает в ней ток. Точно так же как работает к примеру беспроводная зарядка. Метка от возбужденного в катушке тока получает питание, и используя транзистор может на некоторое время (питаясь в это время от накопленного в конденсаторе заряда) замыкать катушку накоротко, тем самым меняя значение амплитуды тока в катушке считывателя. Считыватель фиксирует эти изменения, тем самым принимая сигнал от метки.

Устройства UHF диапазона работают аналогично, только вместо катушек – диполи:

(Иллюстрация из книги RFID Handbook by Klaus Finkenzeller 2 редакция)

Само собой это означает что весь обмен данными между меткой и считывателем происходит публично, и при решении задач определения подлинности нужно это учитывать.

Активные метки более разнообразны по устройству, некоторые вообще по сути являются радиомаяками, по несколько раз в секунду просто посылая в эфир свой номер (parsec). RFID метка помимо микроконтроллера, обеспечивающего передачу уникального номера может быть оснащена различными датчиками. Например датчиком давления. Такой датчик можно разместить в шину автомобиля и непрерывно контролировать давление воздуха в шине.

С каждым днем RFID меткам находят все больше применений. Начиная от использования в качестве ключей для домофона заканчивая противокражными метками в магазинах самообслуживания. Именно увеличение спроса, снижение стоимости из-за массового производства позволяет находить все новые и новые применения.

Метка передает считывателю в ответе на запрос свой уникальный номер. Более сложные метки имеют немного памяти на борту и могут хранить какую либо информацию, например количество оставшихся поездок, что избавляет от необходимости создания центрального сервера и поддержки его на связи всегда. Метка также может иметь на борту криптопроцессор и обеспечивать проверку подлинности или обмен секретными данными. Изучается вопрос добавления RFID меток к банкноты как дополнительная мера защиты.

В будущем возможно все продукты будут снабжены RFID метками на стадии производства, а холодильник RFID считывателем. Тогда взяв вечером спросонья из холодильника пакет молока он молвит человеческим голосом “Сдурел? Выкинь, оно во мне уже пол года лежит, испортилось давно”.

Примеры

Екарта – проездная карточка на все виды транспорта в г.Екатеринбурге. Представляет собой карточку Mifare. Внешний вид:

Немного ацетоновых ванн и видно катушку индуктивности по периметру. Система полностью децентрализованная и информация о количестве денег хранится на самой карте в зашифрованном виде.

Московский метрополитен. Конструкция попроще для удешевления, карточка одноразовая:

Брелок от домофона “Факториал”

Внутри тоже RFID чип от Texas Instruments

При этом при каждом открывании двери данные в ключе перезаписываются, таким образом невозможно увеличить количество ключей. Копия будет работать, но после первого открывания перестанет работать оригинал, так как данные в ключе меняются. Этим хитрым апгрейдом факториал разом сделал бизнес копирования домофонных ключей невозможным.

Активные метки parsec

Представляют собой герметичный контейнер с микроконтроллером, батарейкой и радиомодулем, который посылает в эфир пару раз в секунду свой уникальный номер. Закрепив такой на автомобиле можно определять какие авто на данный момент сейчас находятся к примеру в гараже. Основная задача этих меток в автоматическом открывании ворот и шлагбаумов.

При этом вариант на последнем фото снабжен еще и пассивной меткой, можно повесить как брелок для ключей, и открывать не только ворота но и двери.

Правда безопасность автомобиля, основанная на наличии такой метки уязвима .

Если разберем ключ от автомобиля то найдем в нем чип иммобилайзера, который по сути тоже RFID метка:

Справа на крышке. Надежность и секретность механических замков ограничивается точностью механической обработки и достигла своего предела. Электронные замки и ключи имеют значительно большее число комбинаций.

RFID метки могут внедряться на стадии производства, например гитар:

Производитель таким образом не только облегчает себе отслеживание продукции на складах, но и гарантирует себе способ отличить свою продукцию от подделок.

Вот шапка с RFID меткой пришитой при производстве:

Еще одна от куртки:

Немного растворителей и достаем метки:

Отдельного слова заслуживают так называемые противокражные метки, или 1-битные транспондеры. Это RFID метка которая передает всего 1 бит – информацию о своем наличии. Такие метки используются для защиты товара от краж. Я про одну такую. Чаще всего встречаются метки электромагнитной системы (метка – колебательный контур), и акустомагнитной. Метки других типов в наших краях встречаются редко.

Если вы параноик

Возможно вам пригодится RFID Zapper . Перманентно отключить метку можно также в микроволновке, просто включив на пару секунд. Пассивные метки считываются на расстоянии в несколько метров (для LF и HF вообще не более 20 см). Что бы считать метку на расстоянии 100 метров в считыватель придется закачивать неприлично большие мощности.

Кредитные и дебетовые карты со встроенной меткой радиочастотной идентификации (RFID) теперь являются нормой. Но это только одна сфера, в которой используется технология RFID.

Есть много других мест, в которых вы используете технологию RFID, возможно, даже не осознавая этого.

Итак, что такое RFID?

Радиочастотная идентификация - это использование радиоволн для считывания, захвата и взаимодействия с информацией, хранящейся в метке/теге. Метки обычно прикрепляются к объектам и могут считываться с нескольких метров. Кроме того, тег не всегда должен находиться в прямой видимости, чтобы инициировать взаимодействие.

Метка RFID - это простой способ присвоить объекту уникальный идентификатор. Кроме того, им не нужен внутренний источник питания, в то время как метка может быть такой же маленькой, как зерно черного перца. Это означает, что они легко внедряются почти везде - отсюда и их популярность.

Как работает RFID?

Основная система RFID состоит из двух частей: метки и считывателя.

Метка

RFID-метка имеет встроенный передатчик и приемник. Фактический RFID-компонент, содержащийся в метке, состоит из двух частей: интегральной схемы для хранения и обработки информации и антенны для приема и передачи сигнала. Метка RFID имеет энергонезависимое запоминающее устройство и может включать либо фиксированную, либо программируемую логику для обработки данных передачи и датчиков.

Теги могут быть пассивными, активными или пассивными с батарейкой.

Пассивная метка является самым дешевым вариантом и не содержит батареи. Метка использует радиопередачу, передаваемую считывателем.

Активная метка имеет встроенную батарею, периодически передающую свои учетные данные.

Аккумуляторная пассивная метка также оснащена небольшой встроенной батареей, но активируется только при наличии считывателя RFID.

Кроме того, метка может быть доступна только для чтения или для чтения/записи. Метка только для чтения имеет заводской серийный номер, используемый для идентификации в базе данных, в то время как метка чтения/записи может иметь определенные пользовательские данные, записанные в метку пользователем.

Считыватель

RFID-считыватель оснащен двухсторонним радиопередатчиком (трансивером), иногда называемым запросчиком. Приемопередатчик передает закодированный радиосигнал для взаимодействия с меткой. Радиосигнал по существу пробуждает или активирует метку. В свою очередь, приемоответчик метки преобразует радиосигнал в полезную мощность и отвечает считывателю.

Обычно мы классифицируем тип RFID-системы по типу метки и считывателя. Существует три общие комбинации:

  • Активная метка пассивного считывателя (PRAT): Считыватель пассивен, он только принимает радиосигналы от активной метки. Поскольку метка заряжается от батареи, диапазон приема/передачи может составлять от 0 до 600 м. Таким образом, PRAT является гибким решением RFID.
  • Активный считыватель пассивной метки (ARPT): считыватель активен, передает радиосигнал запроса, получая ответы на сигналы аутентификации от пассивных меток.
  • Активная метка активный считыватель (ARAT): считыватель активен и взаимодействует с активными или аккумуляторными пассивными метками.

В дополнение к типу RFID-системы RFID использует набор регулируемых полос частот.

Что такое OPID?

Оптическая RFID (OPID) является альтернативой RFID, которая использует оптические считыватели. OPID работает в электромагнитном спектре между частотами 333 ТГц и 380 ТГц.

Сколько данных?

Объем информации, хранящейся в теге RFID, изменяется. Например, пассивная метка может хранить только до 1024 байтов информации - это всего один килобайт (КБ). Смешно с точки зрения современной емкости хранилища, но достаточно, чтобы сохранить полное имя, идентификационный номер, день рождения, SSN, информацию о кредитной карте и многое другое. Однако аэрокосмическая промышленность использует пассивные сверхвысокочастотные RFID-метки с хранилищем 8 КБ для отслеживания истории деталей с течением времени. Они могут хранить огромное количество персональных данных.

Общее использование RFID

RFID-метки повсюду. Поскольку они легко привязываются практически к чему-угодно, не имеют потребности в энергии они используются во всех сферах жизни, в том числе:

  • Управление товарами и отслеживание
  • Наблюдение за людьми и животными
  • Бесконтактные платежи
  • Туристические документы
  • Штрих-коды и метки безопасности
  • Управление данными о здравоохранении
  • Тайминг

RFID также создает волны на постоянно растущем интеллектуальном внутреннем рынке. В 2010 году стоимость RFID значительно снизилась. В то же время надежность RFID увеличилась из-за глобального перехода на стандарты RFID. Внезапно появилась чрезвычайно надежная, но экономичная система отслеживания или идентификации.

Безопасность

Внезапный всплеск RFID также вызвал проблемы с безопасностью. Совсем недавно появились бесконтактные платежные карты с меткой RFID. Недобросовестные люди взламывали бесконтактные карточки, используя портативные платежные терминалы, в то время как карта с поддержкой RFID находилась в кармане целей или в кошельке.

В Великобритании, еще один пример включает в себя RFID-метки, хранящиеся в паспортах. Когда первый введенный, пароль на новый паспорт Великобритании был взломан в течение 48 часов. Кроме того, появились сообщения, что преступники воровали почту, содержащую новый паспорт, сканировали RFID-метки для данных, а затем отправляли их дальше по их пути.

RFID здесь, чтобы остаться

RFID - это огромная индустрия. Мы используем ее почти каждый день. Посылка, которая прибыла в ваш дом, карта, которой вы заплатили за ваш обед, ключ карта открывающая дверь, смарт-дом, ручной имплантат и многое другое, все это использует технологию RFID.

Для чего вы используете RFID? Вы используете его в своем интеллектуальном доме? Вы купили RFID-блокирующий кошелек? Дайте нам знать это в комментариях ниже!