Схема блока питания для компьютера inwin 250w. Схемы. Структурная схема блока питания компьютера

    На этой страничке размещено несколько десятков электрических принципиальных схем, и полезные ссылки на ресурсы, связанные с темой ремонта оборудования. В основном, компьютерного. Помня о том, сколько сил и времени иногда приходилось затрачивать на поиск нужной информации, справочника или схемки, я собрал здесь почти все, чем пользовался при ремонте и что имелось в электронном виде. Надеюсь, кому-нибудь, что-нибудь пригодится.

Утилиты и справочники.

- Справочник в формате.chm. Автор данного файла - Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru - краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратуа, игровые приставки, интерфейсы автомобилей.

Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

startcopy.ru - по моему мнению, это один из лучших сайтов рунета, посвященный ремонту принтеров, копировальной техники, многофункциональных устройств. Можно найти методики и рекомендации по устранению практически любой проблемы с любым принтером.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

Схема БП NUITEK (COLORS iT) 330U.

Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

Схема БП Codegen 300w mod. 300X.

Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

Схема БП Delta Electronics Inc. модель DPS-260-2A.

Схема БП DTK PTP-2038 200W.

Схема БП FSP Group Inc. модель FSP145-60SP.

Схема БП Green Tech. модель MAV-300W-P4.

Схемы блока питания HIPER HPU-4K580

Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0

Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-420-302 DF REV:C0

Схемы блока питания INWIN IW-P300A2-0 R1.2.

Схемы блока питания INWIN IW-P300A3-1 Powerman.

JNC Computer Co. LTD LC-B250ATX

JNC Computer Co. LTD. Схема блока питания SY-300ATX

Предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

Схемы блока питания Key Mouse Electronics Co Ltd модель PM-230W

Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

Схема БП Maxpower PX-300W

Очень часто приходится заглядывать под крышку БП: осматривать его узлы, замерять напряжения, иногда перепаивать компоненты.

Блоки питания компьютеров, являясь высоковольтными силовыми устройствами, выходят из строя намного чаще других комплектующих компьютера. Не зависимо от производителя и цены, устройство и принцип работы блока питания ATX неизменны. Схематически устройство блока питания компьютера можно разделить на:

  • Входную цепь (1)
  • Сетевой выпрямитель (2)
  • Автогенераторный источник питания (3)
  • Силовой каскад (4)
  • Вторичные выпрямители (5)

Внутреннее устройство блока питания ATX

Входная цепь состоит из сетевого фильтра гасящего помехи в сети от работы БП. Сетевой выпрямитель блока питания компьютера включает в себя диодную сборку (мост) и выпрямительные конденсаторы. Автогенераторный источник питания работает когда компьютер выключен (не из сети, разумеется, а кнопкой Power) он подает дежурное напряжение питания +5VStb на контроллеры материнской платы. На силовой каскад от выпрямителя подается напряжение +310В. Транзисторы силового каскада блока питания ATX работают по двутактной схеме совместно с силовым трансформатором и управляются микросхемой ШИМ. Со вторичных обмоток силового трансформатора напряжение подается на вторичные низковольтные выпрямители. Микросхема ШИМ запускается по сигналу от материнской платы «Power On» запуская, соответственно, транзисторно-трансформаторный преобразователь и подавая напряжения на его вторичные обмотки. Во вторичных обмотках блока питания компьютера, кроме диодных сборок (на радиаторах) задействованы дроссели.

Структурная схема блока питания компьютера

Блок питания компьютера является импульсным устройством. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Сетевое напряжение 220в поступает через сетевой фильтр на выпрямитель состоящий из диодов и двух последовательно соединенных электролитических конденсаторов. Так же запитывается автогенераторный источник питания формирующий дежурное напряжение +5v stb. С выпрямителя, напряжение величиной 310в поступает на силовой каскад реализованный на мощных транзисторных ключах и трансформаторе. Силовой каскад управляется импульсами поступающими от микросхемы-генератора ШИМ (Широтно Импульсная Модуляция) через согласующий трансформатор на базы ключей. Генерируемое импульсное напряжение снимается со вторичных обмоток силового трансформатора, выпрямляется диодами и конденсаторами. Величина выходного напряжения контролируется специальной схемой защиты, которая формирует сигнал Power-Ok (Power-Good). В случае отклонения выходных напряжений от номиналов сигнал Power-Ok не подается на контроллер материнской платы, тем самым блокируя запуск компьютера.

Принципиальные схемы блоков питания ATX

Выходные напряжения ATX блока питания

Распиновка разъемов блока питания ATX

Ремонт блоков питания компьютеров

Ремонт блоков питания компьютеров следует начинать с проверки подачи сетевого напряжения ~220в на выпрямитель. Далее, необходимо проконтролировать наличие +310в на выходе выпрямителя (не забывайте, что конденсаторы выпрямителя блока питания компьютера включены последовательно и напряжение на их выводах будет составлять приблизительно по 150-160в). Удостоверьтесь в наличии напряжений +5v stb и Power-Ok (розовый и зеленый провода). Если они отсутствуют следует проверить автогенераторный источник питания дежурного режима и микросхему ШИМ (если нет напряжения Power-Ok). Если генерация дежурного напряжения +5v stb и Power-Ok в норме, сосредоточьте свое внимание на силовых ключах и вторичном выпрямителе блока питания. Не забывайте, что для проверки полупроводников и конденсаторов их лучше выпаять из схемы.


Достаточно часто при ремонте или переделке компьютерного блока питания ATX в зарядное устройство или лабораторный источник требуется схема этого блока. Учитывая, что моделей таких источников великое множество, мы решили собрать в одном месте коллекцию этой тематики.

В ней вы найдете типовые схемы блоков питания для компьютеров, как современных АТХ типа, так и уже заметно устаревших АТ. Понятное дело, что каждый день появляются все более новые и актуальные варианты, поэтому постараемся оперативно пополнять сборник схем более новыми вариантами. Кстати, Вы, можете нам в этом помочь.


Сборник принципиальных схем на БП АТХ и АТ


ATX 310T , ATX-300P4-PFC, ATX-P6; Octek X25D AP-3-1 250W; Sunny ATX-230 ;
BESTEC ATX-300-12ES на микросхемах UC3842, 3510 и A6351; BESTEC ATX-400W(PFC) на микросхемах ICE1PCS01, UC3842, 6848, 3510, LM358
Chieftec схема компьютерного блока питания CFT-500A-12S, CFT-560A-12S, CFT-620A-12S (CM6800G, PS222S, SG6858 или SG6848) APS-1000C, TNY278PN, CM6800TX; Chieftec 850W CFT-850G-DF; 350W GPS-350EB-101A; 350W GPS-350FB-101A; 500W GPS-500AB-A; 550W GPS-550AB-A; 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B; 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF; CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS на LD7550B


Chip Goal 250W, (м.с CG8010DX)
Codegen QORI 200xa на 350W на микросхеме SG6105
Colors-It схема компьютерного блока 300W 300U-FNM (sg6105 и sg6848); 330W - 330U ШИМ SG6105 дежурка на TDA865; 330U IW-P300A2-0 R1.2 sg6105; 330U ШИМ SG6105 и дежурка M605; 340W - 340U ШИМ SG6105; 350U-SCE - KA339, M605, 3842; 350-FCH ШИМ 3842, LM339 и M605; 340U SG6105 и 5H0165R; 400U SG6105 и 5H0165R; 400PT , 400U SCH 3842, LM339 и M605; 500T SG6105 и 5H0165R; 600PT (ATX12V-13), WT7525, 3B0365
ComStars 400W KT-400EX-12A1 на UC3543A схема
CWT PUH400W
Delta Electronics схема компьютерного блока питания DPS-210EP, DPS-260-2A 260W на микросборках NE556, PQ05RF11, ML4824-1, LM358, LM339D, PQ30R21; DPS-470 AB A 500W, APFC и ШИМ DNA1005A или DNA1005;
DELUX ATX-350W P4 на AZ7500BP и LP7510 схема
FSP Epsilon 600W FX600-GLN схема дежурки, собрана на ИМС FSDM0265R; FSP145-60SP КА3511, дежурка КА1Н0165R; FSP250-50PLA , APFC на CM6800, полевые транзисторы STP12NM50, TOP243Y, контроль PS223; FSP ATX-350PNR DM311 и основной ШИМ FSP3528; FSP ATX-300PAF и ATX-350 на DA311; 350W FSP350-60THA-P и 460W FX500-A FSP3529Z (аналог SG6105; ATX-400 400W, DM311; ATX-400PNF ,; OPS550-80GLN , APFC на полевых транзисторах 20N60C3, дежурка на DM311; OPS550-80GLN , модуль управления APFC+PWM на CM6800G; Epsilon 600W FX600-GLN (схема); ATX-300GTF на полевике 02N60
Green Tech схема компьютерного блока питания 300W модель MAV-300W-P4 на микросхеме TL494CN и WT7510
Hiper HPU-4S425-PU 425W APFC, на микросхемах CM6805, VIPer22A, LM393, PS229
iMAC G5 A1058, APFC на 4863G, дежурка на TOP245YN, основной БП на 3845B
JNC 250W lc-b250 atx
Krauler ATX-450 450W (м.с TL3845, LD7660, WT7510)
LWT 2005 на микросхеме LM339N
M-Tech 450W KOB-AP4450XA микросборка SG6105Z
Maxpower PX-300W микросхема SG6105D
Microlab схема компьютерного блока питания 420W, на WT7510, ШИМ TL3842 дежурка - 5H0165R; M-ATX-420W на базе UC3842, супервизор 3510 и LM393
PowerLink 300W LPJ2-18 на микросборке LPG-899
PowerMan IP-P550DJ2-0, 350W IP-P350AJ, 350W IP-P350AJ2-0 ver.2.2 на супервизоре W7510, 450W IP-S450T7-0, 450W IP-S450T7-0 rev:1.3 (3845, WT7510 и A6259H)
Power Master 230W модель LP-8, 250W FA-5-2, 250W AP-3-1, PM30006-02 ATX 300W
Power Mini P4 , Model PM-300W. Основная микросборка SG6105
Оба БП на 230 и 250 ватт, базируются на очень популярной микросхеме TL494. В видео инструкции по ремонту рассказано о том как выполнить поиск неисправности, о мерах безопасности при ремонте любых импульсных блоков питания, к которым и относится в.т.ч и компьютерный.


SevenTeam ST-200HRK (ИМС: LM339, UTC51494, UC3843AN)
ShenShon схема компьютерного блока питания 400W модель SZ-400L и 450W модель SZ450L, дежурка на C3150, AT2005; 350w на AT2005 , он же WT7520, или LPG899
Sparkman SM-400W на KA3842A, WT7510 схема
SPS: SPS-1804-2(M1) и SPS-1804E

Блок питания персонального компьютера - используется для электроснабжения всех компонентов и комплектующих системного блока. Стандартный АТХ блок питания должен обеспечивать следующие напряжения: +5, -5 В; +12, -12 В; +3,3 В; Практически любой стандартный блок питания имеет мощный вентилятор находящийся с низу. На задней панели имеется гнездо для подключения сетевого кабеля и кнопка выключения блока питания, но на дешевых китайских модификациях она может и отсутствовать. С противоположной стороны выходит огромная кипа проводов с разъемами для подключения материнской платы и всех остальных компонентов системного блока. Установка блока питания в корпус как правило достаточно проста. Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока. Есть конструкции корпуса системника при которых блок питания размещается в нижней части. В общем если что, надеюсь сориентируетесь

Случаи поломок компьютерных блоков питания совсем не редкость. Причинами возникновения неисправностей могут послужить: Выбросы напряжения в сети переменного тока; Низкое качество изготовления, особенно это касается дешевых китайских блоков питания; Неудачные схемотехнические решения; Использование низкокачественных компонентов при изготовлении; Перегрев радиокомпонентов из-за загрязнения блока питания, или остановки вентилятора.

Чаще всего при поломке компьютерного блока питания, в системнике отсутствуют признаки жизни, не горит светодиодная индикация, нет звуковых сигналов, не крутятся вентиляторы. В других случаях неисправности не запускается материнская плата. При этом крутятся вентиляторы, светится индикация, подают признаки жизни приводы и жесткий диск, но на дисплее монитора ничего нет, только темный экран.

Проблемы и дефекты могут быть абсолютно разные - от полной не работоспособности до постоянных или временных сбоев. Как только вы приступите к ремонту убедитесь, что все контакты и радио компоненты визуально в порядке, силовые шнуры не повреждены, предохранитель и выключатель исправен, коротких замыканий на землю нет. Конечно, блоки питания современной аппаратуры хоть и имеют общие принципы работы, но схемотехнически отличаются достаточно сильно. Постарайтесь найти схему на компьютерный источник, это ускорит ремонт.


Сердцем любой схемы компьютерного БП, формата ATX, является полумостовой преобразователь. Его работа и принцип действия основывается на применении двухтактного режима. Стабилизация выходных параметров устройства осуществляется с помощью управляющих сигналов.

В импульсных источниках часто используется известная микросхема ШИМ-контроллера TL494, которая обладает рядом положительных характеристик:

удобство применения в электронных конструкциях
неплохие рабочие технические параметры, такие как – низкий пусковой ток и главное быстродействие
наличие универсальных внутренних защитных компонентов

Принцип работы типового компьютерного БП можно увидеть в структурной схеме ниже:


Преобразователь напряжения выполняет преобразование этой велечины из переменной в постоянную. Он выполнен в виде диодного моста, преобразующего напряжение, и емкости, сглаживающей колебания. Кроме этих компонентов могут присутствовать еще дополнительные элементы: термисторы и фильтр. Генератор импульсов генерирует импульсы с заданной частотой, которые запитывают обмотку трансформатора. ОН выполняет основную работу в компьютерном БП, это преобразование тока до нужных значений и гальваническая развязка схемы. Далее переменное напряжение, с обмоток трансформатора, следует на еще один преобразователь, состоящий из полупроводниковых диодов, выравнивающих напряжение, и фильтра. Последний отсекает пульсации и состоит из группы дросселя и конденсаторов.

Так как многие параметры такого БП на выходе «плавают» из-за нестабильного напряжения и температуры. Но если осуществлять оперативное управление этими параметрами, например с помощью контроллера с функцией стабилизатора, то показанная выше структурная схема будет вполне пригодной для использования в компьютерной техники. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.

ШИМ-контроллер, например UC3843 , он в данном случае и регулирует амплитуду изменения сигналов следующих через фильтр низких частот, смотри видео урок чуть ниже:

Результаты тестированияПервым делом приведем таблицу с замерами выходных напряжений блоков питания при трех различных нагрузках - при токе 10А по шине +5В, 20A по шине +5В и, наконец, максимально возможной, 20A по шине +5В и 8A по шине +12В. Исключение было сделано только для 250Вт БП Samsung и 235Вт БП L&C, ибо для первого максимально допустимый ток по шине +12В составляет всего 6А, а для второго - ток по шине +5В не должен превышать 19А.Фиолетовым цветом в таблице выделены результаты, вписывающиеся в ATX 2.03, но не вписывающиеся в ATX 2.01 (как было сказано выше, это касается только шин -12В и -5В). Хотя большинство испытуемых БП должны соответствовать спецификации ATX 2.01 (на выход за ее рамки можно смотреть сквозь пальцы), эти напряжения, вообще говоря, для самочувствия компьютера малокритичны, в связи с чем в ATX 2.03 допуски на них и были увеличены в два раза. Однако всему есть предел, и к выходу за рамки спецификаций ATX 2.03, которые обозначены в таблице красным цветом, стоит отнестись со всей строгостью, и место таким блокам питания - в ящике с надписью "Брак".

Напряжения

+3,3В +5В +12В -12В -5В
Genius, 235W 3,32 4,88 12,24 -12,99 -5,09
L&C, 235W 3,27 4,84 12,44 -12,89 -5,52
L&C, 250W 3,34 5,06 12,53 -11,98 -5,2
fki 250W (ATX-250W) 3,37 4,69 12,29 -12,04 -5,08
fki 250W (FV-250N20) 3,31 4,96 12,29 -12,05 -4,97
PowerMan 250W 3,31 5 11,97 -11,78 -5
Samsung 250W 3,3 4,92 11,87 -12,07 -5,12
PowerOne 250W 3,41 5,02 12,43 -11,8 -4,95
KME 250W 3,33 5,03 12,36 -11,86 -4,98
KME 300W 3,35 5,08 12,52 -12,06 -5,07
MEC 250W 3,33 5 12,16 -11,73 -5,34
High Power 250W (101) 3,22 5 12,35 -12,24 -5,11
High Power 250W (102) 3,32 4,91 12,34 -11,97 -5,02
High Power 300W 3,27 4,93 12,27 -11,84 -5,07
PowerMaster 300W 3,39 4,96 12,26 -11,92 -4,99
Genius, 235W 3,26 4,75 12,56 -13,50 -5,14
L&C, 235W 3,23 4,70 12,90 -13,71 -5,87
L&C, 250W 3,34 5,01 12,90 -12,43 -5,43
fki 250W (ATX-250W) 3,36 4,44 12,64 -12,47 -5,25
fki 250W (FV-250N20) 3,26 4,86 12,51 -12,37 -5,11
PowerMan 250W 3,28 4,89 12,15 -12,17 -5,17
Samsung 250W 3,28 4,75 12,03 -12,1 -5,15
PowerOne 250W 3,41 4,95 12,76 -12,18 -5,11
KME 250W 3,32 4,92 12,58 -12,2 -5,04
KME 300W 3,35 4,99 12,76 -12,36 -5,1
MEC 250W 3,31 4,88 12,58 -12,3 -5,60
High Power 250W (101) 3,15 4,85 12,59 -12,69 -5,19
High Power 250W (102) 3,32 4,68 12,72 -12,36 -5,03
High Power 300W 3,24 4,83 12,55 -12,28 -5,09
PowerMaster 300W 3,37 4,88 12,51 -12,27 -5,13
Genius, 235W 3,23 4,84 12,19 -14,03 -5,19
L&C, 235W 3,2 4,76 12,19 -14,55 -6,16
L&C, 250W 3,34 5,07 12,51 -12,67 -5,61
fki 250W (ATX-250W) 3,36 4,53 12,15 -12,90 -5,49
fki 250W (FV-250N20) 3,24 4,92 12,16 -12,62 -5,25
PowerMan 250W 3,28 4,98 11,88 -12,66 -5,40
Samsung 250W 3,29 4,81 11,73 -12,12 -5,17
PowerOne 250W 3,41 5,01 12,33 -12,45 -5,25
KME 250W 3,26 4,98 12,22 -12,69 -5,18
KME 300W 3,34 5,1 12,45 -12,75 -5,2
MEC 250W 3,22 4,85 12,15 -12,76 -5,84
High Power 250W (101) 3,15 4,96 12,13 -13,11 -5,21
High Power 250W (102) 3,32 4,88 12,59 -12,51 -5,07
High Power 300W 3,23 4,91 12,16 -12,67 -5,1
PowerMaster 300W 3,35 4,93 12,09 -12,47 -5,26

Genius, 235Вт

По визуальным впечатлениям это средний, ничем особенным не выделяющийся блок питания. Выключателя питания нет, вместо него стоит выходной разъем 220В - естественно, при выключении компьютера напряжение на нем остается. Во входном фильтре наличествуют оба дросселя и все конденсаторы.
Осциллограммы выходных напряжений:


.



.



.


Не скажу, что картина радует глаз - при подключении переменной нагрузки, то есть вентиляторов, заметно растет амплитуда пульсаций напряжения, а на осциллограммах с разверткой 4мксек/дел прекрасно видны высокие выбросы напряжения при переключении транзисторов блока. Однако среди прочих блоков эти результаты оказались вполне средними.
Ну а с тестами на уровень выходных напряжений ему совсем не повезло: при полной нагрузке выходное напряжение вместо положенных 12В перевалило аж за 14В, перекрыв все спецификации.
Итак, все вышесказанное вынуждает считать этот БП не прошедшим тестирование.

L&C, 235Вт

Вот они, следы китайской инженерной мысли:


Под один из дросселей место на плате не предусмотрено вообще, вместо второго стоят две перемычки, Рядом красуется транзистор, по рисунку на плате вокруг которого можно догадаться, что стоять он должен вообще-то на радиаторе... На соседних транзисторах радиаторы есть, но от этого им вряд ли легче - после десяти минут работы блока с полной нагрузкой к радиаторам лучше не прикасаться во избежание ожога. Печальная картина! Причем не порадовали и осциллограммы - взгляните на сильные пульсации даже при выключенных вентиляторах:


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


Ну а последним гвоздем в крышку гроба этого БП стали его же выходные напряжения - в сумме по всем трем этапам теста из пяти напряжений не соответствовали спецификациям четыре. К тому же почти по всем напряжениям блок показал наихудший результат из виденного... В связи с чем мы и отправляем его в мусорную корзину.

L&C, 250Вт

Интересно, насколько отличается этот блок от своего менее мощного предшественника? Хоть перемены к лучшему и есть - например, радиаторы уже не обжигают пальцы - но вместо дросселей мы видим все те же перемычки. Да и крупная надпись "With fan sensor control" на крышке оказывается обычной ложью - никакой регулировки скорости вращения вентилятора в блоке замечено не было.


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


А вот на осциллограммах уже заметны явные улучшения: сравнительно пристойная картина, разве что включение вентиляторов слегка вывело блок из равновесия, увеличив пульсации до большого, но все же терпимого уровня.
Первые замеры напряжений внушают оптимизм - выходы +5В и +3,3В показывают завидную стабильность, но... выходы -12В и, что более критично, +12В опять выходят за рамки допустимого, и новое изделие от L&C повторяет судьбу старого - БП непригоден к эксплуатации.

fki, 250Вт - модель ATX-250W

Вот это уже совсем другое дело - аккуратная сборка, все детали на месте. Видите напаянную на разъем 220В плату? Как раз на ее обратной стороне и смонтирован честный сетевой фильтр:

Наличествует и выключатель питания, хоть и смонтирован он вопреки рекомендациям Intel ниже разъема 220В, а не выше.
А вот осциллограммы доставили уже меньше радости - на развертке 4мсек/дел видны сильные пульсации даже при выключенных вентиляторах:


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


И уж совсем не радуют замеры напряжений - по двум из них блок питания не смог вписаться в требования. Увы, и этот БП мы вынужден признать не прошедшим испытаний.

fki, 250Вт - модель FV-250N20

Модель от той же фирмы, слабо отличающаяся внешне, на деле показала более чем существенные различия:


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


Во многом порадовали и результаты измерения напряжений - модель смогла вписаться в требования и, таким образом, оказаться первым пригодным к использованию блоком питания:-) Хотя результаты напряжения +3,3В настораживают. Если у предыдущей модели оно держалось очень стабильно, то теперь же заметно падает при росте нагрузки. К сожалению, на момент тестирования не оказалось подходящей нагрузки для этого выхода, и оценить, как он себя ведет в условиях ближе к реальным, сложно.

Вот он, пример отсутствия экономии на деталях! Взгляните на размеры радиаторов:

А видите небольшую плату, смонтированную на левом радиаторе? Это тот самый регулятор скорости вращения вентилятора, обещанный нам еще в блоке от L&C. Непосредственно к радиатору прижат термодатчик - и чем сильнее греются транзисторы, тем быстрее вращается охлаждающий блок вентилятор, К слову, радиаторы в PowerMan"е были теплыми, но никак не горячими.


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


Осциллограммы получились несколько неоднозначные. С одной стороны, высокий уровень пульсаций при постоянной нагрузке, с другой стороны - при подключении пульсирующей нагрузки (вентиляторов) меняется лишь форма пульсаций, но не их амплитуда (что, как показало тестирование, приятная редкость - у большинства блоков амплитуда только росла).
Про значения напряжений на выходе можно сказать лишь одно - все в допустимых пределах, более того, основные напряжения (т,е, +3,3В, +5В и +12В) показывают хорошую стабильность. Итак, уже два блока питания не опасны для Вашего компьютера:-)

Две вещи сразу обращают на себя внимание в этом блоке - почти пустая задняя панель (нет ни выключателя питания, ни выходного разъема) и нестандартное расположение вентилятора. Помните рекомендации Intel размещать вентилятор на нижней стенке блока, так, чтобы он дул прямо на процессор? Samsung последовал этим рекомендациям лишь отчасти - вентилятор спрятан глубоко внутрь, но дует он при этом по направлению из системного блока наружу, то есть от процессора:

Сетевой фильтр в блоке есть, но вот с одним из его дросселей Samsung слукавил: это лишь несколько витков сетевого провода вокруг ферритового кольца, в отличие от использующегося обычно дросселя из большого числа витков эмалированного провода:

Но вот более существенная ложка дегтя - блок оказался весьма восприимчив к переменной нагрузке. Если при постоянной нагрузке осциллограммы пусть и не идеальны, но весьма неплохи, то при включении вентиляторов мы видим уже знакомую по дешевым блокам "песню о буревестнике", причем со сравнительно большой амплитудой выбросов:


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


А вот и бочка меда, в которую только что подбросили дегтя: замеры выходных напряжений. Блок питания от Samsung оказался единственным, который во всех опробованных режимах полностью соответствовал всем спецификациям, включая ATX 2,01, Хоть падение напряжение с +5В до +4,75В и внушает некоторые опасения (ибо это уже предел, а блок питания был нагружен еще не на полную мощность), но посмотрите на поведение напряжений -12В и -5В: они изменяются лишь на сотые доли вольта. Достигнуто же это очень просто - эти два выхода стабилизируются отдельными линейными компенсационными стабилизаторами сравнительно небольшой мощности.

PowerOne, 250Вт

Внешне вполне средний блок питания, сделанный без экономии деталей, но и без особых изысков. Фильтр присутствует в полном объеме, выключателя питания нет, зато есть выход 220В. Блок оборудован сразу пятью выходными разъемами, что для 250Вт редкость - обычно разъемов четыре штуки


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


Как и Samsung, этот БП оказался чувствителен к пульсирующей нагрузке. Но, в отличие от Samsung, “бочки меда” здесь не будет - блок не вписался в требования, выдав по выходу +12В напряжение выше допустимого и, таким образом, провалив тестирование.

Этот блок питания отличился сразу по двум позициям. Во-первых, он оказался единственной жертвой экспериментов - при одном из включений раздался щелчок, в блоке сверкнула небольшая искра, и более он работать не захотел, Во-вторых, он занял первое место по количеству отсутствующих деталей. Оцените:

Нет не только дросселей, но даже копеечной стоимости конденсаторов - лишь пустой угол платы.
Естественно, после такого глупо ждать сколько-нибудь хороших результатов, и действительно, убедитесь сами - осциллограмма при развертке 4мксек/дел и включенных вентиляторах впечатляет, правда?


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


По напряжениям блоку удалось вписаться в требования, однако в связи с вышесказанным это скорее случайность, чем правило...

Помните такую детскую игру - "Найди десять отличий"? Давайте сыграем в нее еще разок - посмотрите на эту фотографию, потом на фотографию 250Вт блока от того же KME, и удивитесь:

По сравнению с предшественником, появилось много новых деталей - полностью собранный фильтр, да и в районе стабилизатора плата стала заметно теснее (интересно, на чем это там сэкономили в 250Вт блоке? На защите, что ли?). Как и в предыдущем блоке - на задней стенке есть выключатель (соответственно, выхода 220В нет), но количество выходных разъемов увеличилось с четырех до шести.


Развертка 4мсек/деление, вентиляторы включены



Развертка 4мксек/деление, вентиляторы включены



Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


Да, осциллограммы уже совсем не напоминают менее мощного предшественника - никаких претензий к ним нет.
А вот с напряжениями дело обстоит хуже - и без того задранное более чем на полвольта +12В, под нагрузкой еще увеличилось, и в результате мы вынуждены считать блок не прошедшим тестирование.

Развертка 4мсек/деление, вентиляторы выключены



Развертка 4мксек/деление, вентиляторы выключены


Смотрим результаты замеров напряжений - и еще один блок признается провалившим тестирование: на этот раз из-за выхода напряжения на линии -5В за допустимые пределы. Кроме того, вызывают опасения заметные колебания напряжения +3,3В. Видимо, недаром для этого блока максимальный потребляемый ток по линии +3,3В не должен превышать 6А (напомним, что это самый низкий показатель среди всех описанных здесь БП), неспроста это...

High Power, 250Вт


На тестирование попали два таких блока питания, отличавшихся лишь номером модели, да и то в последнем знаке: HPS-250-101 и HPS-250-102. Более поздняя ревизия отличалась, в первую очередь, наличием терморегулятора скорости вращения вентилятора, коим до сих пор мог похвастать только PowerMan. Вот он, на фотографии - небольшая плата, висящая на левом радиаторе:


Развертка 4мксек/деление, вентиляторы выключены


Взгляните на осцилолграммы с разверткой 4мсек/дел. "Биение гордого сердца, песня о буревестнике и девятый вал" (В. Ерофеев) как-то слабо соотносятся с нормальными представлениями о дорогом блоке питания.
Второе, что отличало эти два блока после терморегулятора - так это результаты замеров напряжения. Если HPS-250-101 прошел испытания без серьезных претензий, то HPS-250-102 мы опять признаем непригодным к использованию - он не вписался сразу по двум напряжениям, причем критичным для компьютера - +5В и +12В.

High Power, 300Вт

В отличие от менее удачливых предшественников, на этом блоке сетевой фильтр собран полностью, да и кнопка выключения питания тоже присутствует. Однако осциллограммы сразу заставляют вспомнить предыдущие два блока:

PowerMaster, 300Вт

Помните удешевленный дроссель от Samsung? Специалисты из Jou Jye Electronic Co, пошли еще дальше - в блоках питания, продающихся под маркой PowerMaster, мы видим примерно такой же дроссель, но уже на совсем крошечном колечке, в которое умещается буквально один виток сетевого провода:

Однако на этом экономия заканчивается, и по солидности внешнего вида с ним может поспорить только PowerMan:

Осциллограммы выходных напряжений радуют глаз ничуть не меньше, чем громадные радиаторы:


Развертка 4мсек/деление, вентиляторы включены

Подведение итогов

Как видите, далеко не все так просто в мире блоков питания. С одной стороны, для дешевых блоков питания есть вполне четкая зависимость качества от цены - модели от KME, L&C и MEC просто не прошли тестирования, и ведь именно они были самыми дешевыми блоками из попавших "под нож". Та же зависимость очень хорошо видна на примере двух участвовавших моделей от KME - более дорогой блок собран куда более аккуратно, в то время как из более дешевого выкинули все детали, без которых он еще хоть как-то работал. Здесь все понятно - мы получаем ровно столько, сколько платим, и не более того.
С другой стороны, при выборе из дорогих моделей нельзя однозначно судить о качестве только лишь по цене - достаточно взглянуть на посредственные результаты дорогих блоков от HighPower и на отличный результат заметно более дешевого блока PowerMaster. Хотя, конечно, любой из этих БП заметно лучше блоков нижней ценовой группы.
Общие же результаты тестирования не впечатляют (или наоборот, впечатляют?) - из полутора десятков блоков питания прошли тестирование всего лишь шесть - менее половины! И это при том, что за причину для снятия с дистанции считали только превышение выходными напряжениями допусков спецификации ATX 2,03 (кроме 250Вт БП от KME, в который производитель решил не ставить уйму "лишних" деталей, но который все же каким-то чудом попал в допуски по напряжению). А если заняться более сложными исследованиями, например, измерением пиков выбросов напряжения на выходах БП или исследованием поведения БП при максимальной нагрузке (то есть все 235, 250 или 300Вт) - боюсь, до финиша не дойдет еще некоторое количество блоков.