Тяжелые металлы – наиболее опасные элементы, способные загрязнять почву. Тяжелые металлы в почве

тяжелый металл растение почва

Содержание ТМ в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительное разнообразие которых связано со сложной геологической историей развития территорий (Ковда, 1973). Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования.

В последние десятилетия в процессы миграции ТМ в природной среде интенсивно включилась антропогенная деятельность человечества. Количества химических элементов, поступающие в окружающую среду в результате техногенеза, в ряде случаев значительно превосходят уровень их естественного поступления. Например, глобальное выделение Pb из природных источников в год составляет 12 тыс.т. и антропогенная эмиссия 332 тыс.т. (Nriagu, 1989). Включаясь в природные циклы миграции, антропогенные потоки приводят к быстрому распространению загрязняющих веществ в природных компонентах городского ландшафта, где неизбежно их взаимодействие с человеком. Объемы поллютантов, содержащих ТМ, ежегодно возрастают и наносят ущерб природной среде, подрывают существующее экологическое равновесие и негативно сказываются на здоровье людей.

Основными источниками антропогенного поступления ТМ в окружающую среду являются тепловые электростанции, металлургические предприятия, карьеры и шахты по добыче полиметаллических руд, транспорт, химические средства защиты сельскохозяйственных культур от болезней и вредителей, сжигание нефти и раз­личных отходов, производство стекла, удобрений, цемента и пр. Наиболее мощные ореолы ТМ возникают вокруг предприятий черной и особенно цветной металлургии в результате атмосферных выбросов (Ковальский, 1974; Добровольский, 1983; Израэль, 1984; Геохимия…, 1986; Сает, 1987; Панин, 2000; Kabala, Singh, 2001). Действие загрязняющих веществ распространяется на десятки километров от источника поступления элементов в атмосферу. Так, металлы в количестве от 10 до 30 % от общего выброса в атмосферу распространяются на расстояние 10 км и более от промышленного предприятия. При этом наблюдается комбинированное загрязнение растений, слагающееся из непосредственного оседания аэрозолей и пыли на поверхность листьев и корневого усвоения ТМ, накопившихся в почве в течение продолжительного времени поступления загрязнений из атмосферы (Ильин, Сысо, 2001).

По приведенным ниже данным можно судить о размерах антропогенной деятельности человечества: вклад техногенного свинца составляет 94-97% (остальное - природные источники), кадмия - 84-89%, меди - 56-87%, никеля - 66-75%, ртути - 58% и т.д. При этом 26-44% мирового антропогенного потока этих элементов приходится на Европу, а на долю европейской территории бывшего СССР - 28-42% от всех выбросов в Европе (Вронский, 1996). Уровень техногенного выпадения ТМ из атмосферы в разных регионах мира неодинаков и зависит от наличия разрабатываемых месторождений, степени развитости горно-обогатительной и промышленной индустрии, транспорта, урбанизированности территорий и др.

Изучение долевого участия различных производств в глобальный поток эмиссии ТМ показывает: 73% меди и 55% кадмия связаны с выбросами предприятий по производству меди и никеля; 54% эмиссии ртути приходится на сжигание угля; 46% никеля -- на сжигание нефтепродуктов; 86% свинца поступает в атмосферу от автотранспорта (Вронский, 1996). Некоторое количество ТМ в окружающую среду поставляет и сельское хозяйство, где применяются пестициды и минеральные удобрения, в частности в суперфосфатах содержатся значительные количества хрома, кадмия, кобальта, меди, никеля, ванадия, цинка и др.

Заметное действие на окружающую среду оказывают элементы, выбрасываемые в атмосферу через трубы предприятий химической, тяжелой и атомной промышленности. Долевое участие в атмосферном загрязнении тепловых и иных электростанций составляет 27 %, предприятий черной металлургии - 24,3 %, предприятий по добыче и изготовлению строительных материалов - 8,1 % (Алексеев, 1987; Ильин, 1991). ТМ (за исключением ртути) в основном заносятся в атмосферу в составе аэрозолей. Набор металлов и их содержание в аэрозолях определяются специализацией промышленных и энергетических мероприятий. При сжигании угля, нефти, сланцев вместе с дымом в атмосферу поступают элементы, содержащиеся в этих видах топлива. Так, каменный уголь содержит церий, хром, свинец, ртуть, серебро, олово, титан, а также уран, радий и другие металлы.

Наиболее существенное загрязнение среды вызывают мощные тепловые станции (Майстренко и др., 1996). Ежегодно только при сжигании угля в атмосферу выбрасывается ртути в 8700 раз больше, чем может быть включено в естественный биогеохимический цикл, урана - в 60, кадмия - в 40, иттрия и циркония - в 10, олова - в 3-4 раза. 90 % кадмия, ртути, олова, титана и цинка, загрязняющих атмосферу, попадает в нее при сжигании каменного угля. Это в значительной степени затрагивает и Республику Бурятия, где предприятия энергетики, использующие каменный уголь являются крупнейшими загрязнителями атмосферы. Среди них (по вкладу в общие выбросы) выделяются Гусиноозерская ГРЭС (30%) и ТЭЦ-1 г. Улан-Удэ (10%).

Заметное загрязнение атмосферного воздуха и почвы происходит за счет транспорта. Большинство ТМ, содержащихся в пылегазовых выбросах промышленных предприятий, как правило, более растворимы, чем природные соединения (Большаков и др., 1993). Среди наиболее активных источников поступления ТМ выделяются крупные индустриально развитые города. Металлы сравнительно быстро накапливаются в почвах городов и крайне медленно из них выводятся: период полуудаления цинка -- до 500 лет, кадмия -- до 1100 лет, меди -- до 1500 лет, свинца -- до нескольких тысяч лет (Майстренко и др., 1996). Во многих городах мира высокие темпы загрязнения ТМ привели к нарушению основных агроэкологических функций почв (Орлов и др., 1991; Касимов и др., 1995). Выращивание сельскохозяйственных растений, используемых в пищу вблизи этих территорий потенциально опасно, поскольку культурами накапливаются избыточные количества ТМ, способные приводить к различным заболеваниям человека и животных.

По мнению ряда авторов (Ильин, Степанова, 1979; Зырин, 1985; Горбатов, Зырин, 1987 и др.), степень загрязнения почв ТМ правильнее оценивать по содержанию их наиболее биодоступных мобильных форм. Однако предельно допустимые концентрации (ПДК) подвижных форм большинства ТМ в настоящее время не разработаны. Поэтому критерием для сравнения могут служить литературные данные по уровню их содержания, приводящего к неблагоприятным экологическим последствиям.

Ниже приводим краткое описание свойств металлов, касающихся особенностей их поведения в почвах.

Свинец (Pb). Атомная масса 207,2. Приоритетный элемент-токсикант. Все растворимые соединения свинца ядовиты. В естественных условиях он существует в основном в форме PbS. Кларк Pb в земной коре 16,0 мг/кг (Виноградов, 1957). По сравнению с другими ТМ он наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв. Подвижный Pb присутствует в виде комплексов с органическим веществом (60 - 80 % подвижного Pb). При высоких значениях рН свинец закрепляется в почве химически в виде гидроксида, фосфата, карбоната и Pb-органических комплексов (Цинк и кадмий…, 1992; Тяжелые …, 1997).

Естественное содержание свинца в почвах наследуется от материнских пород и тесно связано с их минералогическим и химическим составом (Беус и др., 1976; Кабата-Пендиас, Пендиас, 1989). Средняя концентрация этого элемента в почвах мира достигает по разным оценка от 10 (Сает и др., 1990) до 35 мг/кг (Bowen, 1979). ПДК свинца для почв в России соответствует 30 мг/кг (Инструктивное…,1990), в Германии - 100 мг/кг (Kloke, 1980).

Высокая концентрация свинца в почвах может быть связана как с природными геохимическими аномалиями, так и с антропогенным воздействием. При техногенном загрязнении наибольшая концентрация элемента, как правило, обнаруживается в верхнем слое почвы. В некоторых промышленных районах она достигает 1000 мг/кг (Добровольский, 1983), а в поверхностном слое почв вокруг предприятий цветной металлургии в Западной Европе - 545 мг/кг (Рэуце, Кырстя, 1986).

Содержание свинца в почвах на территории России существенно варьирует в зависимости от типа почвы, близости промышленных предприятий и естественных геохимических аномалий. В почвах селитебных зон, особенно связанных с использованием и производством свинецсодержащих продуктов, содержание данного элемента часто в десятки и более раз превышает ПДК (табл. 1.4). По предварительным оценкам до 28% территории страны имеет содержание Рb в почве, в среднем, ниже фоновой, а 11% - могут быть отнесены к зоне риска. В то же время, в Российской Федерации проблема загрязнения почв свинцом - преимущественно проблема селитебных территорий (Снакин и др., 1998).

Кадмий (Cd). Атомная масса 112,4. Кадмий по химическим свойствам близок к цинку, но отличается от него большей подвижностью в кислых средах и лучшей доступностью для растений. В почвенном растворе металл присутствует в виде Cd2+ и образовывает комплексные ионы и органические хелаты. Главный фактор, определяющий содержание элемента в почвах при отсутствии антропогенного влияния, - материнские породы (Виноградов, 1962; Минеев и др., 1981; Добровольский, 1983; Ильин, 1991; Цинк и кадмий…, 1992; Кадмий: экологические …, 1994). Кларк кадмия в литосфере 0,13 мг/кг (Кабата-Пендиас, Пендиас, 1989). В почвообразующих породах содержание металла в среднем составляет: в глинах и глинистых сланцах - 0,15 мг/кг, лессах и лессовидных суглинках - 0,08, песках и супесях - 0,03 мг/кг (Цинк и кадмий…, 1992). В четвертичных отложениях Западной Сибири концентрация кадмия изменяется в пределах 0,01-0,08 мг/кг.

Подвижность кадмия в почве зависит от среды и окислительно-восстановительного потенциала (Тяжелые …, 1997).

Среднее содержание кадмия в почвах мира равно 0,5 мг/кг (Сает и др., 1990). Концентрация его в почвенном покрове европейской части России составляет 0,14 мг/кг - в дерново-подзолистой почве, 0,24 мг/кг - в черноземе (Цинк и кадмий…, 1992), 0,07 мг/кг - в основных типах почв Западной Сибири (Ильин, 1991). Ориентировочно-допустимое содержание (ОДК) кадмия для песчаных и супесчаных почв в России составляет 0,5 мг/кг, в Германии ПДК кадмия - 3 мг/кг (Kloke, 1980).

Загрязнение почвенного покрова кадмием считается одним из наиболее опасных экологических явлений, так как он накапливается в растениях выше нормы даже при слабом загрязнении почвы (Кадмий …, 1994; Овчаренко, 1998). Наибольшие концентрации кадмия в верхнем слое почв отмечаются в горнорудных районах - до 469 мг/кг (Кабата-Пендиас, Пендиас, 1989), вокруг цинкоплавилен они достигают 1700 мг/кг (Рэуце, Кырстя, 1986).

Цинк (Zn). Атомная масса 65,4. Его кларк в земной коре 83 мг/кг. Цинк концентрируется в глинистых отложениях и сланцах в количествах от 80 до 120 мг/кг (Кабата-Пендиас, Пендиас, 1989), в делювиальных, лессовидных и карбонатных суглинистых отложениях Урала, в суглинках Западной Сибири - от 60 до 80 мг/кг.

Важными факторами, влияющими на подвижность Zn в почвах, являются содержание глинистых минералов и величина рН. При повышении рН элемент переходит в органические комплексы и связывается почвой. Ионы цинка также теряют подвижность, попадая в межпакетные пространства кристаллической решетки монтмориллонита. С органическим веществом Zn образует устойчивые формы, поэтому в большинстве случаев он накапливается в горизонтах почв с высоким содержанием гумуса и в торфе.

Причинами повышенного содержания цинка в почвах могут быть как естественные геохимические аномалии, так и техногенное загрязнение. Основными антропогенными источниками его поступления в первую очередь являются предприятия цветной металлургии. Загрязнение почв этим металлом привело в некоторых областях к крайне высокой его аккумуляции в верхнем слое почв - до 66400 мг/кг. В огородных почвах накапливается до 250 и более мг/кг цинка (Кабата-Пендиас, Пендиас, 1989). ОДК цинка для песчаных и супесчаных почв равна 55 мг/кг, германскими учеными рекомендуется ПДК, равная 100 мг/кг (Kloke, 1980).

Медь (Cu). Атомная масса 63,5. Кларк в земной коре 47 мг/кг (Виноградов, 1962). В химическом отношении медь - малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu, является концентрация ее в почвообразующих породах (Горюнова и др., 2001). Из изверженных пород наибольшее количество элемента накапливают основные породы - базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг) (Ковальский, Андриянова, 1970; Кабата-Пендиас, Пендиас, 1989). Концентрация метала в глинах европейской части территории бывшего СССР достигает 25 мг/кг (Мальгин, 1978; Ковда, 1989), в лессовидных суглинках - 18 мг/кг (Ковда, 1989). Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди (Мальгин, 1978), юга Западной Сибири - 19 мг/кг (Ильин, 1973).

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. (Виноградов, 1957; Пейве, 1961; Ковальский, Андриянова, 1970; Алексеев, 1987 и др.). Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

Среднее содержание меди в почвах мира 30 мг/кг (Bowen, 1979). Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг (Кабата-Пендиас, Пендиас, 1989). Среднее содержание металла в почвах центральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири - 30,6 мг/кг (Ильин, 1973), Сибири и Дальнего Востока - 27,8 мг/кг (Макеев, 1973). ПДК меди в России - 55 мг/кг (Инструктивное …, 1990), ОДК для песчаных и супесчаных почв - 33 мг/кг (Контроль…, 1998), в ФРГ - 100 мг/кг (Kloke, 1980).

Никель (Ni). Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг (Виноградов, 1957). Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях - 5-90 и 5-15 мг/кг, соответственно (Рэуце, Кырстя, 1986; Кабата-Пендиас, Пендиас, 1989). Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых - наибольшее: в песках - 17, супесях и легких суглинки -22, средние суглинки - 36, тяжелые суглинки и глины - 46 (Ильин, 2002).

Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород (Кабата-Пендиас, Пендиас, 1989). Наибольшие концентрации никеля, как правило, наблюдаются в глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах и богатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.

Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до 84-101 мг/кг (Кабата-Пендиас, Пендиас, 1989). В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb, Cd, Zn, Cr, Co, As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%) (Аристархов, Харитонова, 2002). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель - 46 тыс.га) и Хоринского районов (загрязнены 11% земель - 8 тыс.га).

Хром (Cr). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr3+ присутствует в хромите FeCr2O4 или других минералах шпинелевого ряда, где он замещает Fe и Al, к которым очень близок по своим геохимическим свойствам и ионному радиусу.

Кларк хрома в земной коре - 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие - для средних пород (15-50 мг/кг) и наименьшие - для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное - в песчаниках и известняках (5-40 мг/кг) (Кабата-Пендиас, Пендиас, 1989). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг (Якушевская, 1973). Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr, причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы - 16 мг/кг, а среднесуглинистые и глинистые - около 60 мг/кг (Ильин, Сысо, 2001).

В почвах большая часть хрома присутствует в виде Cr3+. В кислой среде ион Cr3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr6+ уменьшается, а Cr3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr6+ до Cr3+.

Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах (Кабата-Пендиас, Пендиас, 1989; Краснокутская и др., 1990), а распределение по почвенному профилю - от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах - 70 мг/кг (Bowen, 1979). Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая - 150 мг/кг (Кабата-Пендиас, Пендиас, 1989), Украины - 400 мг/кг (Беспамятнов, Кротов, 1985). В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области - 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири - 86 - 115 мг/кг (Якушевская, 1973; Краснокутская и др., 1990; Ильин, Сысо, 2001).

Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно-загрязненных почвах достигают 400 и более мг/кг (Кабата-Пендиас, Пендиас, 1989), что особенно характерно крупным городам (табл. 1.4). В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг., хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах.

Нормирование содержания тяжелых металлов

в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.

Предложено множество шкал

экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других- содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, превосходящие верхнюю норму в несколько раз.

Для характеристики техногенного загрязнения

тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации. При загрязнении несколькими тяжелыми металлами степень загрязнения оценивается по величине суммарного показателя концентрации (Zc). Предложенная ИМГРЭ шкала загрязнения почвы тяжелыми металлами преведена в таблице 1.


Таблица 1. Схема оценки почв сельскохозяйственного использования по степени загрязнения химическими веществами (Госкомгидромет СССР, № 02-10 51-233 от 10.12.90)

Категория почв по степени загрязнения Zc Загрязненность относительно ПДК Возможное использование почв Необходимые мероприятия
Допустимое <16,0 Превышает фоновое, но не выше ПДК Использование под любые культуры Снижение уровня воздействия источников загрязнения почв. Снижение доступности токсикантов для растений.
Умеренно опасное 16,1- 32,0 Превышает ПДК при лимитирующем общесанитарном и миграционном водном показателе вредности, но ниже ПДК по транслока- ционному показателю Использование под любые культуры при условии контроля качества продукции растениеводства Мероприятия, аналогичные категории 1. При наличии в-в с лимитирующим миграционным водным показателем производится контроль за содержанием этих в-в в поверхностных и подземных водах.
Высоко- опасное 32,1- 128 Превышает ПДК при лимитирующем транслока- ционном показателе вредности Использование под технические культуры без получения из них продуктов питания и кормов. Исключить растения- концентраторы химических веществ Мероприятия аналогичные категории 1. Обязательный контроль за содержанием токсикантов в растениях, используемых в качестве питания и кормов. Ограничение использования зеленой массы на корм скоту, особенно растений- концентраторов.
Чрезвычайно опасное > 128 Превышает ПДК по всем показателям Исключить из С/Х использования Снижение уровня загрязнения и связывание токсикантов в атмосфере, почве и водах.

Официально утвержденные ПДК

В таблице 2 приведены официально утвержденные ПДК и допустимые уровни их содержания по показателям вредности. В соответствие с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и почвенный микробиоценоз).

Таблица 2. Предельно-допустимые концентрации (ПДК) химических веществ в почвах и допустимые уровни их содержания по показателям вредности (по состоянию на 01.01.1991. Госкомприрода СССР, № 02-2333 от 10.12.90).

Наименование веществ ПДК, мг/кг почвы с учетом фона Показатели вредности
Транслокационный Водный Общесанитарный
Водорастворимые формы
Фтор 10,0 10,0 10,0 10,0
Подвижные формы
Медь 3,0 3,5 72,0 3,0
Никель 4,0 6,7 14,0 4,0
Цинк 23,0 23,0 200,0 37,0
Кобальт 5,0 25,0 >1000 5,0
Фтор 2,8 2,8 - -
Хром 6,0 - - 6,0
Валовое содержание
Сурьма 4,5 4,5 4,5 50,0
Марганец 1500,0 3500,0 1500,0 1500,0
Ванадий 150,0 170,0 350,0 150,0
Свинец ** 30,0 35,0 260,0 30,0
Мышьяк ** 2,0 2,0 15,0 10,0
Ртуть 2,1 2,1 33,3 5,0
Свинец+ртуть 20+1 20+1 30+2 30+2
Медь* 55 - - -
Никель* 85 - - -
Цинк* 100 - - -

*- валовое содержание- ориентировочное.
**- противоречие; для мышьяка среднее фоновое содержание 6 мг/кг, фоновое содержание свинца обычно тоже превышает нормы ПДК.

Официально утвержденные ОДК

Разработанные в 1995 г. ОДК для валового содержания 6 тяжелых металлов и мышьяка позволяют получить более полную характеристику о загрязнении почвы тяжелыми металлами, так как учитывают уровень реакции среды и гранулометрический состав почвы.

Таблица 3. Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах с различными физико-химическими свойствами (валовое содержание, мг/кг) (дополнение №1 к перечню ПДК и ОДК №6229-91).

Элемент Группа почв ОДК с учетом фона Агрегатное
состояние в-ва
в почвах
Классы опасн-ти Особенности
действия
на организм
Никель Песчаные и супесчаные 20 Твердое: в виде солей, в сорбированном виде, в составе минералов 2 Для теплокровных и человека малотоксичен. Обладает мутогенным действием
<5,5 40
Близкие к нейтральным, (суглинистые и глинистые), рНKCl >5,5 80
Медь Песчаные и супесчаные 33 2 Повышает клеточную проницаемость, ингибирует глутатион- редуктазу, нарушает метаболизм, взаимодействуя с -SH, -NH2 и COOH- группами
Кислые (суглинистые и глинистые), рН KCl <5,5 66
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 132
Цинк Песчаные и супесчаные 55 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Недостаток или избыток вызывают отклонения в развитии. Отравления при нарушении технологии внесения цинксодержащих пестицидов
Кислые (суглинистые и глинистые), рН KCl<5,5 110
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 220
Мышьяк Песчаные и супесчаные 2 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Ядовитое в-во, ингибирующее различные ферменты, отрицательное действие на метаболизм. Возможно канцерогенное действие
Кислые (суглинистые и глинистые), рН KCl<5,5 5
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 10
Кадмий Песчаные и супесчаные 0,5 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Сильно ядовитое в-во, блокирует сульфгидрильные группы ферментов, нарушает обмен железа и кальция, нарушает синтез ДНК.
Кислые (суглинистые и глинистые), рН KCl<5,5 1,0
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 2,0
Свинец Песчаные и супесчаные 32 Твердое: в виде солей, органо- минеральных соединений, в сорбированном виде, в составе минералов 1 Разностороннее негативное действие. Блокирует -SH группы белков, ингибирует ферменты, вызывает отравления, поражения нервной системы.
Кислые (суглинистые и глинистые), рН KCl<5,5 65
Близкие к нейтральным, (суглинистые и глинистые), рН KCl>5,5 130

Из материалов следует, что в основном предьявлены требования к валовым формам тяжелых металлов. Среди подвижных только медь, никель, цинк, хром и кобальт. Поэтому в настоящее время разработанные нормативы уже не удовлетворяют всем требованиям.

является фактором емкости, отражающим в первую очередь потенциальную опасность загрязнения растительной продукции, инфильтрационных и поверхностных вод. Характеризует общую загрязненность почвы, но не отражает степени доступности элементов для растения. Для характеристики состояния почвенного питания растений используются только их подвижные формы.

Определение подвижных форм

Их определяют используя различные экстрагенты. Общее количество подвижной формы металла- применяя кислотную вытяжку (например 1н HCL). В ацетатно-аммонийный буфер переходит наиболее мобильная часть подвижных запасов тяжелых металлов в почве. Концентрация металлов в водной вытяжке показывает степень подвижности элементов в почве, являясь самой опасной и "агрессивной" фракцией.

Нормативы для подвижных форм

Предложено несколько ориентировочных нормативных шкал. Ниже находится пример одной из шкал предельно допустимых подвижных форм тяжелых металлов.


Таблица 4. Предельно допустимое содержание подвижной формы тяжелых металлов в почве, мг/кг экстрагент 1н. HCl (Х. Чулджиян и др., 1988).

Элемент Содержание Элемент Содержание Элемент Содержание
Hg 0,1 Sb 15 Pb 60
Cd 1,0 As 15 Zn 60
Co 12 Ni 36 V 80
Cr 15 Cu 50 Mn 600

НАВИГАЦИЯ ПО САЙТУ:
чаво? в почву в гель результат тех данные цены

Введение

Состояние окружающей природной среды является важнейшим фактором, определяющим жизнедеятельность человека и общества. Высокие концентрации многих химических элементов и соединений, обусловленные техногенными процессами, обнаружены в настоящее время во всех природных средах: атмосфере, воде, почве, растениях.

Почва - особое природное образование, обладающее рядом свойств, присущих живой и неживой природе; состоит из генетически связанных горизонтов (образуют почвенный профиль), возникающих в результате преобразования поверхностных слоев литосферы под совместным воздействием воды, воздуха и организмов; характеризуется плодородием . Почва играет важную роль в круговороте тяжелых металлов, они представляют собой гетерогенные смеси разных органических и органо-минеральных составляющих глинистых минералов, оксидов железа (Fe), алюминия (Al) и марганца (Mn) и других твердых частиц, а также различных растворимых соединений. Вследствие разнообразия типов почв, их окислительно-восстановительных условий и реакционной способности, механизмы и способы связывания тяжелых металлов в почвах разнообразны. Тяжелые металлы, в почвах содержаться в различных формах: в кристаллической решетке минералов в виде изоморфной подмеси, в солевой и окисной форме, в составе разных органических веществ, в ионообменном состоянии и в растворимой форме в почвенном растворе. Следует отметить, что, тяжелые металлы, поступая из почвы в растения и затем в организмы животных и человека, обладают способностью постепенно накапливаться. Наиболее токсичны ртуть, кадмий, свинец, мышьяк, отравление ими вызывает тяжелые последствия. Менее токсичны: цинк и медь, однако загрязнение ими почв подавляет микробиологическую деятельность и снижает биологическую продуктивность.

Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твёрдые отходы. Загрязнение тяжёлыми металлами связано их широким использованием в промышленном производстве. В связи с несовершенными системами очистки тяжёлые металлы попадают в окружающую среду, в том числе в почву, загрязняя и отравляя её. Тяжёлые металлы относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

В настоящее время в России для оценки загрязнения почв тяжелыми металлами используется как официально одобренные, так и не имеющие официального статуса нормативы. Основное их назначение - не допустить поступления в избыточном количестве антропогенно накапливающихся в почве твердых металлов в организм человека и тем самым избежать их негативного влияния .

При определении тяжелых металлов в почвах и почвенных компонентах применяется атомно-абсорбционный анализ почв и различных вытяжек (например, экстрагирование Zn, Си, РЬ,Fe,Ni, которая извлекает из образцов загрязненных почв 70--90 % от валового содержания тяжелых металлов). Метод обладает целым рядом достоинств: хорошая чувствительность, избирательность, достаточно хорошая воспроизводимость результатов, простота выполнения анализов. Он позволяет определить до 70 элементов, обеспечивает предел обнаружения многих элементов на уровне 0,1--0,01 мкг/мл, что во многих случаях дает возможность анализировать почвы и растения без предварительного концентрирования элементов.

Целью данной работы является определение содержания кислоторастворимых форм металлов (свинец, медь, цинк, никель, железо) в пробах почв Тульской области методом атомно-абсорбционной спектроскопии.

Для выполнения поставленной цели необходимо было решить следующие задачи:

1. Изучить принцип работы атомно-абсорбционного спектрометра с электротермической атомизацией «МГА-915М».

2. Определить концентрацию каждого тяжёлого металла в образцах почв.

3. Оценить степень загрязнённости выбранных объектов.

1. Литературный обзор

абсорбционный спектроскопия свинец медь

1.1 Загрязнение почв

Загрязнителем может быть любой физический агент, химическое вещество и биологический вид, попадающие в окружающую среду или возникающие в ней в количествах, выходящих в рамки своей обычной концентрации, предельных количествах, предельных естественных колебаний или среднего природного фона в рассматриваемое время .

Основным показателем, характеризующим воздействие загрязняющих веществ на окружающую природную среду, являются предельно допустимая концентрация (ПДК). С позиции экологии предельно допустимые концентрации конкретного вещества представляют собой верхние пределы лимитирующих факторов среды (в частности, химических соединений), при которых их содержание не выходит за допустимые границы экологической ниши человека .

В соответствии со степенью устойчивости против загрязняющих веществ выделяются почвы:

1. очень устойчивые;

2. устойчивые;

3. среднеустойчивые;

4. малоустойчивые;

5. очень малоустойчивые.

Чувствительность, или устойчивость почв по отношению к загрязняющим веществам, целесообразно определять в соответствии с:

2) его качеством;

3) биологической активностью;

4) глубиной гумусового горизонта;

6) глинистых минералов;

7) глубиной почвенного профиля.

Почвы загрязняются различными химическими веществами, пестицидами, отходами сельского хозяйства, промышленного производства и коммунально-бытовых предприятий. Поступающие в почву химические соединения накапливаются и приводят к постепенному изменению химических и физических свойств почвы, снижают численность живых организмов, ухудшают ее плодородие .

Загрязнение почв и нарушение нормального круговорота веществ происходит в результате недозированного применения минеральных удобрений и пестицидов. В ряде отраслей сельского хозяйства пестициды применяют в больших количествах для защиты растений и борьбы с сорняками. Ежегодное их применение, часто по несколько раз в сезон, приводит к их накоплению в почве и ее отравлению .

Вместе с навозом и фекалиями в почву нередко попадают болезнетворные бактерии, яйца гельминтов и другие вредные организмы, которые через продукты питания попадают в организм человека.

Почву загрязняют нефтепродуктами при заправке машин на полях и в лесах, на лесосеках и т.д. .

Поступающие тяжелые металлы в почву в ходе работы автотранспорта, а также при истирании дорожных покрытий, поступают: железо, никель, цинк, свинец и другие элементы.

Окружающие промышленные предприятия различного профиля, почвы, содержат токсичные элементы в количествах, превышающих допустимые нормы, в десятки и сотни раз

Наибольшей трансформацией подвергается самый верхний, поверхностный горизонт литосферы. Суша занимает 29,2% поверхности земного шара и включает земли различной категории, из которых важнейшее значение имеет плодородная почва. При неправильной эксплуатации почвы безвозвратно уничтожаются в результате эрозии, засоления, загрязнения промышленными и иными отходами.

Под влиянием деятельности людей возникает ускоренная эрозия, когда почвы разрушаются в 100 - 1000 раз быстрее, чем в естественных условиях. В результате такой эрозии за последнее столетие утрачено 2 млрд. га плодородных земельных угодий, или 27% земель сельскохозяйственного использования .

Поступающие в почву химические соединения накапливаются и приводят к постепенному изменению химических и физических свойств почвы, снижают численность живых организмов, ухудшают ее плодородие.

Загрязнение почв связано с загрязнением атмосферы и воды. В почву попадают различные твердые и жидкие отходы промышленного производства, сельского хозяйства и коммунально-бытовых предприятий. Основными загрязняющими почву веществами являются металлы и их соединения .

Интенсивное развитие промышленности, энергетики, транспорта, а также интенсификация сельскохозяйственного производства способствуют возрастанию антропогенной нагрузки на аграрные экосистемы и, прежде всего, на почвенный покров. В результате этого происходит загрязнение почв тяжелыми металлами. Тяжелые металлы, попадающие в биосферу главным образом в результате промышленных и транспортных выбросов, являются одним из самых опасных ее загрязнителей. Поэтому изучение их поведения в почвах и защитных возможностей почв является важной экологической проблемой.

Тяжелые металлы накапливаются в почве и способствуют постепенному изменению ее химического состава, нарушению жизнедеятельности растений и живых организмов. Из почвы тяжелые металлы могут попасть в организм людей и животных и вызывать нежелательные последствия. В организме человека тяжелые металлы участвую в жизненно важных биохимических процессах. Превышение допустимых концентраций приводит к серьезным заболеваниям.

Таким образом, загрязнение почв тяжелыми металлами имеет следующие источники:

1. Автомобильные выхлопы отработанных газов отходы

2. Продукты сгорания топлива

3. Промышленные выбросы

4. Металообрабатывающей промышленности

5. Средство химизации сельского хозяйства.

1.2 Тяжелые металлы в почве

В настоящее время в России для оценки загрязнения почв тяжелыми металлами используется как официально одобренные, так и не имеющие официального статуса нормативы. Основное их назначение - не допустить поступления в избыточном количестве антропогенно накапливающихся в почве тяжелые металлы в организм человека и тем самым избежать их негативного влияния. Почва в отличие от гомогенных водной и воздушной сред является сложной гетерогенной системой, меняющей поведение токсикантов в зависимости от её свойств . Трудности обоснованной оценки почвенно-экологического состояния - одна из причин различного уровня фитотоксичности почв .

Важную роль в круговороте тяжелых металлов и остальных микроэлементов играют почвы. Они представляют собой гетерогенные смеси разных органических и органо-минеральных составляющих глинистых минералов, оксидов железа, алюминия и марганца и других твердых частиц, а также различных растворимых соединений. Вследствие разнообразия типов почв, их окислительно-восстановительных условий и реакционной способности, механизмы и способы связывания тяжелых металлов в почвах разнообразны . На поглощение микроэлементов почвами при техногенном загрязнении оказывают влияние механический состав, реакция, содержание гумуса и карбонатов, емкость поглощения и условия водного режима. Микроэлементы, в том числе тяжелые металлы, в почвах содержаться в различных формах: в кристаллической решетке минералов в виде изоморфной подмеси, в солевой и окисной форме, в составе разных органических веществ, в ионообменном состоянии и в растворимой форме в почвенном растворе . На поведение микроэлементов в почвах влияют окислительно-восстановительные условия, реакция среды, концентрация углекислого газа и наличие органического вещества. Изменение окислительно-восстановительного состояния почв существенно сказывается на поведении микроэлементов с переменной валентностью. Так, марганец при окислении переходит в нерастворимые формы, а хром и ванадий, наоборот, приобретают подвижность и мигрируют. При кислой реакции почвы увеличивается подвижность меди, марганца, цинка, кобальта и уменьшается подвижность Mолибдена. Бор, фтор и йод подвижны в кислой и щелочной средах .

Подвижность химических элементов в почве изменяется в результате смещения равновесия между соединениями элемента в твердой и жидкой фазах. Поступающие в почву загрязняющие вещества могут переходить в прочнофиксированное состояние, труднодоступное для растений. Более высокую устойчивость почв к загрязнению обуславливают те свойства почв, которые способствуют прочному закреплению загрязняющих веществ. Увеличение концентрации СО2 в почвенном растворе приводит к увеличению подвижности марганца, никеля, бария в результате перехода карбонатов этих элементов в бикарбонаты. Гумусовые и органические вещества неспецифической природы (муравьиная, лимонная, щавелевая и др. кислоты) могут связывать микроэлементы, образуя как растворимые, так и труднорастворимые растениям соединения .

Водорастворимые соединения металлов быстро мигрируют по почвенному профилю. Действие органических веществ на миграцию металлов в почве двоякое. В процессе минерализации органических веществ в почве образуются низкомолекулярные водорастворимые минеральные соединения, мигрирующие в нижнюю часть профиля. Тяжелые металлы образуют с этими веществами низкомолекулярные комплексы. По мере более глубокой трансформации органических веществ происходит образование высокомолекулярных гумусовых кислот, причем их действие на миграцию металлов различно. Фульвокислоты, соединяясь с металлами, образуют хелатные соединения, растворимые при широком диапазоне рН, мигрирующие вниз по профилю почвы. Металлы образуют комплексы с гуминовыми кислотами, характеризующиеся инертностью, нерастворимы в кислой среде, что способствует накапливанию тяжелых металлов в органогенном горизонте. Комплексы металлов с фульвокислотами и гуминовыми кислотами наиболее устойчивы при рН от 3 до 7.

Примером трансформации в почвах цинка и кадмия является их переход в жидкую фазу за счет процессов растворения (Алексеенко и др., 1992).Кадмий обладает большой токсичностью и относительно большой мобильностью в почве и доступностью для растений. Поскольку техногенные соединения этих металлов термодинамически не устойчивы в почвенных условиях, их переход в жидкую фазу почв необратим. Дальнейшая трансформация цинка и кадмия в почвах связана с обратимыми процессами, протекающими между почвенным раствором и почвенным поглощающим комплексом, устойчивыми осадками малорастворимых солей цинка и кадмия, высшими растениями и микроорганизмами .

1.3 Источники поступление тяжелых металлов в объекты окружающей среды

К тяжелым металлам относятся более сорока химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше пятидесяти атомных единиц.

Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа "тяжелых металлов" во многом совпадает с понятием "микроэлементы". Отсюда: свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий являются тяжелыми металлами .

Источники поступления тяжелых металлов делятся, на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства). Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение. Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных веществ ядовитого газа фосгена) .

Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв. Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет.

В гумусовой части почвы происходит первичная трансформация попавших в нее соединений.

Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать . Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей. Часть органических соединений, с которыми связываются металлы, представлена продуктами микробиологической деятельности. Ртуть характеризуется способностью аккумулироваться в звеньях "пищевой цепи" (об этом шла речь ранее). Микроорганизмы почвы могут давать устойчивые к ртути популяции, которые превращают металлическую ртуть в токсические для высших организмов вещества. Некоторые водоросли, грибы и бактерии способны аккумулировать ртуть в клетках. Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН. Остановимся подробнее на этих веществах и добавим к ним железо и никель .

Ртуть крайне слабо распространена в земной коре (-0,1 х 10-4 %), однако удобна для добычи, так как концентрируется в сульфидных остатках, например, в виде киновари (НgS). В этом виде ртуть относительно безвредна, но атмосферные процессы, вулканическая и человеческая деятельность привели к тому, что в мировом океане накопилось около 50 млн.т этого металла. Естественный вынос ртути в океан в результате эрозии 5000 т/год, еще 5000 т/год ртути выносится в результате человеческой деятельности .

Первоначально ртуть попадает в океан в виде Нg2+ , затем она взаимодействует с органическими веществами и с помощью анаэробных организмов переходит в токсичные вещества метилртуть (СН3 Нg)+ и диметилртуть (СН3 -Нg-СН3),

Ртуть присутствует не только в гидросфере, но и в атмосфере, так как имеет относительно высокое давление паров. Природное содержание ртути составляет ~0,003-0,009 мкг/м3 .

Ртуть характеризуется малым временем пребывания в воде и быстро переходит в отложения в виде соединений с органическими веществами, находящимися в них. Поскольку ртуть адсорбируется отложениями, она может медленно освобождаться и растворяться в воде, что приводит к образованию источника хронического загрязнения, действующего длительное время после того, как исчезнет первоначальный источник загрязнения .

Мировое производство ртути в настоящее время составляет более 10000 т в год, большая часть этого количества используется в производстве хлора. Ртуть проникает в воздух в результате сжигания ископаемого топлива. Анализ льда Гренландского ледяного купола показал, что, начиная с 800 г. н.э. до 1950-х гг., содержание ртути оставалось постоянным, но уже с 50-х гг. нашего столетия количество ртути удвоилось.

Ртуть и ее соединения опасны для жизни. Метилртуть особенно опасна для животных и человека, так как она быстро переходит из крови в мозговую ткань, разрушая мозжечок и кору головного мозга. Клинические симптомы такого поражения - оцепенение, потеря ориентации в пространстве, потеря зрения. Симптомы ртутного отравления проявляются не сразу. Другим неприятным последствием отравления метилртутью является проникновение ртути в плаценту и накапливание ее в плоде, причем мать не испытывает при этом болезненных ощущений. Метилртуть оказывает тератогенное воздействие на человека. Ртуть относится к I классу опасности .

Металлическая ртуть опасна, если ее проглотить и вдыхать ее пары. При этом у человека появляется металлический вкус во рту, тошнота, рвота, колики в животе, зубы чернеют и начинают крошиться. Пролитая ртуть разлетается на капельки и, если это произошло, ртуть должна быть тщательно собрана. Неорганические соединения ртути практически нелетучи, поэтому опасность представляет попадание ртути внутрь организма через рот и кожу. Соли ртути разъедают кожу и слизистые оболочки тела. Попадание солей ртути внутрь организма вызывает воспаление зева, затрудненное глотание, оцепенение, рвоту, боли в животе. У взрослого человека при попадании внутрь около 350 мг ртути может наступить смерть .

Загрязнение ртутью может быть уменьшено в результате запрещения производства и применения ряда продуктов. Нет сомнения, что загрязнение ртутью всегда будет острой проблемой. Но с введением строгого контроля за отходами производства, содержащими ртуть, а также за пищевыми продуктами можно уменьшить опасность отравления ртутью .

Содержание свинца в магматических породах позволяет отнести его к категории редких металлов. Он концентрируется в сульфидных породах, которые встречаются во многих местах в мире. Свинец легко выделить путем выплавки из руды. В природном состоянии он обнаруживается в основном в виде галенита (РbS).Свинец, содержащийся в земной коре, может вымываться под воздействием атмосферных процессов, переходя постепенно в океаны. Ионы Рb2+ довольно нестабильны, и содержание свинца в ионной форме составляет всего 10 -8 %. Однако он накапливается в океанских осадках в виде сульфитов или сульфатов. В пресной воде содержание свинца гораздо выше и может достигать 2 х 10 -6 %, а в почве примерно такое же количество, что и в земной коре (1,5 х 10 -3 %) из-за нестабильности этого элемента в геохимическом цикле .

Свинцовые руды содержат 2-20 % свинца. Концентрат, получаемый флотационным способом, содержит 60-80 % Рb. Его нагревают для удаления серы и выплавляют свинец. Такие первичные процессы крупномасштабны. Если же для получения свинца используют отходы, процессы выплавки называют вторичными. Ежегодное мировое потребление свинца составляет более 3 млн. т, из них 40 % используют для производства аккумуляторных батарей, 20% -для производства алкила свинца - присадки к бензину, 12% применяют в строительстве, 28 % для других целей .

Ежегодно в мире в результате воздействия атмосферных процессов мигрирует около 180 тыс. т свинца. При добыче и переработке свинцовых руд теряется более 20 % свинца. Даже на этих стадиях выделение свинца в среду обитания равно его количеству, попадающему в окружающую среду в результате воздействия на магматические породы атмосферных процессов.

Наиболее серьезным источником загрязнения среды обитания организмов свинцом являются выхлопы автомобильных двигателей. Антидетонатор тетраметил - или тетраэтилсвинеп - прибавляют к большинству бензинов, начиная с 1923 г., в количестве около 80 мг/л.

В бензине может содержаться 380 мг свинца, а общее содержание тетраэтилсвинца достигает 1г/л. При сгорании бензина около 75% содержащегося в нем свинца выделяется в виде аэрозоля и рассеивается в воздухе, в дальнейшем перераспределяясь на различном расстоянии от дорожного полотна. При движении автомобиля от 25 до 75% этого свинца в зависимости от условий движения выбрасывается в атмосферу. Основная его масса осаждается на землю, но и в воздухе остается заметная ее часть.

Свинцовая пыль не только покрывает обочины шоссейных дорог и почву внутри и вокруг промышленных городов, она найдена и во льду Северной Гренландии, причем в 1756 г. содержание свинца во льду составляло 20 мкг/т, в 1860 г. уже 50 мкг/т, а в 1965 г. - 210 мкг/т. Активными источниками загрязнения свинцом являются электростанции и бытовые печи, работающие на угле. Источниками загрязнения свинцом в быту могут быть глиняная посуда, покрытая глазурью; свинец, содержащийся в красящих пигментах.

Свинец не является жизненно необходимым элементом. Он токсичен и относится к I классу опасности. Неорганические его соединения нарушают обмен веществ и являются ингибиторами ферментов (подобно большинству тяжелых металлов). Одним из наиболее коварных последствий действия неорганических соединений свинца считается его способность заменять кальций в костях и быть постоянным источником отравления в течение длительного времени. Биологический период полураспада свинца в костях - около 10 лет. Количество свинца, накопленного в костях, с возрастом увеличивается, и в 30-40 лет у лиц, по роду занятий не связанных с загрязнением свинца, составляет 80-200 мг.

Органические соединение свинца считаются ещё более токсичными, чем неорганические. Главным источником, из которого свинец попадает в организм человека, является пища, наряду с эти важную роль играет вдыхаемый воздух, а у детей - и заглатываемая ими свинецсодержащая пыль и краски. Вдыхаемая пыль примерно на 30-35 % задерживается в легких, значительная доля её всасывается потоком крови. Всасывания в желудочно-кишечном тракте составляют в целом 5-10 %, у детей - 50 %. Дефицит кальция и витамина Д усиливает всасывание свинца. Острые свинцовые отравления встречаются редко. Их симптомы - слюнотечение, рвота, кишечные колики, острая форма отказа почек, поражение мозга. В тяжёлых случаях - смерть через несколько дней. Ранние симптомы отравления свинцом проявляются в виде повышенной возбудимости, депрессии и раздражительности. При отравлении органическими соединениями свинца его повышенное содержание обнаруживают в крови.

Вследствие глобального загрязнения окружающей среды свинцом он стал вездесущим компонентом любой пищи и кормов. Растительные продукты в целом содержат больше свинца, чем животные .

Кадмий и цинк.

Кадмий, цинк а также медь, являются наиболее важными металлами при изучении проблемы загрязнений, так они широко распространены в мире и обладают токсичными свойствами. Кадмий и цинк (так же как: свинец и ртуть) обнаружены в основном в сульфидных осадках. В результате атмосферных процессов эти элементы легко попадают в океаны. В почвах содержится приблизительно 4,5х10 -4 %. Растительность содержит различное количество обоих элементов, но содержание цинка в золе растений относительно высоко -0,14; так как этот элемент играет существенную роль в питании растений. Около 1 млн. кг кадмия попадает в атмосферу ежегодно в результате деятельности заводов по его выплавке, что составляет около 45 % общего загрязнения этим элементом. 52 % загрязнений попадают в результате сжигания или переработки изделий, содержащих кадмий. Кадмий обладает относительно высокой летучестью, поэтому он легко проникает в атмосферу. Источники загрязнения атмосферы цинком те же, что и кадмием .

Попадание кадмия в природные воды происходит в результате применения его в гальванических процессах и техники. Наиболее серьёзные источники загрязнения воды цинком - заводы по выплавке цинка и гальванические производства .

Потенциальным источником загрязнением кадмием являются удобрения. При этом кадмий внедряется в растения, употребляемые человеком в пищу, и в конце цепочки переходят в организм человека. Цинк наименее токсичен из всех вышеперечисленных тяжёлых металлов. Тем не менее все элементы становятся токсичными, если попадаются в избытке; цинк не является исключением. Физиологическое воздействие цинка заключается в действии его как активатора ферментов. В больших количествах он вызывает рвоту, эта доза составляет примерно 150 мг для взрослого человека .

Кадмий намного токсичнее цинка. Он и его соединения относятся к I классу опасности. Он проникает в человеческий организм в течение продолжительного периода. Вдыхание воздуха в течение 8 часов при концентрации кадмия 5 мг/м3 может привести к смерти. При хроническом отравлении кадмием в моче появляется белок, повышается кровяное давление.

При исследовании присутствия кадмия в продуктах питания было выявлено, что выделения человеческого организма редко содержат столько же кадмия, сколько было поглощено. Единого мирового мнения относительно приемлемого безопасного содержания кадмия в пище сейчас нет.

Одним их эффективных путей предотвращения поступления кадмия и цинка в виде загрязнений состоит в введении контроля за содержанием этих металлов в выбросах плавильных заводов и других промышленных предприятий.

Сурьма, Мышьяк, Кобальт.

Сурьма присутствует вместе с мышьяком в рудах, содержащих сульфиды металлов. Мировое производство сурьмы составляет около 70 т в год. Сурьма является компонентом сплавов, используется в производстве спичек, в чистом виде применяется в полупроводниках.Токсическое действие сурьмы подобно мышьяку. Большие количества сурьмы вызывают рвоту, при хроническом отравлении сурьмой наступает расстройство пищеварительного тракта, сопровождаемое рвотой и понижением температуры. Мышьяк в природе присутствует в виде сульфатов. Его содержание в свинцово-цинковых концентратах около 1 %. Вследствие летучести он легко попадает в атмосферу.

Самыми сильными источниками загрязнения этим металлом являются гербициды (химические вещества для борьбы с сорными растениями), фунгициды (вещества для борьбы с грибными болезнями растений) и инсектициды (вещества для борьбы с вредными насекомыми) .

По токсическим свойствам мышьяк относится к накапливающимся ядам. По степени токсичности следует различать элементарный мышьяк и его соединения. Элементарный мышьяк сравнительно мало ядовит, но обладает тератогенными свойствами. Вредное воздействие на наследственный материал (мутагенность) оспаривается.

Соединения мышьяка медленно поглощаются через кожу, быстро всасываются через лёгкие и желудочно-кишечный тракт. Смертельная доза для человека - 0,15-0,3 г.

Хроническое отравление вызывает нервные заболевания, слабость, онемение конечностей, зуд, потемнение кожи, атрофию костного мозга, изменения печени. Соединения мышьяка являются канцерогенными для человека. Мышьяк и его соединения относятся ко II классу опасности.

Кобальт не является широко применяемым. Так, например, его используют в сталелитейной промышленности, в производстве полимеров. При попадании внутрь больших количеств кобальт отрицательно влияет на содержание гемоглобина в крови человека и может вызвать заболевания крови. Предполагают, что кобальт вызывает базедову болезнь. Этот элемент опасен для жизни организмов ввиду его чрезвычайно высокой реакционной способности и относится к I классу опасности.

Медь и Марганец.

Медь обнаруживают в сульфидных осадках вместе со свинцом, камдием и цинком. Она присутствует в небольших количествах в цинковых концентратах и может переноситься на большие расстояния с воздухом и водой. Аномальное содержание меди обнаруживается в растениях с воздухом и водой. Аномальное содержание меди обнаруживается в растениях и почвах на расстоянии более 8 км от плавильного завода. Соли меди относятся ко II классу опасности. Токсические свойства меди изучены гораздо меньше, чем те же свойства других элементов. Поглощение больших количеств меди человеком приводит к болезни Вильсона, при этом избыток меди откладывается в мозговой ткани, коже, печени, поджелудочной железе .

Природное содержание марганца в растениях, животных и почвах очень высоко. Основные области производства марганца - производство легированных сталей, сплавов, электрических батарей и других химических источников тока. Присутствие марганца в воздухе сверх нормы (среднесуточная ПКД марганца в атмосфере - воздухе населённых мест - составляет 0,01 мг/м3) вредно влияет на организм человека, что выражается в прогрессирующем разрушении центральной нервной системы. Марганец относится ко II классу опасности .

В настоящее время в России для оценки загрязнения почв тяжелыми металлами используется как официально одобренные, так и не имеющие официального статуса нормативы. Основное их назначение - не допустить поступления в избыточном количестве антропогенно накапливающихся в почве ТМ в организм человека и тем самым избежать их негативного влияния. Почва в отличие от гомогенных водной и воздушной сред является сложной гетерогенной системой, меняющей поведение токсикантов в зависимости от её свойств. трудности обоснованной оценки почвенно-экологического состояния - одна из причин различного уровня фитотоксичности почв, установленного разными исследователями .

Техногенные источники поступления железа в окружающую среду. В зонах металлургических комбинатов в твердых выбросах содержится от 22000 до 31000 мг/кг железа.

Вследствие этого железо накапливается в огородных культурах.

Много железа поступает в сточные воды и шламы от производств металлургического, химического, машиностроительного, металлообрабатывающего, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного. Содержание железа в составе сырого осадка, выпадающего в первичных отстойниках крупного промышленного города, может достигать 1428 мг/кг. Дым, пыль промышленных производств могут содержать большие количества железа в виде аэрозолей железа, его оксидов, руд. Пыль железа или его оксидов образуется при заточке металлического инструмента, очистке деталей от ржавчины, прокате железных листов, электросварке и при других производственных процессах, в которых имеют место железо или его соединения.

Железо может накапливаться в почвах, водоемах, воздухе, живых организмах. Основные минералы железа подвергаются в природе фотохимическому разрушению, комплексообразованию, микробиологическому выщелачиванию, в результате чего, железо из труднорастворимых минералов переходит в водные объекты.

Железосодержащие минералы окисляются бактериями типа Th. Ferrooxidans. Окисление сульфидов можно описать в общем виде на примере пирита следующими микробиологическими и химическими процессами. Как видно, при этом образуется еще один загрязняющий поверхностные воды компонент серная кислота. О масштабах ее микробиологического образования можно судить по такому примеру. Пирит обычный примесный компонент угольных месторождений, и его выщелачивание приводит к закислению шахтных вод. По одной из оценок, в 1932г. в реку Огайо США с шахтными водами поступило около 3 млн. тонн pSO4. Микробиологическое выщелачивание железа осуществляется не только за счет окисления, но и при восстановлении окисленных руд. В нем принимают участие микроорганизмы, относящиеся к разным группам.

В частности, восстановление Fe3 до Fe2 осуществляют представители родов Bacillus и Pseudomonas, а так же некоторые грибы.

Упомянутые здесь широко распространенные в природе процессы протекают так же в отвалах горнорудных предприятий, металлургических комбинатов, производящих большое количество отходов шлаки, огарки и т.п. С дождевыми, паводковыми и грунтовыми водами высвобождающиеся из твердых матриц металлы переносятся в реки и водоемы. Железо находится в природных водах в разных состояниях и формах в истинно растворенной форме входят в состав донных отложений и гетерогенных систем взвеси и коллоиды. Донные отложения рек и водоемов выступают в качестве накопителя железа. Высокое содержание железа обусловлено геохимическими особенностями образования почвенных горизонтов. Его повышенное содержание в почвенном покрове может быть обусловлено использованием для полива вод с природным повышенным содержанием железа .

Класс опасности - не предусмотрено разделение на классы опасности.

Лимитирующий показатель вредности - вредность не определена.

Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию.

Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как: сульфиды, цианиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni2+) примерно в 2 раза более токсичны, чем его комплексные соединения.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тoнн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 тыс. мг/кг свинца, до 3 тыс. мг/кг меди, до 10 тыс. мг/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом.

1.4 Методы определения тяжелых металлов

На сегодняшний день существуют две группы основных аналитических методов, определяющие наличие тяжелых металлов в почве:

1. Электрохимические

Электрохимические методы классифицируют по природе аналитического сигнала. Так, в ходе анализа можно измерять потенциал одного из электродов (потенциометрия), сопротивление ячейки или электропроводность раствора (кондуктометрия). Во многих случаях на электроды накладывают внешнее напряжение, после чего измеряют силу тока, проходящего через раствор (вольтамперометрические методы, в частности полярография). При этом на поверхности электродов протекают окислительно-восстановительные реакции, то есть идет электролиз раствора. Если провести электролиз до конца и измерить количество электричества, пошедшего на окисление (или на восстановление) определяемого вещества, можно рассчитать массу этого вещества. Такой метод называют кулонометрией. Иногда содержание определяемого вещества рассчитывают по привесу электрода, т. е. по массе выделившегося на нем продукта электролиза (электрогравиметрия).

Электрохимические методы довольно селективны (кроме кондуктометрии), поэтому с их помощью количественно определяют одни элементы в присутствии других, раздельно определяют разные формы одного элемента, делят сложные смеси и идентифицируют их компоненты, а также концентрируют некоторые микропримеси. Электрохимические методы широко применяют для контроля состава природных и сточных вод, почв и пищевых продуктов, технологических растворов и биологических жидкостей. Соответствующие методики не требуют сложного оборудования, в них не используются высокие температуры и давления. Разные электрохимические методы различаются по чувствительности, точности, экспрессности и другим показателям, а потому хорошо дополняют друг друга.

Рассмотрим методы электрохимической группы:

Вольтамперометрии:

Вольтамперометрическими называют методы анализа, основанные на регистрации и изучении зависимости тока, протекающего через электролитическую ячейку, от внешнего наложенного напряжения. Графическое изображение этой зависимости называют вольтамперограммой. Анализ вольтамперограммы даёт информацию о качественном и количественном составах анализируемого вещества.

Для регистрации вольтамперограмм нужна электролитическая ячейка, состоящая из индикаторного электрода и электрода сравнения. Электродом сравнения обычно служит насыщенный каломельный электрод или слой ртути на дне электролизёра. В качестве индикаторного используют ртутный капающий электрод, микродисковые платиновый или графитовый электроды.

В зависимости от типа индикаторного электрода вольтамперометрические методы принято делить на полярографию и собственно вольтамперометрию. Если в качестве индикаторного электрода используют ртутный капающий электрод, то полученные зависимости силы тока от напряжения называют полярограммами и соответственно метод анализа - полярографией. Метод был создан выдающимся чешским электрохимиком лауреатом Нобелевской премии Яр. Гейровским (1922). При работе с любым другим индикаторным электродом, в том числе и со стационарным ртутным, дело имеют с вольтамперометрией.

Потенциометрии:

Потенциометрический анализ - это измерение показателей тех веществ, которые находятся в ионном состоянии. Иными словами, под объектами исследования выступают растворы, практически всегда водные, хотя анализ твердых веществ также осуществляется в случае, если есть наличие растворимых элементов. Для того чтобы исследовать некоторые частицы, может потребоваться электрод с чувствительной мембраной определенной формы, что поможет произвести анализ вязких веществ или гелей .

Потенциометрический анализ проводиться несколькими вариантами. Первый - это прямая потенциометрия. Чаще всего такой метод проводят для измерения уровня pH и зависит он от самого типа измерительного электрода. Этот метод самый простой. Второй метод - это потенциометрическое титрование, который осуществляется во множестве вариантов. Его суть состоит в том, что для вычисления показателей осуществляют ряд химических реакций под контролем ионоселективного электрода. Этот метод отличается от предыдущего большими трудозатратами, но и более точным результатом. И третий метод - метод добавок - родственный вышеописанному. Его проводят во множестве вариантов, которые и позволяют сделать анализ малых концентраций .

Кулонометрии:

Кулонометрия - электрохимический метод анализа, основанный на измерении количества электричества, необходимого для электрохимического превращения определяемого вещества. В кулонометрии различают два вида анализа:

прямую кулонометрию;

кулонометрическое титрование.

Кондуктометрии:

Кондуктометрические методы анализа основаны на измерении электропроводности исследуемых растворов. Существует несколько методов кондуктометрического анализа:

· прямая кондуктометрия - метод, позволяющий непосредственно определять концентрацию электролита путем измерения электропроводности раствора с известным качественным составом;

· кондуктометрическое титрование- метод анализа, основанный на определении содержания вещества по излому кривойтитрования. Кривую строят по измерениям удельной электропроводности анализируемого раствора, меняющейся в результате химических реакций в процессе титрования;

· хронокондуктометрическое титрование - основано на определении содержания вещества по затраченному натитрование времени, автоматически фиксируемого на диаграммной лентерегистратора кривой титрования.

Таким образом, можно найти и вычислить содержание тяжёлых металлов с низким пределом обнаружения в почвенном образце.

2. Экстракционно-фотометрические методы

Эти методы применяют в аналитической химии очень даже широко, причем определение анализируемого компонента в экстракте может производиться как фотометрическим, так и другим методом: полярографическим, спектральным.

Вместе с тем существуют некоторые группы экстракционных методов, в которых фотометрическое окончание является наиболее эффективным, обеспечивая необходимую быстроту и точность определения. Эти методы называются экстракционно-фотометрическими. Весьма распространенной является методика, по которой определенный микроэлемент переводят в растворимое в воде окрашенное соединение, экстрагируют его и экстракт фотомоделируют. Такая методика позволяет устранить мешающее влияние посторонних компонентов и увеличивает чувствительность определения, так как при экстракции происходит концентрирование микропримесей. Например, определение примесей железа в солях кобальта или никеля проводят экстракцией его тиоцаинатных комплексов амиловым спиртом .

Спектрофотометрия

Спектрофотометрический метод анализа основан на спектрально-избирательном поглощении монохроматического потока световой энергии при прохождении его через исследуемый раствор. Метод позволяет определять концентрации отдельных компонентов смесей окрашенных веществ, имеющих максимум поглощения при различных длинах волн, он более чувствителен и точен, чем фотоэлектроколориметрический метод. Известно, что фотоколориметрический метод анализа применим только для анализа окрашенных растворов, бесцветные растворы в видимой области спектра обладают незначительным коэффициентом поглощения. Однако многие бесцветные и слабо окрашенные соединения (особенно органические) обладают характерными полосами поглощения в ультрафиолетовой и инфракрасной областях спектра, что используют для их количественного определения. Спектрофотометрический метод анализа применим для измерения светопоглощения в различных областях видимого спектра, в ультрафиолетовой и инфракрасной областях спектра, что значительно расширяет аналитические возможности метода.

Спектрофотометрический метод в ультрафиолетовой области спектра позволяет индивидуально определять двух- и трехкомпонентные смеси веществ. Количественное определение компонентов смеси основано на том, что оптическая плотность любой смеси равна сумме оптических плотностей отдельных компонентов.

Атомно - абсорционной спектроскопии.

Метод атомно-абсорбционной спектроскопии в настоящее время является самым удобным для определения содержания металлов в объектах окружающей среды, пищевых продуктах, почвах, различных сплавах. Также метод используется в геологии для анализа состава горных пород, металлургии для определения состава сталей.

Метод атомно-абсорбционной спектроскопии рекомендуется большей частью государственных стандартов для определения подвижного цинка в почве, природных и водах, а также во множестве цветных сплавов .

Метод основан на поглощении электромагнитного излучения свободными атомами в стационарном (невозбужденном) состоянии. При длине волны, соответствующей переходу атома из основного в возбужденное электронное состояние, заселенность основного уровня уменьшается. Аналитический сигнал зависит от числа невозбужденных частиц в анализируемом образце (т.е. от концентрации определяемого элемента), следовательно, измеряя количество поглощенного электромагнитного излучения можно определить концентрацию определяемого элемента в исходном образце .

Метод основан на поглощении ультрафиолетового или видимого излучения атомами газов. Чтобы провести пробу в газообразное атомное состояние, ее впрыскивают в пламя. В качестве источника излучения применяют лампу с полым катодом из определяемого металла. Интервал длин волн спектральной линии, испускаемой источником света, и линии поглощения того же самого элемента в пламени очень узок, поэтому мешающее поглощение других элементов практически не сказывается на результатах анализа. Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью определять в растворах около восьмидесяти элементов в малых концентрациях, поэтому он широко применяется в биологии, медицине (для анализа органических жидкостей), в геологии, почвоведении (для определения микроэлементов в почвах) и других областях науки, а также в металлургии для исследований и контроля технологических процессов.

Через слой атомных паров пробы, получаемых с помощью атомизатора пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера, мерой концентрации элемента служит оптическая плотность A = lg(I0/I), где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.

Рисунок 1.1 Принципиальная схема атомно-абсорбционного спектрометра: 1-лампа полого катода или безэлектродная лампа; 2-графитовая кювета; 3-монохроматор; 4-детектор

По точности и чувствительности этот метод превосходит многие другие; поэтому его применяют при аттестации эталонных сплавов и геологических пород (путем перевода в раствор).

Существенным отличием атомной абсорбции от пламенно-эмиссионной спектрометрии является то, что в последнем методе измеряется излучение, испускаемое атомами в возбужденном состоянии в пламени, а атомная абсорбция основана на измерении излучения, поглощенного нейтральными, невозбужденными атомами, находящимися в пламени, которых в пламени во много раз больше, чем возбужденных. Этим объясняется высокая чувствительность метода при определении элементов, имеющих высокую энергию возбуждения, т. е. трудно возбуждающихся .

Источником света в ААС служит лампа с полым катодом, испускающая свет, имеющий очень узкий интервал длин волн, порядка 0, 001нм. Линия поглощения определяемого элемента несколько шире испускаемой полосы, что позволяет измерять линию поглощения в ее максимуме. Прибор содержит необходимый набор ламп, каждая лампа предназначается для определения только одного какого-либо элемента.

«Кюветой» в ААС служит само пламя. Поскольку в ААС соблюдается закон Бэра, чувствительность метода зависит от длины поглощающего слоя пламени, которая должна быть постоянной и достаточно большой.

Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя - воздух, кислород или оксид азота (1). Выбранная газовая смесь определяет температуру пламени. Воздушно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200-2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получении ацетилена; такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. При определении элементов, образующих труднодиссоциирующие соединения используют высокотемпературное пламя (3000-3200 ОС, создаваемое смесью оксид азота (1) - ацетилен. Такое пламя необходимо при определении алюминия, бериллия, кремния, ванадия и молибдена. Для определения мышьяка и селена, превращенных в их гидриды, требуется восстановительное пламя, образующееся сжиганием водорода в аргоно-воздушной смеси. Ртуть определяют (беспламенным методом» , поскольку она может существовать в парообразном состоянии и при комнатной температуре.

Подобные документы

    Физические и химические свойства тяжелых металлов и их соединений, используемых в промышленном производстве и являющихся источником загрязнения окружающй среды: хром, марганец, никель, кадмий, цинк, вольфрам, ртуть, олово, свинец, сурьма, молибден.

    реферат , добавлен 13.03.2010

    Определение содержания тяжелых металлов в отходах производства. Принципы атомно-абсорбционной спектрометрии. Требования к подготовке пробы. Устройство спектрометра, порядок его установки. Приготовление растворов для градуировки, проведение исследования.

    курсовая работа , добавлен 09.03.2016

    Понятие тяжелых металлов и агроландшафтов. Основные причины появления металлов в больших концентрация в почвах, в результате чего они становятся губительными для окружающей среды. Биогеохимические циклы тяжелых металлов: свинца, кадмия, цинка, никеля.

    реферат , добавлен 15.03.2015

    Методы определения металлов. Химико-спектральное определение тяжелых металлов в природных водах. Определение содержания металлов в сточных водах, предварительная обработка пробы при определении металлов. Методы определения сосуществующих форм металлов.

    курсовая работа , добавлен 19.01.2014

    Атомно-флуоресцентный анализ. Рентгеновская флуоресценция. Электрохимические методы анализа. Инверсионная вольтамперометрия. Полярографический метод. Определение содержание свинца и цинка в одной пробе. Определение содержания цинка дитизоновым методом.

    курсовая работа , добавлен 05.11.2016

    Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

    реферат , добавлен 18.05.2006

    Характеристика, классификация и химические основы тест-систем. Средства и приёмы анализа различных объектов окружающей среды с использованием тест-систем. Определение ионов кобальта колориметрическим методом из растворов, концентрации ионов меди.

    дипломная работа , добавлен 30.05.2007

    Химическое влияние железа и других тяжелых металлов на человека. Гравиметрический и титриметрический методы, потенциометрия, вольтамперометрия, кулонометрия, электрогравиметрия, атомно-эмиссионная спектроскопия, фотометрический и люминесцентный анализы.

    курсовая работа , добавлен 08.12.2010

    Определение концентрации тяжелых металлов, фосфора и общего содержания восстановителей в водах и прибрежных растениях. Уровень загрязнения городского воздуха. Пробоотбор на сорбент с последующей термодесорбцией непосредственно в испарителе хроматографа.

    дипломная работа , добавлен 18.07.2011

    Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.

Тяжелые металлы - биохимически активные элементы, входящие в круговорот органических веществ и воздействующие преимущественно на живые организмы. К тяжелым металлам относятся такие элементы, как свинец, медь, цинк, кадмий, никель, кобальт и ряд других.

Миграция тяжёлых металлов в почвах зависит, прежде всего, от щёлочно-кислотных и окислительно-восстановительных условий, определяющих разнообразие почвенно-геохимических обстановок. Важную роль в миграции тяжелых металлов в профиле почв играют геохимические барьеры, в одних случаях усиливающие, в других ослабляющие (в силу способности к консервации) устойчивость почв к загрязнению тяжелыми металлами. На каждом из геохимических барьеров задерживается определённая группа химических элементов, обладающая сходными геохимическими свойствами.

Специфика основных почвообразовательных процессов и тип водного режима обусловливают характер распределения тяжелых металлов в почвах: накопление, консервацию или вынос. Выделены группы почв с накоплением тяжелых металлов в разных частях почвенного профиля: на поверхности, в верхней, в средней части, с двумя максимумами. Кроме того, выделены почвы в зоне , которым присуща концентрация тяжелых металлов за счёт внутрипрофильной криогенной консервации. Особую группу образуют почвы, где в условиях промывного и периодически промывного режимов происходит вынос тяжелых металлов из профиля. Внутрипрофильное распределение тяжелых металлов имеет большое значение для оценки загрязнения почв и прогноза интенсивности аккумуляции в них загрязнителей. Характеристика внутрипрофильного распределения тяжелых металлов дополнена группировкой почв по интенсивности их вовлечения в биологический круговорот. Всего выделено три градации: высокая, умеренная и слабая.

Своеобразна геохимическая обстановка миграции тяжелых металлов в почвах речных пойм, где при повышенной обводнённости значительно возрастает подвижность химических элементов и соединений. Специфика геохимических процессов здесь обусловлена, прежде всего, резко выраженной сезонностью смены окислительно-восстановительных условий. Это связано с особенностями гидрологического режима рек: продолжительностью весенних, наличием или отсутствием осенних паводков, характером меженного периода. Длительность затопления паводковыми водами пойменных террас определяет преобладание либо окислительных (кратковременное затопление поймы), либо окислительно-восстановительных (долгопоёмный режим) условий.

Наибольшим техногенным воздействиям площадного характера подвергаются пахотные почвы. Основной источник загрязнения, с которым в пахотные почвы поступает до 50 % общего количества тяжелых металлов, - фосфорные удобрения. Для определения степени потенциального загрязнения пахотных почв проведен сопряженный анализ свойств почв и свойств загрязнителя: учитывались содержание, состав гумуса и гранулометрический состав почв, а также щелочно-кислотные условия. Данные по концентрации тяжелых металлов в фосфоритах месторождений разного генезиса позволили рассчитать их среднее содержание с учетом приблизительных доз внесения удобрений в пахотные почвы разных районов. Оценка свойств почв соотнесена с величинами агрогенной нагрузки. Совокупная интегральная оценка легла в основу выделения степени потенциального загрязнения почв тяжелыми металлами.

Наиболее опасны по степени загрязнения тяжелыми металлами почвы многогумусовые, глинисто-суглинистые с щелочной реакцией среды: темно-серые лесные, и темно-каштановые - почвы, обладающие высокой аккумулятивной способностью. Повышенной опасностью загрязнения почв тяжелыми металлами характеризуются также Московская и Брянская области. обстановка с дерново-подзолистыми почвами не способствует здесь аккумуляции тяжелых металлов, однако в этих областях техногенная нагрузка велика и почвы не успевают «самоочищаться».

Эколого-токсикологическая оценка почв на содержание тяжелых металлов показала, что 1,7 % земель сельскохозяйственного назначения загрязнено веществами I класса опасности (высокоопасными) и 3,8 % - II класса опасности (умеренно опасными). Загрязнение почв с содержанием тяжелых металльов и мышьяка выше установленных норм выявлено в Республике Бурятия, Республике Дагестан, Республике , Республике Мордовия, Республике Тыва, в Красноярском и Приморском краях, в Ивановской, Иркутской, Кемеровской, Костромской, Мурманской, Новгородской, Оренбургской, Сахалинской, Читинской областях.

Локальное загрязнение почв тяжелыми металлами связано, прежде всего, с крупными городами и . Оценка опасности загрязнения почв комплексом тяжелых металлов проводилась по суммарному показателю Zc.

Соединения Cr(VI) и Cr(III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr(VI) являются более опасными.

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, госларит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм 3 , в морских - от 1.5 до 10 мкг/дм 3 . Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДК в Zn 2+ составляет 1 мг/дм 3 (лимитирующий показатель вредности - органолептический), ПДК вр Zn 2+ - 0.01 мг/дм 3 (лимитирующий признак вредности - токсикологический).

Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду, в том числе и почву, загрязняя и отравляя её.

Тяжёлые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах. В различных научных и прикладных работах авторы по-разному трактуют значение понятия "тяжёлые металлы". В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

3.3. Свинцовая интоксикация

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и, прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

С сожалением надо отметить, что в России отсутствует государственная политика по правовому, нормативному и экономическому регулированию влияния свинца на состояние окружающей среды и здоровье населения, по снижению выбросов (сбросов, отходов) свинца и его соединений в окружающую среду, полному прекращению производства свинецсодержащих бензинов.

Вследствие чрезвычайно неудовлетворительной просветительной работы по разъяснению населению степени опасности воздействия тяжелых металлов на организм человека, в России не снижается, а постепенно увеличивается численность контингентов, имеющих профессиональный контакт со свинцом. Случаи свинцовой хронической интоксикации зафиксированы в 14 отраслях промышленности России. Ведущими являются электротехническая промышленность (производство аккумуляторов), приборостроение, полиграфия и цветная металлургия, в них интоксикация обусловлена превышением в 20 и более раз предельно допустимой концентрации (ПДК) свинца в воздухе рабочей зоны.

Значительным источником свинца являются автомобильные выхлопные газы, так как половина России все еще использует этилированный бензин. Однако металлургические заводы, в частности медеплавильные, остаются главным источником загрязнений окружающей среды. И здесь есть свои лидеры. На территории Свердловской области находятся 3 самых крупных источника выбросов свинца в стране: в городах Красноуральск, Кировоград и Ревда.

Дымовые трубы Красноуральского медеплавильного завода, построенного еще в годы сталинской индустриализации и использующего оборудование 1932 года, ежегодно извергают на 34-тысячный город 150 -170 тонн свинца, покрывая все свинцовой пылью.

Концентрация свинца в почве Красноуральска варьируется от 42,9 до 790,8 мг/кг при предельно допустимой концентрации ПДК=130 мк/кг. Пробы воды в водопроводе соседнего пос. Октябрьский, питаемого подземным водоисточником, фиксировали превышение ПДК до двух раз.

Загрязнение окружающей среды свинцом оказывает влияние на состояние здоровья людей. Воздействие свинца нарушает женскую и мужскую репродуктивную систему. Для женщин беременных и детородного возраста повышенные уровни свинца в крови представляют особую опасность, так как под действием свинца нарушается менструальная функция, чаще бывают преждевременные роды, выкидыши и смерть плода вследствие проникновения свинца через плацентарный барьер. У новорожденных детей высока смертность.

Отравление свинцом чрезвычайно опасно для маленьких детей - он действует на развитие мозга и нервной системы. Проведенное тестирование 165 красноуральских детей от 4 лет выявило существенную задержку психического развития у 75,7%, а у 6,8% обследованных детей обнаружена умственная отсталость, включая олигофрению.

Дети дошкольного возраста наиболее восприимчивы к вредному воздействию свинца, поскольку их нервная система находится в стадии формирования. Даже при низких дозах свинцовое отравление вызывает снижение интеллектуального развития, внимания и умения сосредоточиться, отставание в чтении, ведет к развитию агрессивности, гиперактивности и другим проблемам в поведении ребенка. Эти отклонения в развитии могут носить длительный характер и быть необратимыми. Низкий вес при рождении, отставание в росте и потеря слуха также являются результатом свинцового отравления. Высокие дозы интоксикации ведут к умственной отсталости, вызывают кому, конвульсии и смерть.

Белая книга, опубликованная российскими специалистами, сообщает, что свинцовое загрязнение покрывает всю страну и является одним из многочисленных экологических бедствий в бывшем Советском Союзе, которые стали известны в последние годы. Большая часть территории России испытывает нагрузку от выпадения свинца, превышающую критическую для нормального функционирования экосистемы. В десятках городов отмечается превышение концентраций свинца в воздухе и почве выше величин, соответствующих ПДК.

Наибольший уровень загрязнения воздуха свинцом, превышающий ПДК, отмечался в городах Комсомольск-на-Амуре, Тобольск, Тюмень, Карабаш, Владимир, Владивосток.

Максимальные нагрузки выпадения свинца, ведущие к деградации наземных экосистем, наблюдаются в Московской, Владимирской, Нижегородской, Рязанской, Тульской, Ростовской и Ленинградской областях.

Стационарные источники ответственны за сброс более 50 тонн свинца в виде различных соединений в водные объекты. При этом 7 аккумуляторных заводов сбрасывают ежегодно 35 тонн свинца через канализационную систему. Анализ распределения сбросов свинца в водные объекты на территории России показывает, что по этому виду нагрузки лидируют Ленинградская, Ярославская, Пермская, Самарская, Пензенская и Орловская области.

В стране необходимы срочные меры по снижению свинцового загрязнения, однако пока экономический кризис России затмевает экологические проблемы. В затянувшейся промышленной депрессии Россия испытывает недостаток средств для ликвидации прежних загрязнений, но если экономика начнет восстанавливаться, а заводы вернутся к работе, загрязнение может только усилиться.

10 наиболее загрязненных городов бывшего СССР

(Металлы приведены в порядке убывания уровня приоритетности для данного города)

1. Рудная Пристань (Примор. край) свинец, цинк, медь, марганец+ванадий, марганец.
2. Белово (Кемеровская область) цинк, свинец, медь, никель.
3. Ревда (Свердловская область) медь, цинк, свинец.
4. Магнитогорск никель, цинк, свинец.
5. Глубокое (Белоруссия) медь, свинец, цинк.
6. Усть-Каменогорск (Казахстан) цинк, медь, никель.
7. Дальнегорск (Приморский край) свинец, цинк.
8. Мончегорск (Мурманская обл.) никель.
9. Алаверди (Армения) медь, никель, свинец.
10. Константиновка (Украина) свинец, ртуть.

4. Гигиена почвы. Обезвреживание отходов.

Почва в городах и прочих населенных пунктах и их окрест­ностях уже давно отличается от природной, биологически цен­ной почвы, играющей важную роль в поддержании экологиче­ского равновесия. Почва в городах подвержена тем же вредным воздействиям, что и городской воздух и гидросфера, поэтому по­всеместно происходит значительная ее деградация. Гигиене поч­вы не уделяется достаточного внимания, хотя ее значение как одного из основных компонентов биосферы (воздух, вода, поч­ва) и биологического фактора окружающей среды еще более весомое, чем воды, поскольку количество последней (в первую очередь качество подземных вод) определяется состоянием поч­вы, и отделить эти факторы друг от друга невозможно. Почва обладает способностью биологического самоочищения: в почве происходит расщепление попавших в нее отходов н их минера­лизация; в конечном итоге почва компенсирует за их счет утра­ченные минеральные вещества.