Since the bases of logarithms are equal. Calculation of logarithms, examples, solutions


We continue to study logarithms. In this article we will talk about calculating logarithms, this process is called logarithm. First we will understand the calculation of logarithms by definition. Next, let's look at how the values ​​of logarithms are found using their properties. After this, we will focus on calculating logarithms through the initially specified values ​​of other logarithms. Finally, let's learn how to use logarithm tables. The entire theory is provided with examples with detailed solutions.

Page navigation.

Calculating logarithms by definition

In the simplest cases it is possible to perform quite quickly and easily finding the logarithm by definition. Let's take a closer look at how this process happens.

Its essence is to represent the number b in the form a c, from which, by the definition of a logarithm, the number c is the value of the logarithm. That is, by definition, the following chain of equalities corresponds to finding the logarithm: log a b=log a a c =c.

So, calculating a logarithm by definition comes down to finding a number c such that a c = b, and the number c itself is the desired value of the logarithm.

Taking into account the information in the previous paragraphs, when the number under the logarithm sign is given by a certain power of the logarithm base, you can immediately indicate what the logarithm is equal to - it is equal to the exponent. Let's show solutions to examples.

Example.

Find log 2 2 −3, and also calculate the natural logarithm of the number e 5,3.

Solution.

The definition of the logarithm allows us to immediately say that log 2 2 −3 =−3. Indeed, the number under the logarithm sign is equal to base 2 to the −3 power.

Similarly, we find the second logarithm: lne 5.3 =5.3.

Answer:

log 2 2 −3 =−3 and lne 5,3 =5,3.

If the number b under the logarithm sign is not specified as a power of the base of the logarithm, then you need to carefully look to see if it is possible to come up with a representation of the number b in the form a c . Often this representation is quite obvious, especially when the number under the logarithm sign is equal to the base to the power of 1, or 2, or 3, ...

Example.

Calculate the logarithms log 5 25 , and .

Solution.

It is easy to see that 25=5 2, this allows you to calculate the first logarithm: log 5 25=log 5 5 2 =2.

Let's move on to calculating the second logarithm. The number can be represented as a power of 7: (see if necessary). Hence, .

Let's rewrite the third logarithm in the following form. Now you can see that , from which we conclude that . Therefore, by the definition of logarithm .

Briefly, the solution could be written as follows: .

Answer:

log 5 25=2 , And .

When under the sign of the logarithm there is a sufficiently large natural number, then it wouldn’t hurt to factor it into prime factors. It often helps to represent such a number as some power of the base of the logarithm, and therefore calculate this logarithm by definition.

Example.

Find the value of the logarithm.

Solution.

Some properties of logarithms allow you to immediately specify the value of logarithms. These properties include the property of the logarithm of one and the property of the logarithm of a number equal to the base: log 1 1=log a a 0 =0 and log a a=log a a 1 =1. That is, when under the logarithm sign there is a number 1 or a number a equal to the base of the logarithm, then in these cases the logarithms are equal to 0 and 1, respectively.

Example.

What are logarithms and log10 equal to?

Solution.

Since , then from the definition of the logarithm it follows .

In the second example, the number 10 under the logarithm sign coincides with its base, so decimal logarithm ten is equal to one, that is, log10=lg10 1 =1.

Answer:

AND lg10=1 .

Note that the calculation of logarithms by definition (which we discussed in the previous paragraph) implies the use of the equality log a a p =p, which is one of the properties of logarithms.

In practice, when a number under the logarithm sign and the base of the logarithm are easily represented as a power of a certain number, it is very convenient to use the formula , which corresponds to one of the properties of logarithms. Let's look at an example of finding a logarithm that illustrates the use of this formula.

Example.

Calculate the logarithm.

Solution.

Answer:

.

Properties of logarithms not mentioned above are also used in calculations, but we will talk about this in the following paragraphs.

Finding logarithms through other known logarithms

The information in this paragraph continues the topic of using the properties of logarithms when calculating them. But here the main difference is that the properties of logarithms are used to express the original logarithm in terms of another logarithm, the value of which is known. Let's give an example for clarification. Let's say we know that log 2 3≈1.584963, then we can find, for example, log 2 6 by doing a little transformation using the properties of the logarithm: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

In the above example, it was enough for us to use the property of the logarithm of a product. However, much more often it is necessary to use a wider arsenal of properties of logarithms in order to calculate the original logarithm through the given ones.

Example.

Calculate the logarithm of 27 to base 60 if you know that log 60 2=a and log 60 5=b.

Solution.

So we need to find log 60 27 . It is easy to see that 27 = 3 3 , and the original logarithm, due to the property of the logarithm of the power, can be rewritten as 3·log 60 3 .

Now let's see how to express log 60 3 in terms of known logarithms. The property of the logarithm of a number equal to the base allows us to write the equality log 60 60=1. On the other hand, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Thus, 2 log 60 2+log 60 3+log 60 5=1. Hence, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Finally, we calculate the original logarithm: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Answer:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Separately, it is worth mentioning the meaning of the formula for transition to a new base of the logarithm of the form . It allows you to move from logarithms with any base to logarithms with a specific base, the values ​​of which are known or it is possible to find them. Usually, from the original logarithm, using the transition formula, they move to logarithms in one of the bases 2, e or 10, since for these bases there are tables of logarithms that allow their values ​​to be calculated with a certain degree of accuracy. In the next paragraph we will show how this is done.

Logarithm tables and their uses

For approximate calculation of logarithm values ​​can be used logarithm tables. The most commonly used base 2 logarithm table is the table natural logarithms and a table of decimal logarithms. When working in the decimal number system, it is convenient to use a table of logarithms based on base ten. With its help we will learn to find the values ​​of logarithms.










The presented table allows you to find the values ​​of the decimal logarithms of numbers from 1,000 to 9,999 (with three decimal places) with an accuracy of one ten-thousandth. We will analyze the principle of finding the value of a logarithm using a table of decimal logarithms into specific example– it’s clearer that way. Let's find log1.256.

In the left column of the table of decimal logarithms we find the first two digits of the number 1.256, that is, we find 1.2 (this number is circled in blue for clarity). The third digit of the number 1.256 (digit 5) is found in the first or last line to the left of the double line (this number is circled in red). The fourth digit of the original number 1.256 (digit 6) is found in the first or last line to the right of the double line (this number is circled with a green line). Now we find the numbers in the cells of the table of logarithms at the intersection of the marked row and marked columns (these numbers are highlighted orange). The sum of the marked numbers gives the desired value of the decimal logarithm accurate to fourth digit after the decimal point, that is, log1.236≈0.0969+0.0021=0.0990.

Is it possible, using the table above, to find the values ​​of decimal logarithms of numbers that have more than three digits after the decimal point, as well as those that go beyond the range from 1 to 9.999? Yes, you can. Let's show how this is done with an example.

Let's calculate lg102.76332. First you need to write down number in standard form: 102.76332=1.0276332·10 2. After this, the mantissa should be rounded to the third decimal place, we have 1.0276332 10 2 ≈1.028 10 2, while the original decimal logarithm is approximately equal to the logarithm of the resulting number, that is, we take log102.76332≈lg1.028·10 2. Now we apply the properties of the logarithm: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. Finally, we find the value of the logarithm lg1.028 from the table of decimal logarithms lg1.028≈0.0086+0.0034=0.012. As a result, the entire process of calculating the logarithm looks like this: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

In conclusion, it is worth noting that using the table of decimal logarithms you can calculate the approximate value of any logarithm. To do this, it is enough to use the transition formula to go to decimal logarithms, find their values ​​in the table, and perform the remaining calculations.

For example, let's calculate log 2 3 . According to the formula for transition to a new base of the logarithm, we have . From the table of decimal logarithms we find log3≈0.4771 and log2≈0.3010. Thus, .

References.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. and others. Algebra and the beginnings of analysis: Textbook for grades 10 - 11 of general education institutions.
  • Gusev V.A., Mordkovich A.G. Mathematics (a manual for those entering technical schools).

Maintaining your privacy is important to us. For this reason, we have developed a Privacy Policy that describes how we use and store your information. Please review our privacy practices and let us know if you have any questions.

Collection and use of personal information

Personal information refers to data that can be used to identify or contact a specific person.

You may be asked to provide your personal information at any time when you contact us.

Below are some examples of the types of personal information we may collect and how we may use such information.

What personal information do we collect:

  • When you submit an application on the site, we may collect various information, including your name, phone number, email address, etc.

How we use your personal information:

  • Collected by us personal information allows us to contact you and inform you about unique offers, promotions and other events and upcoming events.
  • From time to time, we may use your personal information to send important notices and communications.
  • We may also use personal information for internal purposes, such as conducting audits, data analysis and various research in order to improve the services we provide and provide you with recommendations regarding our services.
  • If you participate in a prize draw, contest or similar promotion, we may use the information you provide to administer such programs.

Disclosure of information to third parties

We do not disclose the information received from you to third parties.

Exceptions:

  • If necessary, in accordance with the law, judicial procedure, in legal proceedings, and/or based on public inquiries or requests from government agencies on the territory of the Russian Federation - disclose your personal information. We may also disclose information about you if we determine that such disclosure is necessary or appropriate for security, law enforcement, or other public importance purposes.
  • In the event of a reorganization, merger, or sale, we may transfer the personal information we collect to the applicable successor third party.

Protection of personal information

We take precautions - including administrative, technical and physical - to protect your personal information from loss, theft, and misuse, as well as unauthorized access, disclosure, alteration and destruction.

Respecting your privacy at the company level

To ensure that your personal information is secure, we communicate privacy and security standards to our employees and strictly enforce privacy practices.

(from Greek λόγος - “word”, “relation” and ἀριθμός - “number”) numbers b based on a(log α b) is called such a number c, And b= a c, that is, records log α b=c And b=ac are equivalent. The logarithm makes sense if a > 0, a ≠ 1, b > 0.

In other words logarithm numbers b based on A formulated as an exponent to which a number must be raised a to get the number b(logarithm exists only for positive numbers).

From this formulation it follows that the calculation x= log α b, is equivalent to solving the equation a x =b.

For example:

log 2 8 = 3 because 8 = 2 3 .

Let us emphasize that the specified formulation of the logarithm makes it possible to immediately determine logarithm value, when the number under the logarithm sign acts as a certain power of the base. Indeed, the formulation of the logarithm makes it possible to justify that if b=a c, then the logarithm of the number b based on a equals With. It is also clear that the topic of logarithms is closely related to the topic powers of a number.

Calculating the logarithm is called logarithm. Logarithm is the mathematical operation of taking a logarithm. When taking logarithms, products of factors are transformed into sums of terms.

Potentiation is a mathematical operation inverse to logarithm. During potentiation, a given base is raised to the degree of expression over which potentiation is performed. In this case, the sums of terms are transformed into a product of factors.

Quite often, real logarithms are used with bases 2 (binary), Euler's number e ≈ 2.718 (natural logarithm) and 10 (decimal).

On at this stage it is advisable to consider logarithm samples log 7 2 , ln 5, lg0.0001.

And the entries lg(-3), log -3 3.2, log -1 -4.3 do not make sense, since in the first of them a negative number is placed under the logarithm sign, in the second - negative number in the base, and in the third - both a negative number under the logarithm sign and a unit in the base.

Conditions for determining the logarithm.

It is worth considering separately the conditions a > 0, a ≠ 1, b > 0.under which we get definition of logarithm. Let's consider why these restrictions were taken. An equality of the form x = log α will help us with this b, called the basic logarithmic identity, which directly follows from the definition of logarithm given above.

Let's take the condition a≠1. Since one to any power is equal to one, then the equality x=log α b can only exist when b=1, but log 1 1 will be any real number. To eliminate this ambiguity, we take a≠1.

Let us prove the necessity of the condition a>0. At a=0 according to the formulation of the logarithm can exist only when b=0. And accordingly then log 0 0 can be any non-zero real number, since zero to any non-zero power is zero. This ambiguity can be eliminated by the condition a≠0. And when a<0 we would have to reject the analysis of rational and irrational values ​​of the logarithm, since a degree with a rational and irrational exponent is defined only for non-negative bases. It is for this reason that the condition is stipulated a>0.

AND last condition b>0 follows from inequality a>0, since x=log α b, and the value of the degree with a positive base a always positive.

Features of logarithms.

Logarithms characterized by distinctive features, which led to their widespread use to significantly facilitate painstaking calculations. When moving “into the world of logarithms,” multiplication is transformed into a much easier addition, division is transformed into subtraction, and exponentiation and root extraction are transformed, respectively, into multiplication and division by the exponent.

Formulation of logarithms and table of their values ​​(for trigonometric functions) was first published in 1614 by the Scottish mathematician John Napier. Logarithmic tables, enlarged and detailed by other scientists, were widely used in scientific and engineering computing, and remained relevant until electronic calculators and computers began to be used.

Logarithms, like any numbers, can be added, subtracted and transformed in every way. But since logarithms are not exactly ordinary numbers, there are rules here, which are called main properties.

You definitely need to know these rules - without them, not a single serious logarithmic problem can be solved. In addition, there are very few of them - you can learn everything in one day. So let's get started.

Adding and subtracting logarithms

Consider two logarithms with the same bases: log a x and log a y. Then they can be added and subtracted, and:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

So, the sum of logarithms is equal to the logarithm of the product, and the difference is equal to the logarithm of the quotient. Please note: the key point here is identical grounds. If the reasons are different, these rules do not work!

These formulas will help you calculate logarithmic expression even when its individual parts are not counted (see lesson “What is a logarithm”). Take a look at the examples and see:

Log 6 4 + log 6 9.

Since logarithms have the same bases, we use the sum formula:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Task. Find the value of the expression: log 2 48 − log 2 3.

The bases are the same, we use the difference formula:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Task. Find the value of the expression: log 3 135 − log 3 5.

Again the bases are the same, so we have:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

As you can see, the original expressions are made up of “bad” logarithms, which are not calculated separately. But after the transformations, completely normal numbers are obtained. Many are built on this fact tests. Yes, test-like expressions are offered in all seriousness (sometimes with virtually no changes) on the Unified State Examination.

Extracting the exponent from the logarithm

Now let's complicate the task a little. What if the base or argument of a logarithm is a power? Then the exponent of this degree can be taken out of the sign of the logarithm according to the following rules:

It's easy to notice that last rule follows the first two. But it’s better to remember it anyway - in some cases it will significantly reduce the amount of calculations.

Of course, all these rules make sense if the ODZ of the logarithm is observed: a > 0, a ≠ 1, x> 0. And one more thing: learn to apply all formulas not only from left to right, but also vice versa, i.e. You can enter the numbers before the logarithm sign into the logarithm itself. This is what is most often required.

Task. Find the value of the expression: log 7 49 6 .

Let's get rid of the degree in the argument using the first formula:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Task. Find the meaning of the expression:

[Caption for the picture]

Note that the denominator contains a logarithm, the base and argument of which are exact powers: 16 = 2 4 ; 49 = 7 2. We have:

[Caption for the picture]

I think to last example clarification required. Where have logarithms gone? Until the very last moment we work only with the denominator. We presented the base and argument of the logarithm standing there in the form of powers and took out the exponents - we got a “three-story” fraction.

Now let's look at the main fraction. The numerator and denominator contain the same number: log 2 7. Since log 2 7 ≠ 0, we can reduce the fraction - 2/4 will remain in the denominator. According to the rules of arithmetic, the four can be transferred to the numerator, which is what was done. The result was the answer: 2.

Transition to a new foundation

Speaking about the rules for adding and subtracting logarithms, I specifically emphasized that they only work with the same bases. What if the reasons are different? What if they are not exact powers of the same number?

Formulas for transition to a new foundation come to the rescue. Let us formulate them in the form of a theorem:

Let the logarithm log be given a x. Then for any number c such that c> 0 and c≠ 1, the equality is true:

[Caption for the picture]

In particular, if we put c = x, we get:

[Caption for the picture]

From the second formula it follows that the base and argument of the logarithm can be swapped, but in this case the entire expression is “turned over”, i.e. the logarithm appears in the denominator.

These formulas are rarely found in ordinary numerical expressions. It is possible to evaluate how convenient they are only when solving logarithmic equations and inequalities.

However, there are problems that cannot be solved at all except by moving to a new foundation. Let's look at a couple of these:

Task. Find the value of the expression: log 5 16 log 2 25.

Note that the arguments of both logarithms contain exact powers. Let's take out the indicators: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Now let’s “reverse” the second logarithm:

[Caption for the picture]

Since the product does not change when rearranging factors, we calmly multiplied four and two, and then dealt with logarithms.

Task. Find the value of the expression: log 9 100 lg 3.

The base and argument of the first logarithm are exact powers. Let's write this down and get rid of the indicators:

[Caption for the picture]

Now let's get rid of the decimal logarithm by moving to a new base:

[Caption for the picture]

Basic logarithmic identity

Often in the solution process it is necessary to represent a number as a logarithm to a given base. In this case, the following formulas will help us:

In the first case, the number n becomes an indicator of the degree standing in the argument. Number n can be absolutely anything, because it’s just a logarithm value.

The second formula is actually a paraphrased definition. That’s what it’s called: the basic logarithmic identity.

In fact, what will happen if the number b raise to such a power that the number b to this power gives the number a? That's right: you get this same number a. Read this paragraph carefully again - many people get stuck on it.

Like formulas for moving to a new base, the basic logarithmic identity is sometimes the only possible solution.

Task. Find the meaning of the expression:

[Caption for the picture]

Note that log 25 64 = log 5 8 - we simply took the square from the base and argument of the logarithm. Considering the rules for multiplying powers with the same basis, we get:

[Caption for the picture]

If anyone doesn't know, this was a real task from the Unified State Exam :)

Logarithmic unit and logarithmic zero

In conclusion, I will give two identities that can hardly be called properties - rather, they are consequences of the definition of the logarithm. They constantly appear in problems and, surprisingly, create problems even for “advanced” students.

  1. log a a= 1 is a logarithmic unit. Remember once and for all: logarithm to any base a from this very base is equal to one.
  2. log a 1 = 0 is logarithmic zero. Base a can be anything, but if the argument contains one, the logarithm is equal to zero! Because a 0 = 1 is a direct consequence of the definition.

That's all the properties. Be sure to practice putting them into practice! Download the cheat sheet at the beginning of the lesson, print it out, and solve the problems.

So, we have powers of two. If you take the number from the bottom line, you can easily find the power to which you will have to raise two to get this number. For example, to get 16, you need to raise two to the fourth power. And to get 64, you need to raise two to the sixth power. This can be seen from the table.

And now - actually, the definition of the logarithm:

The base a logarithm of x is the power to which a must be raised to get x.

Designation: log a x = b, where a is the base, x is the argument, b is what the logarithm is actually equal to.

For example, 2 3 = 8 ⇒ log 2 8 = 3 (the base 2 logarithm of 8 is three because 2 3 = 8). With the same success log 2 64 = 6, since 2 6 = 64.

The operation of finding the logarithm of a number to a given base is called logarithmization. So, let's add a new line to our table:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1log 2 4 = 2 log 2 8 = 3log 2 16 = 4 log 2 32 = 5log 2 64 = 6

Unfortunately, not all logarithms are calculated so easily. For example, try finding log 2 5 . The number 5 is not in the table, but logic dictates that the logarithm will lie somewhere on the segment. Because 2 2< 5 < 2 3 , а чем more degree twos, the larger the number.

Such numbers are called irrational: the numbers after the decimal point can be written ad infinitum, and they are never repeated. If the logarithm turns out to be irrational, it is better to leave it that way: log 2 5, log 3 8, log 5 100.

It is important to understand that a logarithm is an expression with two variables (the base and the argument). At first, many people confuse where the basis is and where the argument is. To avoid annoying misunderstandings, just look at the picture:

Before us is nothing more than the definition of a logarithm. Remember: logarithm is a power, into which the base must be built in order to obtain an argument. It is the base that is raised to a power - it is highlighted in red in the picture. It turns out that the base is always at the bottom! I tell my students this wonderful rule at the very first lesson - and no confusion arises.

We've figured out the definition - all that remains is to learn how to count logarithms, i.e. get rid of the "log" sign. To begin with, we note that two important facts follow from the definition:

  1. The argument and the base must always be greater than zero. This follows from the definition of a degree by a rational exponent, to which the definition of a logarithm is reduced.
  2. The base must be different from one, since one to any degree still remains one. Because of this, the question “to what power must one be raised to get two” is meaningless. There is no such degree!

Such restrictions are called range of acceptable values(ODZ). It turns out that the ODZ of the logarithm looks like this: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Note that there are no restrictions on the number b (the value of the logarithm). For example, the logarithm may well be negative: log 2 0.5 = −1, because 0.5 = 2 −1.

However, now we are considering only numerical expressions, where it is not required to know the VA of the logarithm. All restrictions have already been taken into account by the authors of the tasks. But when they go logarithmic equations and inequalities, DHS requirements will become mandatory. After all, the basis and argument may contain very strong constructions that do not necessarily correspond to the above restrictions.

Now let's consider general scheme calculating logarithms. It consists of three steps:

  1. Express the base a and the argument x as a power with the minimum possible base greater than one. Along the way, it’s better to get rid of decimals;
  2. Solve the equation for variable b: x = a b ;
  3. The resulting number b will be the answer.

That's it! If the logarithm turns out to be irrational, this will be visible already in the first step. The requirement that the base be greater than one is very important: this reduces the likelihood of error and greatly simplifies the calculations. Same with decimals: if you immediately convert them to regular ones, there will be many fewer errors.

Let's see how this scheme works using specific examples:

Task. Calculate the logarithm: log 5 25

  1. Let's imagine the base and argument as a power of five: 5 = 5 1 ; 25 = 5 2 ;
  2. Let's create and solve the equation:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. We received the answer: 2.

Task. Calculate the logarithm:

Task. Calculate the logarithm: log 4 64

  1. Let's imagine the base and argument as a power of two: 4 = 2 2 ; 64 = 2 6 ;
  2. Let's create and solve the equation:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. We received the answer: 3.

Task. Calculate the logarithm: log 16 1

  1. Let's imagine the base and argument as a power of two: 16 = 2 4 ; 1 = 2 0 ;
  2. Let's create and solve the equation:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. We received the answer: 0.

Task. Calculate the logarithm: log 7 14

  1. Let's imagine the base and argument as a power of seven: 7 = 7 1 ; 14 cannot be represented as a power of seven, since 7 1< 14 < 7 2 ;
  2. From the previous paragraph it follows that the logarithm does not count;
  3. The answer is no change: log 7 14.

A small note on the last example. How can you be sure that a number is not an exact power of another number? It’s very simple - just factor it into prime factors. If the expansion has at least two different factors, the number is not an exact power.

Task. Find out whether the numbers are exact powers: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - exact degree, because there is only one multiplier;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - is not an exact power, since there are two factors: 3 and 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - exact degree;
35 = 7 · 5 - again not an exact power;
14 = 7 · 2 - again not an exact degree;

Note also that the prime numbers themselves are always exact powers of themselves.

Decimal logarithm

Some logarithms are so common that they have special name and designation.

The decimal logarithm of x is the logarithm to base 10, i.e. The power to which the number 10 must be raised to obtain the number x. Designation: lg x.

For example, log 10 = 1; lg 100 = 2; lg 1000 = 3 - etc.

From now on, when a phrase like “Find lg 0.01” appears in a textbook, know that this is not a typo. This is a decimal logarithm. However, if you are unfamiliar with this notation, you can always rewrite it:
log x = log 10 x

Everything that is true for ordinary logarithms is also true for decimal logarithms.

Natural logarithm

There is another logarithm that has its own designation. In some ways, it's even more important than decimal. It's about about the natural logarithm.

The natural logarithm of x is the logarithm to base e, i.e. the power to which the number e must be raised to obtain the number x. Designation: ln x .

Many will ask: what is the number e? This is an irrational number, its exact value impossible to find and record. I will give only the first figures:
e = 2.718281828459...

We will not go into detail about what this number is and why it is needed. Just remember that e is the base of the natural logarithm:
ln x = log e x

Thus ln e = 1 ; ln e 2 = 2; ln e 16 = 16 - etc. On the other hand, ln 2 is an irrational number. In general, the natural logarithm of any rational number is irrational. Except, of course, for one: ln 1 = 0.

For natural logarithms, all the rules that are true for ordinary logarithms are valid.