Образование траектории полета пули. Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории. Начальная скорость пули

Для успешного освоения техники стрельбы из любого стрелкового оружия, необходимо хорошо усвоить знания законов баллистики и ряда основных связанных с ней понятий. Без этого не обходился и не обходится ни один снайпер, без изучения этой дисциплины курс обучения снайпингу малополезен.

Баллистика - это наука о движении пуль и снарядов, выпущенных из стрелкового оружия при выстреле. Баллистика подразделяется на внешнюю и внутреннюю .

Внутренняя баллистика

Внутреняя баллистика изучает процессы, происходящие в канале ствола оружия во время выстрела, движение пули по каналу ствола и сопровождающих это явление -аэро и -термодинамических зависимостей как в канале ствола, так и за его пределами до окончания последействия пороховых газов.

Кроме того, внутренняя баллистика изучает вопросы наиболее рационального использования энергии порохового заряда во время выстрела с тем, чтобы пуле заданного калибра и веса сообщить оптимальную начальную скорость при соблюдении прочности ствола оружия: это дает исходные данные как для внешней баллистики, так и для проектирования оружия.

Выстрел

Выстрел - это выбрасывание пули из канала ствола оружия под воздействием энергии газов, образующихся при сгорании порохового заряда патрона.

Динамика выстрела . При ударе бойка по капсюлю боевого патрона, досланного в патронник, ударный состав капсюля взрывается, при этом, образуется пламя, которое через затравочные отверстия в дне гильзы передается пороховому заряду и воспламеняет его. При одномоментном сгорании боевого (порохового) заряда, образуется большое количество нагретых пороховых газов, которые создают высокое давление на дно пули, дно и стенки гильзы, а также на стенки канала ствола и затвор.

Под сильным давлением пороховых газов на дно пули, она отделяется от гильзы и врезается в каналы (нарезы) ствола оружия и, вращаясь по ним с постоянно нарастающей скоростью, выбрасывается наружу по направлению оси канала ствола.

В свою очередь, давление газов на дно гильзы вызывает движение оружия (ствола оружия) назад: это явление называют отдачей . Чем больше калибр оружия и, соответственно, боеприпаса (патрона) под него - тем больше сила отдачи (смотрите ниже).

При выстреле из автоматического оружия, принцип действия которого основан на использовании отводимых через отверстие в стенке ствола энергии пороховых газов, как например в СВД, часть пороховых газов после прохождения в газовую камеру ударяет в поршень и отбрасывает толкатель с затвором назад.

Выстрел происходит в сверхкороткий промежуток времени: от 0,001 до 0,06 секунды и делится на четыре последовательных периода:

  • предварительный
  • первый (основной)
  • второй
  • третий (период последействия пороховых газов)

Предварительный период выстрела. Длится с момента возгорания порохового заряда патрона до момента полного врезания пули в нарезы канала ствола. На протяжении этого периода, в канале ствола создается давление газов достаточное для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы канала ствола. Такой тип давления называется давлением форсирования , которое достигает значения 250 - 600 кг/см² в зависимости от веса пули, твердости ее оболочки, калибра, типа ствола, количества и типа нарезов.

Первый (основной) период выстрела. Длится от момента начала движения пули по каналу ствола оружия до момента полного сгорания порохового заряда патрона. В этот период, горение порохового заряда происходит в быстро изменяющихся объемах: в начале периода, когда скорость движения пули по каналу ствола еще относительно невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины - 2900 кг/см² для 7,62 мм винтовочного патрона: это давление называется максимальным давлением . Оно создается у стрелкового оружия при прохождении пулей 4 - 6 см пути.

Затем, вследствие очень быстрого увеличения скорости движение пули, объем запульного пространства увеличивается быстрее притока новых газов, вследствие чего давление начинает падать: к концу периода оно равно приблизительно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает приблизительно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период выстрела. Длится с момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода, приток пороховых газов прекращается, но сильно нагретые, сжатые газы расширяются и, оказывая давление на пулю - значительно увеличивают скорость ее движения. Спад давления во втором периоде происходит достаточно быстро и дульное давление у дульного среза ствола оружия составляет у различных образцов оружия 300 - 1000 кг/см². Дульная скорость , то есть скорость пули в момент вылета ее из канала ствола несколько меньше начальной скорости.

Третий период выстрела (период последействия пороховых газов). Длится от момента вылета пули из канала ствола оружия до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают действовать на пулю и сообщают ей дополнительную скорость. Максимальной скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола оружия. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет полностью уравновешено сопротивлением воздуха.

Начальная скорость пули

Начальная скорость пули - это скорость движения пули у дульного среза ствола оружия. За значение начальной скорости пули принимается условная скорость которая меньше максимальной, но больше дульной, что определяется опытным путем и соответствующими расчетами.

Этот параметр является одной из важнейших характеристик боевых свойств оружия. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет. Величина начальной скорости пули зависит от:

  • веса пули
  • длины ствола
  • температуры, веса и влажности порохового заряда
  • размеров и формы зерен пороха
  • плотности заряжания

Вес пули. Чем он меньше, тем больше ее начальная скорость.

Длина ствола. Чем она больше, тем больший промежуток времени пороховые газы действуют на пулю, соответственно, тем больше ее начальная скорость.

Температура порохового заряда. С понижением температуры, начальная скорость пули уменьшается, с повышением - увеличивается в связи с увеличением скорости горения пороха и значением давления. При нормальных погодных условиях, температура порохового заряда примерно равна температуре воздуха.

Вес порохового заряда. Чем больше вес порохового заряда патрона, тем большее воличество пороховых газов, воздействующих на пулю, тем большее давление в канале ствола и, соответственно - скорость полета пули.

Влажность порохового заряда. При ее повышении, уменьшается скорость горения пороха, соответственно, скорость пули снижается.

Размеры и форма зерен пороха. Зерна пороха различных размеров и формы имеют разную скорость горения, а это оказывает существенное влияние на начальную скорость пули. Оптимальный вариант подбирается на стадии разработки оружия и при его последующих испытаниях.

Плотность заряжания. Это соотношение веса порохового заряда к объему гильзы патрона при вставленной пуле: это пространство называется камерой сгорания заряда . При слишком глубокой посадке пули в гильзу патрона значительно увеличивается плотность заряжания: при выстреле, это может привести к разрыву ствола оружия вследствие резкого скачка давления внутри него, потому такие патроны нельзя использовать для стрельбы. Чем больше плотность заряжания - тем меньше начальная скорость пули, чем меньше плотность заряжания - тем больше начальная скорость пули.

Отдача

Отдача - это движение оружия назад в момент выстрела. Ощущается в виде толчка в плечо, руку, грунт или комбинации этих ощущений. Действие отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кг/м и воспринимается стрелком безболезненно.

Сила отдачи и сила сопротивления отдаче (упор приклада) расположены не на одной прямой: они направлены в противоположные стороны и образуют пару сил, под воздействием которой дульная часть ствола оружия отклоняется кверху. Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил. Кроме того, при выстреле ствол оружия вибрирует, то есть совершает колебательные движения. В результате вибрации, дульная часть ствола в момент вылета пули может также отклоняться от первоначального положения в любую сторону (вверх, вниз, влево, вправо).

Следует всегда помнить о том, что величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнения оружия, использования нестандартных патронов.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола: этот угол называется углом вылета .

Угол вылета считается положительным, если ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным - когда ниже. Влияние угла вылета на стрельбу устраняется при приведении его к нормальному бою. Но при нарушении правил ухода за оружием и его сбережением, правил прикладки оружия, использовании упора, изменяется величина угла вылета и бой оружия. С целью уменьшения вредного влияния отдачи на результаты стрельбы, применяются компенсаторы отдачи, находящиеся на дульной части ствола оружия либо съемные, крепящиеся на него.

Внешняя баллистика

Внешняя баллистика изучает процессы и явления сопровождающие движение пули, возникающие после того, как на нее прекращается воздействие пороховых газов. Основной задачей этой поддисциплины является изучение закономерностей полета пули и изучение свойств траектории ее полета.

Также, эта дисциплина дает данные для выработки правил стрельбы, составления таблиц стрельбы и расчета шкал прицелов оружия. Выводы из внешней баллистики издавна широко используются в бою при выборе прицела и точки прицеливания в зависимости от дальности стрельбы, скорости и направления ветра, температуры воздуха и других условий стрельбы.

Это кривая линия, описываемая центром тяжести пули в процессе полета.

Траектория полета пули, полет пули в пространстве

При полете в пространстве, на пулю воздействуют две силы: сила тяжести и сила сопротивления воздуха .

Сила тяжести заставляет пулю постепенно горизонтально снижаться по направлению к плоскости земли, а сила сопротивления воздуха перманентно (непрерывно) замедляет полет пули и стремится опрокинуть ее: как результат - скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и потому на движение в этой среде затрачивается некоторая часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными факторами:

  • трением воздуха
  • завихрениями
  • баллистической волной

Форма, свойства и типы траектории

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения, высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до определенного предела, по достижении которого высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности . Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Навесная траектория - это траектория, получаемая при углах возвышения больших угла наибольшей дальности.

Настильная траектория - траектория, получаемая при углах возвышения меньших угла наибольшей дальности.

Сопряженная траектория - траектория, имеющая одинаковую горизонтальную дальность при разных углах возвышения.

При стрельбе из оружия одной и той же модели (при одинаковых начальных скоростях пули), можно получить две траектории полета с одинаковой горизонтальной дальностью: навесную и настильную.

При стрельбе из стрелкового оружия используются только настильные траектории . Чем настильнее траектория, тем на большей дистанции может быть поражена цель с одной установкой прицела и тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела: в этом заключается практическое значение траектории.

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения : траектория тем более настильна, чем меньше угол падения.

Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Точка вылета - центр дульного среза ствола оружия. Точка вылета является началом траектории.

Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.

Линия возвышения - прямая линия, которая является продолжением оси канала ствола наведенного оружия.

Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.

Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения) .

Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.

Угол бросания

Угол вылета - угол, заключенный между линией возвышения и линией бросания.

Точка падения - точка пересечения траектории с горизонтом оружия.

Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.

Полная горизонтальная дальность - расстояние от точки вылета до точки падения.

Окончательная скорост ь - скорость пули в точке падения.

Полное время полета - время движения пули от точки вылета до точки падения.

Вершина траектории - наивысшая точка траектории над горизонтом оружия.

Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.

Восходящая ветвь траектории - часть траектории от точки вылета до вершины.

Нисходящая ветвь траектории - часть траектории от вершины до точки падения.

Точка прицеливания (точка наводки) - точка на цели (вне ее), в которую наводится оружие.

Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела на уровне с ее краями и вершины мушки в точку прицеливания.

Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.

Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.

Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.

Линия цели - прямая, соединяющая точку вылета с целью.

Наклонная дальность - расстояние от точки вылета до цели по линии цели.

Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).

Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Прямой выстрел, прикрытое пространство, поражаемое пространство, мертвое пространство

Это выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении.

Дальность прямого выстрела зависит от двух факторов: высоты цели и настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела.

Также, дальность прямого выстрела может определяться по стрелковым таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

В пределах дальности прямого выстрела, в напряженные моменты боя, стрельба может вестись без перестановки значений прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Практическое применение

Высота установки оптических прицелов над каналом ствола оружия в среднем составляет 7 см. На дистанции 200 метров и прицеле "2" наибольшие превышения траектории, 5 см на дистанции 100 метров и 4 см - на 150 метров практически совпадают с линией прицеливания - оптической осью оптического прицела . Высота линии прицеливания на середине дистанции 200 метров составляет 3,5 см. Происходит практическое совпадение траектории пули и линии прицеливания. Разницей в 1,5 см можно пренебречь. На дистанции 150 метров высота траектории 4 см, а высота оптической оси прицела над горизонтом оружия составляет 17-18 мм; разница по высоте составляет 3 см, что также не играет практической роли.

На дистанции 80 метров от стрелка высота траектории пули будет 3 см, а высота прицельной линии - 5 см, та же самая разница в 2 см не имеет решающего значения. Пуля ляжет всего на 2 см ниже точки прицеливания.

Вертикальный разброс пуль в 2 см настолько мал, что он принципиального значения не имеет. Поэтому, стреляя с делением "2" оптического прицела, начиная с 80 метров дистанции и до 200 метров, цельтесь противнику в переносицу - вы туда и попадете ±2/3 см выше ниже на всей этой дистанции.

На дистанции 200 метров пуля попадет строго в точку прицеливания. И даже далее, на дистанции до 250 метров, цельтесь с тем же прицелом "2" противнику в "макушку", в верхний срез шапки - пуля после 200 метров дистанции резко понижается. На 250 метров, целясь таким образом, вы попадете ниже на 11 см - в лоб или переносицу.

Вышеописанный способ ведения огня может пригодиться в уличных боях, когда относительно открытые для обзора расстояния в городе составляют примерно 150-250 метров.

Поражаемое пространство

Поражаемое пространство - это расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели.

При стрельбе по целям, находящимся на расстоянии большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Глубина поражаемого пространства зависит от:

  • высоты цели (чем больше высота, тем большее значение)
  • настильности траектории (чем настильнее траектория, тем большее значение)
  • угла наклона местности (на переднем скате она уменьшается, на обратном скате - увеличивается)

Глубину поражаемого пространства можно определить по таблицам превышения траектории над линией прицеливания путем сравнения превышения нисходящей ветви траектории на соответствующую дальность стрельбы с высотой цели, а в том случае, если высота цели меньше 1/3 высоты траектории - то по форме тысячной.

Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с линией прицеливания.

Прикрытое, поражаемое и мертвое пространство

Прикрытое пространство - это пространство за укрытием не пробиваемым пулей, от его гребня и до точки встречи.

Чем больше высота укрытия и чем настильнее траектория - тем больше прикрытое пространство. Глубину прикрытого пространства можно определить по таблицам превышения траектории над линией прицеливания: путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальность стрельбы.

Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Мертвое пространство - это часть прикрытого пространства, на котором цель не может быть поражена при данной траектории.

Чем больше высота укрытия, меньше высота цели и настильнее траектория - тем больше мертвое пространство.

П оражаемое пространство - это часть прикрытого пространства, на которой цель может быть поражена. Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины поражаемого пространства, прикрытого пространства, мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Это достаточно сложный процесс. Вследствие одновременного воздействия на пулю вращательного движения, придающего ей устойчивое положение в полете и сопротивления воздуха, стремящегося опрокинуть пулю головной частью назад, ось пули отклоняется от направления полета в сторону вращения.

В результате этого, пуля встречает большее сопротивление воздуха одной из своих сторон, а поэтому отклоняется от плоскости стрельбы все больше и больше в сторону вращения. Такое отклонение вращающейся пули в сторону от плоскости стрельбы называется деривацией .

Возрастает непропорционально расстоянию полета пули, вследствие чего последняя отклоняется все больше и больше в сторону от намеченной цели и ее траектория представляет собой кривую линию. Направление отклонения пули зависит от направления нарезов ствола оружия: при левосторонней нарезке ствола деривация уводит пулю в левую сторону, при правосторонней - в правую.

На дистанциях стрельбы до 300 метров включительно, деривация не имеет практического значения.

Дистанция, м Деривация, см Тысячные (горизонтальная поправка прицела) Точка прицеливания без поправок (винтовка СВД)
100 0 0 центр прицела
200 1 0 то же
300 2 0,1 то же
400 4 0,1 левый (от стрелка) глаз противника
500 7 0,1 в левую сторону головы между глазом и ухом
600 12 0,2 левый обрез головы противника
700 19 0,2 над центром погона на плече противника
800 29 0,3 без поправок точная стрельба не производится
900 43 0,5 то же
1000 62 0,6 то же

Рис. 1. Артиллерия линейного корабля "Марат"

Баллистика (от греч. βάλλειν - бросать) - наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

Основные понятия

Рис. 2. Элементы стрельбы корабельной артиллерии

Основной задачей стрельбы является попадание в цель. Для этого орудию необходимо придать строго определённое положение в вертикальной и горизонтальной плоскостях. Если навести орудие так, чтобы ось канала ствола была направлена на цель, то в цель мы не попадём, так как траектория полёта снаряда будет всегда проходить ниже направления оси канала ствола, снаряд до цели не долетит. Для формализации терминологического аппарата рассматриваемой тематики, введём основные определения, используемые при рассмотрении теории артиллерийской стрельбы.
Точкой вылета называется центр дульного среза орудия.

Точкой падения называется точка пересечения траектории с горизонтом орудия.

Горизонтом орудия называется горизонтальная плоскость, проходящая через точку вылета.

Линией возвышения называется продолжение оси канала ствола наведённого орудия.

Линией бросания ОВ называется продолжение оси канала ствола в момент выстрела. В момент выстрела орудие вздрагивает, вследствие чего снаряд бросается не по линии возвышения ОА, а по линии бросания ОВ (см. рис. 2).

Линией цели ОЦ называется линия, соединяющая орудие с целью (см. рис. 2).

Линией прицеливания (визирования) называется линия, идущая от глаза наводчика через оптическую ось прицела в точку наводки. При стрельбе прямой наводкой, когда линия прицеливания направлена в цель, линия прицеливания совпадает с линией цели.

Линией падения называется касательная к траектории в точке падения.

Рис. 3. Стрельба по вышележащей цели

Рис. 4. Стрельба по нижележащей цели

Углом возвышения (греческая фи) называется угол между линией возвышения и горизонтом орудия. Если ось канала ствола направлена ниже горизонта, то этот угол называется углом снижения (см. рис. 2).

Дальность стрельбы из орудия зависит от угла возвышения и условий стрельбы. Следовательно, чтобы добросить снаряд до цели, надо орудию придать такой угол возвышения, при котором дальность стрельбы будет соответствовать расстоянию до цели. В таблицах стрельбы указано какие углы прицеливания нужно придать орудию, чтобы снаряд полетел на нужную дальность.

Углом бросания (греческая тета ноль) называется угол между линией бросания и горизонтом орудия (см. рис. 2).

Углом вылета (греческая гамма) называется угол между линией бросания и линией возвышения. В морской артиллерии угол вылета имеет малую величину и его иногда в расчёт не принимают, полагая, что снаряд бросается под углом возвышения (см. рис. 2).

Углом прицеливания (греческая альфа) называется угол между линией возвышения и линией прицеливания (см. рис. 2).

Углом места цели (греческая эпсилон) называется угол между линией цели и горизонтом орудия. При стрельбе корабля по морским целям угол места цели равен нулю, так как линия цели направлена по горизонту орудия (см. рис. 2).

Углом падения (греческая тета с латинской буквой с) называется угол между линией цели и линией падения (см. рис. 2).

Углом встречи (греческая мю) называется угол между линией падения и касательной к поверхности цели в точке встречи (см. рис. 2).
От значения величины этого угла сильно зависит стойкость брони корабля, по которому ведётся огонь, к пробитию снарядами. Очевидно, чем ближе этот угол к 90 градусам, тем вероятность пробития выше, верно и обратное.
Плоскостью стрельбы называется вертикальная плоскость, проходящая через линию возвышения. При стрельбе корабля по морским целям линия прицеливания направлена по горизонту, в этом случае угол возвышения равен углу прицеливания. При стрельбе корабля по береговым и воздушным целям угол возвышения равен сумме угла прицеливания и угла места цели (см. рис. 3). При стрельбе береговой батареи по морским целям угол возвышения равен разности угла прицеливания и угла места цели (см. рис. 4). Таким образом, величина угла возвышения равна алгебраической сумме угла прицеливания и угла места цели. Если цель выше горизонта, угол места цели имеет знак "+", если цель ниже горизонта, угол места цели имеет знак "-".

Влияние сопротивления воздуха на траекторию полёта снаряда

Рис. 5. Изменение траектории полёта снаряда от сопротивления воздуха

Траектория полёта снаряда в безвоздушном пространстве представляет собой симметричную кривую линию, называемую в математике параболой. Восходящая ветвь совпадает по форме с нисходящей ветвью и, следовательно, угол падения равен углу возвышения.

При полёте в воздухе снаряд расходует часть скорости на преодоление сопротивления воздуха. Таким образом, на снаряд в полёте действуют две силы - сила тяжести и сила сопротивления воздуха, которая уменьшает скорость и дальность полёта снаряда, как проиллюстрировано на рис. 5. Величина силы сопротивления воздуха зависит от формы снаряда, его размеров, скорости полёта и от плотности воздуха. Чем длиннее и заострённее головная часть снаряда, тем сопротивление воздуха меньше. Форма снаряда особенно сказывается при скоростях полёта, превышающих 330 метров в секунду (то есть при сверхзвуковых скоростях).

Рис. 6. Недальнобойный и дальнобойный снаряды

На рис. 6 слева представлен недальнобойный снаряд старого образца и более продолговатый, заострённый дальнобойный снаряд справа. Также видно, что у дальнобойного снаряда в донной части делается коническое сужение. Дело в том, что сзади снаряда образуется разреженное пространство и завихрения, которые значительно увеличивают сопротивление воздуха. Сужением дна снаряда достигается уменьшение величины сопротивления воздуха, возникающего вследствие разреженности и завихрений за снарядом.

Сила сопротивления воздуха пропорциональна скорости его полёта, но не прямо пропорциональна. Зависимость формализуется более сложно. Вследствие действия сопротивления воздуха у траектории полёта снаряда восходящая ветвь длиннее и отложе нисходящей. Угол падения больше угла возвышения.

Помимо уменьшения дальности полёта снаряда и изменения формы траектории, сила сопротивления воздуха стремится опрокинуть снаряд, как это видно из рис. 7.

Рис. 7. Силы, действующие на снаряд в полёте

Следовательно, невращающийся продолговатый снаряд под действием сопротивления воздуха будет переворачиваться. При этом снаряд может попасть в цель в любом положении, в том числе боком или дном, как показано на рис. 8.

Рис. 8. Вращение снаряда в полёте под действием силы сопротивления воздуха

Чтобы снаряд в полёте не переворачивался, ему придают вращательное движение с помощью нарезов в канале ствола.

Если же рассмотреть воздействие воздуха на вращающийся снаряд, то можно увидеть, что это приводит к боковому отклонению траектории от плоскости стрельбы, как изображено на рис. 9.

Рис. 9. Деривация

Деривацией называется отклонение снаряда от плоскости стрельбы вследствие его вращения. Если нарезы вьются слева вверх направо, то снаряд отклоняется вправо.

Влияние угла возвышения и начальной скорости снаряда на дальность его полёта

Дальность полёта снаряда зависит от углов возвышения, под которыми он бросается. Увеличение дальности полёта с увеличением угла возвышения происходит только до некоторого предела (40-50 градусов), при дальнейшем увеличении угла возвышения, дальность начинает уменьшаться.

Углом предельной дальности называется угол возвышения, при котором получается наибольшая дальность стрельбы при данной начальной скорости и снаряде. При стрельбе в безвоздушном пространстве наибольшая дальность полёта снаряда получается при угле возвышения 45 градусов. При стрельбе в воздухе величина угла предельной дальности отличается от этого значения и у разных орудий бывает неодинаковой (обычно меньше 45 градусов). Для сверхдальнобойной артиллерии, когда снаряд значительную часть пути летит на большой высоте в сильно разреженном воздухе, угол предельной дальности бывает более 45 градусов.

Для орудия данного образца и при стрельбе определенным типом боеприпаса каждому углу возвышения соответствует строго определенная дальность полёта снаряда. Следовательно, чтобы забросить снаряд на нужное нам расстояние, необходимо орудию придать угол возвышения, соответствующий этому расстоянию.

Траектории снарядов, выпущенных при углах возвышения меньших, чем угол предельной дальности, называются настильными траекториями .

Траектории снарядов, выпущенных при углах возвышения больших, чем угол предельной дальности, называются "навесными траекториями" .

Рассеивание снарядов

Рис. 10. Рассеивание снарядов

Если из одного и того же орудия, одинаковым боеприпасом, при одном и том же направлении ствола орудия, при одинаковых, на первый взгляд, условиях произвести несколько выстрелов, то снаряды не попадут в одну точку, а полетят по разным траекториям, образуя пучок траекторий, как проиллюстрировано на рис. 10. Это явление называется рассеиванием снарядов .

Причиной рассеивания снарядов является невозможность достижения абсолютно одинаковых условий для каждого выстрела. В таблице приведены основные факторы, вызывающие рассеивание снарядов и возможные пути уменьшения этого рассеивания.

Основные группы причин рассеивания Условия, порождающие причины рассеивания Меры борьбы за уменьшение рассеивания
1. Разнообразие начальных скоростей
  • Разнообразие свойств пороха (состав, содержание влаги и растворителя).
  • Разнообразие веса зарядов.
  • Разнообразие температуры зарядов.
  • Разнообразие плотности заряжания.

(размеры и расположение ведущего пояска, досылка снарядов).

  • Разнообразие формы и веса снарядов.
  • Хранение в герметической укупорке. Каждую стрельбу производить зарядами одной партии.
  • Поддержание должной температуры в погребе.
  • Единообразие заряжания.
  • Каждую стрельбу производить снарядами одного весового знака.
2. Разнообразие углов бросания
  • Разнообразие углов возвышения (мёртвые ходы в прицельном устройстве и в механизме вертикального наведения).
  • Разнообразие углов вылета.
  • Разнообразие наводки.
  • Тщательный уход за материальной частью.
  • Хорошая тренировка наводчиков.
3. Разнообразие условий в полёте снаряда

Разнообразие влияния воздушной среды (плотность, ветер).

Площадь, на которую падают снаряды, выпущенные из орудия при одном и том же направлении канала ствола, называется площадью рассеивания .

Середина площади рассеивания называется средней точкой падения .

Воображаемая траектория, проходящая через точку вылета и среднюю точку падения, называется средней траекторией .

Площадь рассеивания имеет форму эллипса, поэтому площадь рассеивания называется эллипсом рассеивания .

Интенсивность, с которой снаряды попадают в различные точки эллипса рассеивания, описывается двумерным Гауссовским (нормальным) законом распределения. Отсюда, если следовать в точности законам теории вероятностей, можно сделать вывод, что эллипс рассеивания является идеализацией. Процент попаданий снарядов внутрь эллипса описывается правилом трёх сигма, а именно, вероятность попадания снарядов в эллипс, величина оси которого равна утроенному квадратному корню из дисперсий соответствующих одномерных Гауссовских законов распределения равна 0.9973.
В силу того, что количество выстрелов из одного орудия, особенно крупного калибра, как уже было указано выше, в силу износа зачастую не превышает и одной тысячи, этой неточностью можно пренебречь и считать, что все снаряды попадают в эллипс рассеивания. Любое сечение пучка траекторий полёта снарядов также представляет собой эллипс. Рассеивание снарядов по дальности всегда больше, чем в боковом направлении и по высоте. Величину срединных отклонений можно найти в основной таблице стрельбы и по ней определить размеры эллипса.

Рис. 11. Стрельба по цели, не имеющей глубины

Поражаемым пространством называется пространство, на протяжении которого траектория проходит через цель.

Согласно рис. 11, поражаемое пространство равно расстоянию по горизонту АС от основания цели до конца траектории, проходящей через вершину цели. Каждый снаряд, упавший вне поражаемого пространства, прошёл либо выше цели, либо упал до неё. Поражаемое пространство ограничивается двумя траекториями - траекторией ОА, проходящей через основание цели, и траекторией ОС, проходящей через верхнюю точку цели.

Рис. 12. Стрельба по цели, имеющей глубину

В случае, если поражаемая цель имеет глубину, величина поражаемого пространства увеличивается на величину глубины цели, как проиллюстрировано на рис. 12. Глубина цели будет зависеть от размеров цели и её положения относительно плоскости стрельбы. Рассмотрим цель, наиболее вероятную для морской артиллерии - судно неприятеля. В таком случае, если цель идёт от нас или на нас, глубина цели равна её длине, когда цель идёт перпендикулярно к плоскости стрельбы, глубина равна ширине цели, как проиллюстрировано на рисунке.

Учитывая тот факт, что эллипс рассеивания имеет большую длину и малую ширину, можно сделать вывод о том, что при малой глубине цели снарядов в цель попадает меньше, чем при большой её глубине. То есть, чем больше глубина цели, тем легче в неё попасть. С увеличением дальности стрельбы поражаемое пространство цели уменьшается, так как увеличивается угол падения.

Прямым выстрелом называется выстрел, при котором всё расстояние от точки вылета до точки падения является поражаемым пространством (см. рис. 13).

Рис. 13. Прямой выстрел

Это получается в том случае, если высота траектории не превышает высоту цели. Дальность прямого выстрела зависит от крутизны траектории и высоты цели.

Дальностью прямого выстрела (или дальностью настильности) называется расстояние, на котором высота траектории не превышает высоты цели.

Наиболее важные труды по баллистике

XVII век

  • - теория Тартальи,
  • 1638 год - труд Галилео Галилея о параболическом движении тела, брошенного под углом.
  • 1641 год - ученик Галилея – Торичелли, развивая параболическую теорию выводит выражение горизонтальной дальности, что легло впоследствии в основу артиллерийских таблиц стрельбы.
  • 1687 год - Исаак Ньютон доказывает влияние сопротивления воздуха на брошенное тело, вводя понятие коэффициента формы тела, а также проводя прямую зависимость сопротивления движения от поперечного сечения (калибра) тела (снаряда).
  • 1690 год - Иван Бернулли математически описывает главную задачу баллистики, решив задачу определения движения шара в сопротивляющейся среде.

XVIII век

  • 1737 год - Биго де Морог (1706-1781) опубликовал теоретическое исследование вопросов внутренней баллистики, что заложило основу рационального конструирования орудий.
  • 1740 год - англичанин Робинс научился определять начальные скорости снаряда и доказал, что парабола полета снаряда имеет двоякую кривизну – ее нисходящая ветвь короче восходящей, дополнительно он опытным путем пришел к выводу, что сопротивление воздуха полету снарядов при начальных скоростях выше 330 м/с возрастает скачкообразно и должно рассчитываться по иной формуле.
  • Вторая половина XVIII века
  • Даниил Бернулли занимается вопросом сопротивления воздуха движению снарядов;
  • математик Леонард Эйлер развивает работы Робинса, труды Эйлера по внутренней и внешней баллистике ложатся в основу создания артиллерийских таблиц стрельбы.
  • Мордашев Ю. Н., Абрамович И. Е., Меккель М. А. Учебник комендора палубной артиллерии. М.: Военное издательство Министерства вооружённых сил союза ССР. 1947. 176 с.

Траекторией называется кривая линия, описываемая центром тяжести пули в полете.
Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными. При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Элементы траектории

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории.
Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.
Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия.
Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.
Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения).
Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.
Угол бросания
Угол вылета - угол, заключенный между линией возвышения и линией бросания.
Точка падения - точка пересечения траектории с горизонтом оружия.
Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.
Полная горизонтальная дальность - расстояние от точки вылета до точки падения.
Окончательная скорость - скорость пули (гранаты) в точке падения.
Полное время полета - время движения пули (гранаты) от точки вылета до точки падения.
Вершина траектории - наивысшая точка траектории над горизонтом оружия.
Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.
Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории.
Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие.
Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания.
Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.
Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.
Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.
Линия цели - прямая, соединяющая точку вылета с целью.
Наклонная дальность - расстояние от точки вылета до цели по линии цели.
Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).
Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

1.1.1. Выстрел. Периоды выстрела и их характеристика.

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходит следующее явление. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании заряда образуется большое количество сильно нагретых газов, создающих высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы – вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу.

При сгорании порохового заряда примерно 25-35 % выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25 % энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40 % энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001 – 0, 06 сек).

При выстреле различают четыре последовательных периода (рис.116):

Предварительный;

Первый или основной;

Третий или период последействия газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течении этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования. Оно достигает 250-500 кг/см в зависимости от устройства нарезов, веса пули и твердости ее оболочки. Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме.

В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество азов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см. пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать. К концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза – дульное давление – составляет у различных образцов оружия 300-900 кг/см. Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости. У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Рис. 116 - Периоды выстрела

Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течении этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/сек, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола . Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

1.1.2. Начальная и максимальная скорость.

Начальная скорость пули (v o)- скорость движения пули у дульного среза ствола.

За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытном путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.

Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет.

Величина начальной скорости пули зависит от:

1)Длины ствола.

2) Веса пули.

3) Веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжания.

1)Чем длиннее ствол, тем больше время на пулю действуют пороховые газы и тем больше начальная скорость пули.

2)При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули. Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули.

3) Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули. Длина ствола и вес порохового заряда увеличивается при конструировании оружия до наиболее рациональных размеров.

С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается.. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полете пули.

В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).

С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули. Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.

Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле (камеры сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать при стрельбе. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.

Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола.

1.1.3 Отдача оружия и угол вылета (рис. 117).

Отдачей называется движение оружия (ствола) назад во время выстрела . Отдача ощущается в виде толчка в плечо, руку или грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад.

Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кгм и воспринимается стреляющим безболезненно.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи - часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Энергия отдачи образуется при стрельбе из такого оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под действием которой дульная часть ствола оружия отклоняется кверху.

Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательные движения – вибрирует.

В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п.

У автоматического оружия, имеющего газоотводное отверстие в стволе, в результате давления газов на переднюю стенку газовой камеры, дульная часть ствола оружия, при выстреле несколько отклоняется в сторону, противоположную расположению газоотводного отверстия.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводит к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола – этот угол называется углом вылета .

Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, и отрицательным, когда она ниже.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при привидении его к нормальному бою.

С целью уменьшения вредного влияния отдачи на результаты стрельбы в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства – компенсаторы. Истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

1.2. Основные термины и понятия теории внешней баллистики

Внешняя баллистика – это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

1.2.1.Траектория полета пули и её элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете (рис.118) .

Пуля (граната) при полете в воздухе подвергается действию двух сил :

Силы тяжести

Силы сопротивления.

Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится ее опрокинуть.

В результате действия этих сил скорость пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами (рис. 119):

1) Трением воздуха.

2) Образованием завихрений.

3) Образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем и этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты).

При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующаяся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления. Действие силы сопротивления на полет пули (гранаты) очень велико. Она вызывает уменьшение скорости и дальности полета пули (гранаты).

Для изучения траектории пули (гранаты) приняты следующие определения (рис.120)

1) Центр дульного среза ствола называется точкой вылета . Точка вылета является началом траектории.

2) Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. Горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

3) Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения .

4) Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

5) Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения . Если этот угол отрицательный, то он называется углом склонения (снижения).

6) Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

7) Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

8) Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

9) Точка пересечения траектории с горизонтом оружия называется точкой падения.

10) Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения.

11) Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

12) Скорость пули (гранаты) в точке падения называется окончательной скоростью.

13) Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета .

14) Наивысшая точка траектория называется вершиной траектории .

15) Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется исходящей ветвью траектории .

16) Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

17) Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

18) Угол, заключенный между линией возвышения и линей прицеливания, называется углом прицеливания.

19)Угол, заключенный между линей прицеливания и горизонтом оружия, называется углом места цели.

20) Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

21) Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линей прицеливания.

23) Расстояние от точки вылета до цели по линии цели называется наклонной дальностью.

24) Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

25) Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи.

Траектория пули в воздухе имеет следующие свойства:

Нисходящая ветвь короче и круче восходящей;

Угол падения больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания - на

нисходящей ветви траектории, а при стрельбе под небольшими углами бросания – в точке

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей.

1.2.2. Форма траектории и ее практическое значение (рис. 121)

Форма траектории зависит от величины угла возвышения . С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения , при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35 градусов.

Рис. 121 Формы траектории

Траектории , получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными .

Траектории , получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными .

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную

Траектории , имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными .

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории.

Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результат стрельбы оказывают ошибки в определении установки прицела).

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения – траектория тем более настильна, чем меньше угол падения.

Настильная траектория влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

1.2.3. Прямой выстрел (рис. 122).

Прямой выстрел – выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении.

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высо-те, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от:

Высоты цели;

Настильности траектории;

Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела. Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

1.2.4. Поражаемое пространство (глубина поражаемого пространства) (рис.123).

При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на

каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Поражаемое пространство (глубина поражаемого пространства) – расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели.

Глубина поражаемого пространства зависит от:

От высоты цели (она будет тем больше, чем выше цель);

От настильности траектории (она будет тем больше, чем настильнее

траектория);

От угла наклона местности (на переднем скате она уменьшается, на обратном скате

увеличивается).

В том случае, когда цель расположена на скате или имеется угол места цели, глубину поражаемого пространства определять вышеуказанными способами, при этом полученный результат необходимо умножить на отношение угла падения к углу встречи.

Величина угла встречи зависит от направления ската:

На встречном скате угол встречи равен сумме углов падения и ската;

На обратном скате – разности этих углов;

При этом величина угла встречи зависит также от угла места цели:

При отрицательном угле места цели угол встречи увеличивается на величину угла места

При положительном угле места цели – уменьшается на его величину.

Поражаемое пространство в некоторой степени компенсирует ошибки, допускаемые при выборе прицела, и позволяет округлять измеренное расстояние до цели в большую сторону.

Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с продолжением линии прицеливания.

1.2.5. Прикрытое пространство (рис. 123).

Прикрытое пространство – пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи.

Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория.

Мертвое (не поражаемое) пространство -часть прикрытого пространства, на котором цель не может быть поражена при данной траектории.

Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Глубину прикрытого пространства (ПП) можно определить по таблицам превышения траекторий над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальности стрельбы. Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины прикрытого и мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Рис. 123 – Прикрытое, мертвое и поражаемое пространство

1.2.6. Влияние условий стрельбы на полет пули (гранаты).

За нормальные (табличные) условия приняты следующие:

А) Метеорологические условия:

Атмосферное (барометрическое) давление на горизонте оружия 750 мм рт.ст. ;

Температура воздуха на горизонте оружия + 15 град. С. ;

Относительная влажность воздуха 50 % (относительной влажностью

называется отношение количества водяных паров, содержащихся в воздухе, к

наибольшему количеству водяных паров, которое может содержаться в воздухе

при данной температуре);

Ветер отсутствует (атмосфера неподвижна);

Б)Баллистические условия:

Вес пули (гранаты), начальная скорость и угол вылета равны значениям,

указанным в таблицах стрельбы;

Температура заряда + 15 град. С.;т

Форма пули (гранаты) соответствует установленному чертежу;

Высота мушки установлена по данным приведения оружия к нормальному бою; - высота (деления) прицела соответствуют табличным углам прицеливания.

В)Топографические условия:

Цель находится на горизонте оружия;

Боковой наклон оружия отсутствует;

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.

Влияние атмосферного давления

1) С увеличением атмосферного давления плотность воздуха увеличивается, а в следствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули (гранаты).

2) С уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается.

Влияние температуры

1) При повышении температуры плотность воздуха уменьшается, а в следствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули.

2) С понижением температуры плотность и сила сопротивления воздуха увеличиваются и дальность полета пули (гранаты) уменьшаются.

При повышении температуры порохового заряда увеличивается скорость горения пороха, начальная скорость и дальность полета пули (гранаты).

При стрельбе в летних условиях поправки на изменение температуры воздуха и порохового заряда незначительные и практически не учитываются. При стрельбе зимой (в условиях низких температур) эти поправки необходимо учитывать, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

Влияние ветра

1) При попутном ветре уменьшается скорость полета пули (гранаты)относительно воздуха. С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается.Поэтому при попутном ветре пуля полетит дальше, чем при безветрии.

2) При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увеличится и дальность полета пули уменьшится

Продольный (попутный, встречный) ветер на полет пули оказывает незначительное влияние, и в практике стрельбы из стрелкового оружия поправки на такой ветер не вводятся.

При стрельбе из гранатомета поправки на сильный продольный ветер следует учитывать.

3) Боковой ветер оказывает давление на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направления. Боковой ветер оказывает значительное влияние, особенно на полет гранаты, и его необходимо учитывать при стрельбе из гранатометов и стрелкового оружия.

4) Ветер дующий под острым углом к плоскости стрельбы, оказывает одновременно влияние и на изменение дальности полета пули и на боковое ее отклонение.

Влияние влажности воздуха

Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули (гранаты), поэтому оно не учитывается при стрельбе.

Влияние установки прицела

При стрельбе с одной установкой прицела (с одним углом прицеливания), но под различными углами места цели, в результате ряда причин, в т.ч. Изменения плотности воздуха на разных высотах, а следовательно, и силы сопротивления воздуха, изменяется величина наклонной (прицельной дальности полета пули (гранаты).

При стрельбе под небольшими углами места цели (до +_ 15 град.) эта дальность полета пули (гранаты) изменяется весьма незначительно, поэтому допускается равенство наклонной и полной горизонтальной дальности полета пули, т.е. неизменность формы (жесткость) траектории (рис. 124).

Тема 3. Сведения из внутренней и внешней баллистики.

Сущность явления выстрела и его период

Выстрелом называется выбрасывание пули (гранаты) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходят следующие явления.

От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор.

В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу, по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола проис­ходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику, препятствует прорыву пороховых газов, в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей, при встрече с воздухом порождают пламя и ударную волну; последняя является источни­ком звука при выстреле.

При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола (например, автомат и пулеметы Калашникова, снайперская винтовка Драгунова, станковый пулемет Горюнова), часть пороховых газов, кроме того, после прохождения пулей газоотводного от­верстия устремляется через него в газовую камору, ударяет в поршень и отбрасывает поршень с затворной рамой (толкатель с затвором) назад.

Пока затворная рама (стебель затвора) не пройдет определенное расстояние, обеспечивающее вылет пули из канала ствола, затвор продолжает запирать канал ствола. После вылета пули из канала ствола происходит его отпирание; затворная рама и затвор, двигаясь назад, сжимают возврат­ную (возвратно-боевую) пружину; затвор при этом извлекает из патронника гильзу. При движении вперед под действием сжатой пружины затвор досы­лает очередной патрон в патронник и вновь запирает канал ствола.

При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии отдачи (например, пистолет Макарова, автоматический пистолет Стечкина, автомат образца 1941 г.), давление газов через дно гильзы передается на затвор и вызывает движение затвора с гильзой назад. Это движение начинается в момент, когда давление пороховых газов на дно гильзы преодолевает инерцию затвора и усилие возвратно-боевой пружины. Пуля к этому времени уже вылетает из канала ствола. Отходя назад, затвор сжимает возвратно-боевую пружину, затем под действием энергии сжатой пружины затвор движется вперед и досылает очередной патрон в патронник.

В некоторых образцах оружия (например, крупнокалиберный пуле­мет Владимирова, станковый пулемет образца 1910 г.) под действием давле­ния пороховых газов на дно гильзы вначале движется назад ствол вместе со сцепленным с ним затвором (замком).

Пройдя некоторое расстояние, обеспечивающее вылет пули из канала ствола, ствол и затвор расцепляются, после чего затвор по инерции отходит в крайнее заднее положение и сжимает (растягивает) возвратную пружину, а ствол под действием пружины возвращается в переднее положение.

Иногда после удара бойка по капсюлю выстрела не последует или он произойдет с некоторым запозданием. В первом случае имеет место осечка, а во втором - затяжной выстрел. Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Поэтому необходимо оберегать боеприпа­сы от влаги и содержать оружие в исправном состоянии.

Затяжной выстрел является следствием медленного развития процес­са зажжения или воспламенения порохового заряда. Поэтому после осечки не следует сразу открывать затвор, так как возможен затяжной выстрел. Если осечка произойдет при стрельбе из станкового гранатомета, то перед его разряжением необходимо выждать не менее одной минуты.

При сгорании порохового заряда примерно 25 - 35% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа);

15 - 25% энергии - на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001 ­0,06 сек). При выстреле различают четыре последовательных периода: предварительный; первый, или основной; второй; третий, или период последей­ствия газов (см. рис. 30).

Предварительный период длится от начала горения порохового заря­да до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое, для того чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирова­ния; оно достигает 250 - 500 кг/см 2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки (например, у стрелкового оружия под патрон образца 1943 г. давление форсирования равно около 300 кг/см 2). Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форси­рования.

Первый, или основной период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повы­шается и достигает наибольшей величины (например, у стрелкового оружия под патрон образца 1943 г. - 2800 кг/см 2 , а под винтовочный патрон - 2900 кг/см 2). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вслед­ствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза - дульное давление - составляет у различных образцов оружия 300 - 900 кг/см 2 (например, у самозарядного карабина Симонова ­390 кг/см 2 , у станкового пулемета Горюнова - 570 кг/см 2). Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Третий период, или период последействия газов длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200 - 2000 м/сек, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (макси­мальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

Начальная скорость пули

Начальной скоростью (v0) называется скорость движения пули у дульного среза ствола.

За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.

Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет.

Величина начальной скорости пули зависит от длины ствола; веса пули; веса, температуры и влажности порохового заряда, формы и разме­ров зерен пороха и плотности заряжения.

Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость.

При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.

Изменение веса порохового заряда приводит к изменению количества пороховых газов, а, следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная ско­рость пули.

Длина ствола и вес порохового заряда увеличиваются при конструировании, оружия до наиболее рациональных размеров.

С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызыва­ет увеличение (уменьшение) дальности полета пули. В связи с этим необ­ходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).

С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули. Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а, следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.

Плотностью заряжения называется отношение веса заряда к объему гильзы при вставленной пуле (каморы сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжения, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжения увеличивается (уменьшается) начальная скорость пули.

Отдача оружия и угол вылета

Отдачей называется движение оружия (ствола) назад во время выстрела. Отдача ощущается в виде толчка в плечо, руку или грунт.

Действие отдачи оружия характеризуется величиной скорости и энергией, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи, часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Поэтому энергия отдачи при выстреле из такого оружия меньше, чем при стрельбе из неавтоматического оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т. д.) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под действием которой дульная часть ствола оружия отклоняется кверху (см. рис. 31).



Рис. 31. Отдача оружия

Подбрасывание дульной части ствола оружия вверх при выстреле в результате действия отдачи.

Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательные движения - вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положе­ния в любую сторону (вверх, вниз, вправо, влево). Величина этого отклоне­ния увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т. п.

У автоматического оружия, имеющего газоотводное отверстие в стволе, в результате давления газов на переднюю стенку газовой каморы дульная часть ствола оружия при выстреле несколько отклоняется в сторону, проти­воположную расположению газоотводного отверстия.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводит к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола; этот угол называется углом вылета (у). Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, и отрицательным, когда она ниже. Величина угла вылета дается в таблицах стрельбы.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при приведении его к нормальному бою. Однако при наруше­нии правил прикладки оружия, использования упора, а также правил ухода за оружием и его сбережения изменяются величина угла вылета и бой оружия. Для обеспечения однообразия угла вылета и уменьшения влияния отдачи на результаты стрельбы необходимо точно соблюдать приемы стрель­бы и правила ухода за оружием, указанные в наставлениях по стрелковому делу.

С целью уменьшения вредного влияния отдачи на результаты стрель­бы в некоторых образцах стрелкового оружия (например, автомат Калашни­кова) применяются специальные устройства - компенсаторы. Истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

Особенности выстрела из ручных противотанковых гранатометов

Ручные противотанковые гранатометы относятся к динамореактивно­му оружию. При выстреле из гранатомета часть пороховых газов выбрасы­вается назад через открытую казенную часть ствола, возникающая при этом реактивная сила, уравновешивает силу отдачи; другая часть пороховых газов оказывает давление на гранату, как в обычном оружии (динамическое действие), и сообщает ей необходимую начальную скорость.

Реактивная сила при выстреле из гранатомета образуется в результате истечения пороховых газов через казенную часть ствола. В связи с этим, что площадь дна гранаты, являющегося как бы передней стенкой ствола, больше площади сопла, преграждающего путь газам назад, появляется избыточная сила давления пороховых газов (реактивная сила), направленная в сторону, обратную истечения газов. Эта сила компенсирует отдачу гранатомета (она практически отсутствует) и придает гранате начальную скорость.

При действии реактивного двигателя гранаты на полете в связи с разностью площадей его передней стенки и задней, имеющей одно или несколько сопел, давление на переднюю стенку больше и образующая реактивная сила увеличивает скорость полета гранаты.

Величина реактивной силы пропорциональна количеству истекающих газов и скорости их истечения. Скорость истечения газов при выстреле из гранатомета увеличивается с помощью сопла (сужающегося, а затем расширяющегося отверстия).

Приближенно величина реактивной силы равна одной десятой количества истекающих газов за одну секунду, умноженных на скорость их истечения.

На характер изменения давления газов в канале ствола гранатомета оказывают влияния малые плотности заряжания и истечения пороховых газов, поэтому величина максимального давления газов в стволе гранатоме­та в 3-5 раз меньше, чем в стволе стрелкового оружия. Пороховой заряд гранаты сгорает к моменту вылета ее из канала ствола. Заряд реактивного двигателя воспламеняется и сгорает при полете гранаты в воздухе на неко­тором удалении от гранатомета.

Под действием реактивной силы реактивного двигателя скорость движения гранаты все время увеличивается и достигает наибольшего значения на траектории в конце истечения пороховых газов из реактивного двигателя. Наибольшая скорость полета гранаты называется максимальной скоростью.

Износ канала ствола

В процессе стрельбы ствол подвергается износу. Причины, вызывающие износ ствола, можно разбить на три основные группы - химического, механического и термического характера.

В результате причин химического характера в канале ствола образу­ется нагар, который оказывает большое влияние на износ канала ствола.

Примечание. Нагар состоит из растворимых и нерастворимых ве­ществ. Растворимые вещества представляют собой соли, образующиеся при взрыве ударного состава капсюля (в основном - хлористый калий). Нера­створимыми веществами нагара являются: зола, образовавшаяся при сгора­нии порохового заряда; томпак, сорванный с оболочки пули; медь, латунь, оплавленные из гильзы; свинец, выплавленный из дна пули; железо, оплав­ленное из ствола и сорванное с пули, и т. п. Растворимые соли, впитывая влагу из воздуха, образуют раствор, вызывающий ржавление. Нераствори­мые вещества в присутствии солей усиливают ржавление.

Если после стрельбы не удалить весь пороховой нагар, то канал ствола в течение короткого времени в местах скола хрома покроется ржавчиной, после удаления которой остаются следы. При повторении таких случаев степень поражения ствола будет повышаться и может дойти до появления раковин, т. е. значительных углублений в стенках канала ствола. Немедленная чистка и смазка канала ствола после стрельбы предохраняют его от пора­жения ржавчиной.

Причины механического характера - удары и трение пули о нарезы, неправильная чистка (чистка ствола без применения дульной накладки или чистка с казенной части без вставленной в патронник гильзы с просверленным в ее дне отверстием) и т. п. - приводят к стиранию полей нарезов или округлению углов полей нарезов, особенно их левой грани, выкрашиванию и сколу хрома в местах сетки разгара.

Причины термического характера - высокая температура пороховых газов, периодическое расширение канала ствола, и возвращение его в первоначальное состояние - приводят к образованию сетки разгара и оглавлению поверхностей стенок канала ствола в местах скола хрома.

Под действием всех этих причин канал ствола расширяется и изменяется его поверхность, вследствие чего увеличивается прорыв пороховых газов между пулей и стенками канала ствола, уменьшается начальная ско­рость пули и увеличивается разброс пуль. Для увеличения срока пригодно­сти ствола к стрельбе необходимо соблюдать установленные правила чистки и осмотра оружия и боеприпасов, принимать меры к уменьшению нагрева ствола во время стрельбы.

Прочностью ствола называется способность его стенок выдерживать определенное давление пороховых газов в канале ствола. Так как давление газов в канале ствола при выстреле не одинаково на всем его протяжении, стенки ствола делаются разной толщины - толще в казенной части и тоньше к дульной. При этом стволы изготавливаются такой толщины, чтобы они могли выдержать давление, в 1,3 - 1,5 раза превышающее наибольшее.


Рис 32. Раздутие ствола

Если давление газов почему-либо превысит величину, на которую рассчитана прочность ствола, то может произойти раздутие или разрыв ствола.

Раздутие ствола может произойти в большинстве случаев от попада­ния в ствол посторонних предметов (пакля, ветошь, песок) (см. рис. 32). При движении по каналу ствола пуля, встретив посторонний предмет, замедляет движение и поэтому запульное пространство увеличивается медленнее, чем при нормальном выстреле. Но так как горение порохового заряда продолжается и приток газов интенсивно увеличивается, в месте замедления движения пули создается повышенное давление; когда давление превзойдет величину, на которую рассчитана прочность ствола, получается раздутие, а иногда и разрыв ствола.

Меры по предотвращению износа ствола

Чтобы не допустить раздутия или разрыва ствола, следует всегда оберегать канал ствола от попадания в него посторонних предметов, перед стрельбой обязательно осмотреть и, если необходимо, вычистить его.

При длительной эксплуатации оружия, а также при недостаточно тщательной подготовке его к стрельбе может образоваться увеличенный зазор между затвором и стволом, который позволяет при выстреле двигать­ся гильзе назад. Но так как стенки гильзы под давлением газов плотно прижаты к патроннику и сила трения препятствует движению гильзы, она растягивается и, если зазор велик, рвется; происходит так называемый поперечный разрыв гильзы.

Для того чтобы избежать разрывов гильз, необходимо при подготовке оружия к стрельбе проверить величину зазора (у оружия, имеющего регуляторы зазора), содержать патронник в чистоте и не применять для стрель­бы загрязненные патроны.

Живучестью ствола называется способность ствола выдержать определенное количество выстрелов, после которого он изнашивается и теряет свои качества (значительно увеличивается разброс пуль, уменьшается на­чальная скорость и устойчивость полета пуль). Живучесть хромированных стволов стрелкового оружия достигает 20 - 30 тыс. выстрелов.

Увеличение живучести ствола достигается правильным уходом за оружием и соблюдением режима огня.

Режимом огня называется наибольшее количество выстрелов, кото­рое может быть произведено за определенный промежуток времени без ущерба для материальной части оружия, безопасности и без ухудшения результатов стрельбы. Каждый вид оружия имеет свой режим огня. В целях соблюдения режима огня необходимо производить смену ствола или охлаж­дение его через определенное количество выстрелов. Несоблюдение режи­ма огня приводит к чрезмерному нагреву ствола и, следовательно, к преждевременному его износу, а также к резкому снижению результатов стрельбы.

Внешняя баллистика - это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, дви­жется по инерции после истечения газов из реактивного двигателя.

Образование траектории полёта пули (гранаты)

Траекторией называется кривая линия, описываемая центром тяже­сти пули (гранаты) в полете (см. рис. 33).

Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерыв­но замедляет движение пули (гранаты) и стремится опрокинуть ее. В резуль­тате действия этих сил скорость полета пули (гранаты) постепенно уменьша­ется, а ее траектория представляет собой по форме неравномерно изогну­тую кривую линию.


Рис. 33. Траектория пули (вид сбоку)

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).


Рис. 34. Образование силы сопротивления

Сила сопротивления воздуха вызывается тремя основными причина­ми: трением воздуха, образованием завихрений и образованием баллисти­ческой волны (см. рис. 34).

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхнос­тью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скоро­сти звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха - баллистическая волна, замедляющая скорость поле­та пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.

Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 150 и начальной скорости 800 м/сек. в безвоздушном пространстве полетела бы на дальность 32620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха. Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью.

При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха (см. рис. 35).


Рис. 35. Действие силы сопротивления воздуха на полет пули:

ЦТ - центр тяжести; ЦС - центр сопротивления воздуха

Разнообразие форм современных пуль (гранат) во многом определя­ется необходимостью уменьшить силу сопротивления воздуха.

Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории обра­зуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение. Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклонится не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т.е. вправо.

Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха - она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д.

Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось - конус с вершиной в центре тяжести.

Происходит так называемое медленное коническое, или прецессион­ное движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории.

Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией. Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней) (см. рис. 36).


Рис. 36. Медленное коническое движение пули

Следовательно, пуля с потоком воздуха сталкивается больше нижней частью, и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола) (см. рис. 37).


Рис. 37. Деривация (вид траектории сверху)

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.

В таблицах стрельбы деривация дается как поправка направления в тысячных. Однако при стрельбе из стрелкового оружия величина дерива­ции незначительная (например, на дальности 500 м она не превышает 0,1 тысячной) и ее влияние на результаты стрельбы практически не учитыва­ется.

Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты.


Рис. 38. Действие силы сопротивления воздуха на полет гранаты

Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед (см. рис. 38).

Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные сторо­ны, поэтому кучность стрельбы улучшается.

Для изучения траектории пули (гранаты) приняты следующие определения (см. рис. 39).

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Горизонтальная плоскость, проходящая через точку вылета, называет­ся горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения.

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения. Если этот угол отрицательный, то он называется углом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в мо­мент вылета пули, называется линией бросания.


Рис. 39. Элементы траектории

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания (6).

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета (у).

Точка пересечения траектории с горизонтом оружия называется точ­кой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения (6).

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью (Х).

Скорость пули (гранаты) в точке падения называется окончательной скоростью (v).

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета (Т).

Наивысшая точка траектории называется вершиной траектории. Кратчайшее расстояние от вершины траектории до горизонта оружия называется высотой траектории (У).

Часть траектории от точки вылета до вершины называется восходя­щей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания (а).

Угол, заключенный между линией прицеливания и горизонтом ору­жия, называется углом места цели (Е). Угол места цели считается положи­тельным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия. Угол места цели может быть определен с помощью приборов или по формуле тысячной

где е - угол места цели в тысячных;

В - превышение цели над горизонтом оружия в метрах; Д- дальность стрельбы в метрах.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью (д).

Кратчайшее расстояние от любой точки траектории до линии прице­ливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели.

Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпа­дает с линией прицеливания, а наклонная дальность с прицельной дально­стью.

Точка пересечения траектории с поверхностью цели (земли, прегра­ды) называется точкой встречи. Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

Траектория пули в воздухе имеет следующие свойства: нисходящая ветвь короче и круче восходящей;

угол падения больше угла бросания;

окончательная скорость пули меньше начальной;

наименьшая скорость полета пули при стрельбе под большими угла­ми бросания - на нисходящей ветви траектории, а при стрельбе под неболь­шими углами бросания - в точке падения;

время движения пули по восходящей ветви траектория меньше, чем по нисходящей;

траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кри­визны.

Траекторию гранаты в воздухе можно разделить на два участка (см. рис. 40): активный - полет гранаты под действием реактивной силы (от точки вылета до точки, где действие реактивной силы прекращается) и пассивный - полет гранаты по инерции. Форма траектории гранаты при­мерно такая же, как и у пули.



Рис. 40. Траектория гранаты (вид сбоку)

Форма траектории и ее практическое значение

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная даль­ность полета пули (гранаты) увеличиваются, но это происходит до известно­го предела. За этим пределом высота траектории продолжает увеличивать­ся, а полная горизонтальная дальность начинает уменьшаться (см. рис. 40).

Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наиболь­шей дальности. Величина угла наибольшей дальности для пули различных видов оружия составляет около 35 градусов.

Траектории (см. рис. 41), получаемые при углах возвышения, мень­ших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными.

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными.


Рис. 41. Угол наибольшей дальности, настильные, навесные и сопряженные траектории

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибки в определении установки прицела); в этом заключается практическое значе­ние настильной траектории.

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.

Пример. Сравнить настильность траектории при стрельбе из станково­го пулемета Горюнова и ручного пулемета Калашникова с прицелом 5 на расстояние 500 м.

Решение: Из таблицы превышения средних траекторий над линией прицеливания и основной таблицы находим, что при стрельбе из станкового пулемета на 500 м с прицелом 5 наибольшее превышение траектории над линией прицеливания равно 66 см и угол падения 6,1 тысячной; при стрельбе из ручного пулемета - соответственно 121 см и 12 тысячных. Следовательно, траектория пули при стрельбе из станкового пулемета более настильна, чем траектория пули при стрельбе из ручного пулемета.

Прямой выстрел

Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении, называется прямым выст­релом (см. рис. 42).

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела.

Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения траекто­рии над линией прицеливания или с высотой траектории.

При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.



Рис. 42. Прямой выстрел

Поражаемое, прикрытое и мёртвое пространство Расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели, называется поражаемым про­странством (глубиной поражаемого пространства).



Рис. 43. Зависимость глубины поражаемого пространства от высоты цели и настильности траектории (угла падения)

Глубина поражаемого пространства зависит от высоты цели (она будет тем больше, чем выше цель), от настильности траектории (она будет тем больше, чем настильнее траектория) и от угла наклона местности (на переднем скате она уменьшается, на обратном скате - увеличивается) (см. рис. 43).

Глубину поражаемого пространства (Ппр) можно определить по таблицам превышения траекторий над линией прицеливания путем сравнения превышения нисходящей ветви траектории на соответствующую даль­ность стрельбы с высотой цели, а в том случае, если высота цели меньше 1/3 высоты траектории - по формуле тысячной:


где Ппр - глубина поражаемого пространства в метрах;

Вц - высота цели в метрах;

Ос - угол падения в тысячных.

Пример. Определить глубину поражаемого пространства при стрель­бе из станкового пулемета Горюнова по пехоте противника (высота цели 0=1,5 м) на расстояние 1000 м.

Решение. По таблице превышений средних траекторий над линией прицеливания находим: на 1000 м превышение траектории равно 0, а на 900 м - 2,5 м (больше высоты цели). Следовательно, глубина поражаемого пространства меньше 100 м. Для определения глубины поражаемого пространства составим пропорцию: 100 м соответствует превышение траекто­рии 2,5 м; Х м соответствует превышение траектории 1,5 м:


Так как высота цели меньше высоты траектории, то глубину поражаемого пространства можно определить и по формуле тысячной. Из таблиц находим угол падения Ос =29 тысячным.


В том случае, когда цель расположена на скате или имеется угол места цели, глубину поражаемого пространства определять вышеуказанны­ми способами, при этом полученный результат необходимо умножить на отношение угла падения к углу встречи.

Величина угла встречи зависит от направления ската: на встречном скате угол встречи равен сумме углов падения и ската, на обратном скате - разности этих углов. При этом величина утла встречи зависит также от угла места цели: при отрицательном угле места цели угол встречи увеличивается на величину угла места цели, при положительном угле места цели ­уменьшается на его величину.

Поражаемое пространство в некоторой степени компенсирует ошиб­ки, допускаемые при выборе прицела, и позволяет округлять измеренное расстояние до цели в большую сторону.

Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с продолжением линии прицеливания.

Пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством (см. рис. 44). Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория.

Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (непоражаемым) пространством.


Рис. 44. Прикрытое, мертвое и поражаемое пространство

Мертвое пространство будет тем больше, чем больше высота укры­тия, меньше высота цели и настильнее траектория. Другую часть прикры­того пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Глубину прикрытого пространства (Пп) можно определить по таб­лицам превышения траекторий над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальность стрельбы. Разность между определен­ной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Влияние условий стрельбы на полет пули (гранаты)

Табличные данные траектории соответствуют нормальным условиям стрельбы.

За нормальные (табличные) условия приняты следующие.

а) Метеорологические условия:

атмосферное (барометрическое) давление на горизонте оружия 750 мм рт. ст.;

температура воздуха на горизонте оружия + 15 С;

относительная влажность воздуха 50% (относительной влажностью называется отношение количества водяных паров, содержащихся в воздухе, к наибольшему количеству водяных паров, которое может содержаться в воздухе при данной температуре);

ветер отсутствует (атмосфера неподвижна).

б) Баллистические условия:

вес пули (гранаты), начальная скорость и угол вылета равны значениям, указанным в таблицах стрельбы;

температура заряда +15 С; форма пули (гранаты) соответствует установленному чертежу; высота мушки установлена по данным приведения оружия к нормальному бою;

высоты (деления) прицела соответствуют табличным углам прицеливания.

в) Топографические условия:

цель находится на горизонте оружия;

боковой наклон оружия отсутствует. При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.

С увеличением атмосферного давления плотность воздуха увеличивается, а вследствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули (гранаты). Наоборот, с уменьшением атмос­ферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается. При повышении местности на каждые 100 м атмосферное давление понижается в среднем на 9 мм.

При стрельбе из стрелкового оружия на равнинной местности по­правки дальности на изменение атмосферного давления незначительные и не учитываются. В горных условиях при высоте местности над уровнем моря 2000 м и более эти поправки необходимо учитывать при стрельбе, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

При повышении температуры плотность воздуха уменьшается, а вследствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули (гранаты). Наоборот, с понижением температуры плотность и сила сопротивления воздуха увеличиваются и дальность полета пули (гранаты) уменьшается.

При повышении температуры порохового заряда увеличиваются скорость горения пороха, начальная скорость и дальность полета пули (грана­ты).

При стрельбе в летних условиях поправки на изменение температуры воздуха и порохового заряда незначительные и практически не учитывают­ся; при стрельбе зимой (в условиях низких температур) эти поправки необходимо учитывать, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

При попутном ветре уменьшается скорость полета пули (гранаты) относительно воздуха. Например, если скорость пули относительно земли равна 800 м/сек, а скорость попутного ветра 10 м/сек, то скорость пули относительно воздуха будет равна 790 м/сек (800-10).

С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается. Поэтому при попутном ветре пуля полетит дальше, чем при безветрии.

При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увели­чится и дальность полета пули уменьшится.

Продольный (попутный, встречный) ветер на полет пули оказывает незначительное влияние, и в практике стрельбы из стрелкового оружия поправки на такой ветер не вводятся. При стрельбе из гранатометов поправ­ки на сильный продольный ветер следует учитывать.

Боковой ветер оказывает давление на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направ­ления: ветер справа отклоняет пулю в левую сторону, ветер слева - в правую сторону.

Граната на активном участке полета (при работе реактивного двигателя) отклоняется в сторону, откуда дует ветер: при ветре справа - вправо, при ветре слева - влево. Такое явление объясняется тем, что боковой ветер поворачивает хвостовую часть гранаты в направлении ветра, а головную часть против ветра и под действием реактивной силы, направленной вдоль оси, граната отклоняется от плоскости стрельбы в ту сторону, откуда дует ветер. На пассивном участке траектории граната отклоняется в сторону, куда дует ветер.

Боковой ветер оказывает значительное влияние, особенно на полет гранаты (см. рис. 45), и его необходимо учитывать при стрельбе из грана­тометов и стрелкового оружия.

Ветер, дующий под острым углом к плоскости стрельбы, оказывает одновременно влияние и на изменение дальности полета пули и на боковое ее отклонение. Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули (гранаты), поэтому оно не учитывается при стрельбе.

При стрельбе с одной установкой прицела (с одним углом прицели­вания), но под различными углами места цели, в результате ряда причин, в том числе изменения плотности воздуха на разных высотах, следовательно, и силы сопротивления воздуха/изменяется величина наклонной (прицель­ной) дальности полета пули (гранаты).

При стрельбе под большими углами места цели наклонная дальность полета пули изменяется значительно (увеличивается), поэтому при стрельбе в горах и по воздушным целям необходимо учитывать поправку на угол места цели, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

Явление рассеивания

При стрельбе из одного и того же оружия при самом тщательном соблюдении точности и однообразия производства выстрела каждая пуля (граната) вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль (гранат).

Явление разбрасывания пуль (гранат) при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль (гранат) и также рассеиванием траекторий.

Совокупность траекторий пуль (гранат, полученных вследствие их есте­ственного рассеивания) называется снопом траекторий (см. рис. 47). Траек­тория, проходящая в середине снопа траекторий, называется средней траек­торией. Табличные и расчетные данные относятся к средней траектории.



Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания.

Площадь, на которой располагаются точки встречи (пробоины) пуль (гранат), полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания.

Площадь рассеивания обычно имеет форму эллипса. При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в верти­кальной плоскости может иметь форму круга.

Взаимно перпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпадала с направлением стрельбы, называются осями рассеивания.

Кратчайшие расстояния от точек встречи (пробоин) до осей рассеи­вания называются отклонениями

Причины рассеивания

Причины, вызывающие рассеивание пуль (гранат), могут быть сведе­ны в три группы:

причины, вызывающие разнообразие начальных скоростей;

причины, вызывающие разнообразие углов бросания и направления стрельбы;

причины, вызывающие разнообразие условий полета пули (гранаты). Причинами, вызывающими разнообразие начальных скоростей, явля­ются:

разнообразие в весе пороховых зарядов и пуль (гранат), в форме и размерах пуль (гранат) и гильз, в качестве пороха, в плотности заряжения и т. д., как результат неточностей (допусков) при их изготовлении; разнообразие температур, зарядов, зависящее от температуры возду­ха и неодинакового времени нахождения патрона (гранаты) в нагретом при стрельбе стволе;

разнообразие в степени нагрева и в качественном состоянии ствола. Эти причины ведут к колебанию в начальных скоростях, следователь­но, и в дальностях полета пуль (гранат), т. е. приводят к рассеиванию пуль (гранат) по дальности (высоте) и зависят в основном от боеприпасов и оружия.

Причинами, вызывающими разнообразие углов бросания и направле­ния стрельбы, являются:

разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);

разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неодно­образного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;

угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия.

Эти причины приводят к рассеиванию пуль (гранат) по боковому направлению и дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и в основном зависят от выучки стреляющего.

Причинами, вызывающими разнообразие условий полета пули (гранаты), являются:

разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);

разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины силы сопротивления воздуха.

Эти причины приводят к увеличению рассеивания по боковому направлению и по дальности (высоте) и в основном зависят от внешних условий стрельбы и от боеприпасов.

При каждом выстреле в разном сочетании действуют все три группы причин. Это приводит К тому, что полет каждой пули (гранаты) происходит по траектории, отличной от траекторий других пуль (гранат).

Устранить полностью причины, вызывающие рассеивание, следовательно, устранить и само рассеивание невозможно. Однако, зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание, или, как принято говорить, повысить кучность стрельбы.

Уменьшение рассеивания пуль (гранат) достигается отличной выуч­кой стреляющего, тщательной подготовкой оружия и боеприпасов к стрель­бе, умелым применением правил стрельбы, правильной изготовкой к стрель­бе, однообразной прикладкой, точной наводкой (прицеливанием), плавным спуском курка, устойчивым и однообразным удержанием оружия при стрельбе, а также надлежащим уходом за оружием и боеприпасами.

Закон рассеивания

При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономер­ность. Рассеивание пуль (гранат) подчиняется нормальному закону случай­ных ошибок, который в отношении к рассеиванию пуль (гранат) называется законом рассеивания. Этот закон характеризуется следующими тремя положениями (см. рис. 48):

1) Точки встречи (пробоины) на площади рассеивания располагаются неравномерно гуще к центру рассеивания и реже к краям площади рассеивания.

2) На площади рассеивания можно определить точку, являющуюся центром рассеивания (средней точкой попадания). Относительно которой распределение точек встречи (пробоин) симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.

3) Точки встречи (пробоины) в каждом частном случае занимают не беспредельную, а ограниченную площадь.

Таким образом, закон рассеивания в общем виде можно сформулировать так: при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль (гранат) неравно­мерно, симметрично и небеспредельно.



Рис. 48. Закономерность рассеивания

Определение средней точки попадания

При малом числе пробоин (до 5) положение средней точки попадания определяется способом последовательного деления отрезков (см. рис. 49). Для этого необходимо:



Рис. 49. Определение положения средней точки попадания способом последовательного деления отрезков: а) По 4-ем пробоинам, б) По 5-ти пробоинам.

соединить прямой две пробоины (точки встречи) и расстояние между ними разделить пополам;

полученную точку соединить с третьей пробоиной (точкой встречи) и расстояние между ними разделить натри равные части;

так как к центру рассеивания пробоины (точки встречи) располагают­ся гуще, то за среднюю точку попадания трех пробоин (точек встречи) принимается деление, ближайшее к двум первым пробоинам (точкам встречи); найденную среднюю точку попадания для трех пробоин (точек встре­чи) соединить с четвертой пробоиной (точкой встречи) и расстояние между ними разделить на четыре равные части;

деление, ближайшее к первым трем пробоинам (точкам встречи), принимается за среднюю точку попадания четырех пробоин (точек встречи).

По четырем пробоинам (точкам встречи) среднюю точку попадания можно определить еще так: рядом лежащие пробоины (точки встречи) соединить попарно, середины обеих прямых снова соединить и полученную линию разделить пополам; точка деления и будет средней точкой попадания. При наличии пяти пробоин (точек встречи) средняя точка попадания для них определяется подобным же образом.


Рис. 50. Определение положения средней точки попадания способом про ведения осей рассеивания. BBi - ось рассеивания по высоте; BBi - ось рассеивания по боковому направлению

При большом числе пробоин (точек встречи) на основании симметричности рассеивания средняя точка попадания определяется способом про ведения осей рассеивания (см. рис. 50). Для этого нужно:

отсчитать таким же порядком правую или левую половину пробои и (точек встречи) и отделить ее осью рассеивания по боковому направлению; пересечение осей рассеивания является средней точкой попадания. Среднюю точку попадания можно также определить способом вы­числения (расчета). для этого необходимо:

провести через левую (правую) пробоину (точку встречи) вертикальную линию, измерить кратчайшее расстояние от каждой пробоины (точки встречи) до этой линии, сложить все расстояния от вертикальной линии и разделить сумму на число пробоин (точек встречи);

провести через нижнюю (верхнюю) пробоину (точку встречи) горизонтальную линию, измерить кратчайшее расстояние от каждой пробоины (точки встречи) до этой линии, сложить все расстояния от горизонтальной линии и разделить сумму на число пробоин (точек встречи).

Полученные числа определяют удаление средней точки попадания от указанных линий.

Вероятность попадания и поражения цели. Понятие о действительности стрельбы. Действительность стрельбы

В условиях скоротечного танкового огневого боя, как уже говорилось, очень важно нанести противнику наибольшие потери в кратчайший срок и с минимальным расходом боеприпасов.

Существует понятие - действительность стрельбы, характеризую­щее результаты стрельбы и их соответствие поставленной огневой задаче. В боевых условиях признаком высокой действительности стрельбы служит либо видимое поражение цели, либо ослабление огня противника, либо нарушение его боевого порядка, либо уход живой силы в укрытие. Однако ожидаемую действительность стрельбы можно оценить еще до открытия огня. Для этого определяется вероятность попадания в цель, ожидаемый расход боеприпасов для получения требуемого числа попаданий и время, необходимое на решение огневой задачи.

Вероятность попадания - это величина, характеризующая возможность попадания в цель при определенных условиях стрельбы и зависящая от размеров цели, размеров эллипса рассеивания, положения средней тра­ектории относительно цели и, наконец, направления стрельбы относительно фронта цели. Выражается она либо дробным числом, либо в процентах.

Несовершенство человеческого зрения и прицельных приспособле­ний не позволяет после каждого выстрела идеально точно восстановить в прежнее положение ствол оружия. Мертвые ходы и люфты в механизмах наведения также вызывают смещение ствола оружия в момент выстрела в вертикальной и горизонтальной плоскостях.

В результате различия в баллистической форме снарядов и состояния его поверхности, а также изменения атмосферы за время от выстрела до выстрела снаряд может изменить направление полета. И это приводит к рассеиванию и по дальности и по направлению.

При одном и том же рассеивании вероятность попадания, если центр цели совпадает с центром рассеивания, тем больше, чем больше размер цели. Если же стрельба ведется по целям одного и того же размера и средняя траектория проходит через цель, вероятность попадания тем боль­ше, чем меньше площадь рассеивания. Вероятность попадания тем выше, чем ближе центр рассеивания расположен к центру цели. При стрельбе по целям, имеющим большую протяженность, вероятность попадания выше в том случае, если продольная ось эллипса рассеивания совпадает с линией наибольшей протяженности цели.

В количественном отношении вероятность попадания можно рассчитать различными способами, в том числе и по сердцевине рассеивания, если площадь цели не выходит за ее пределы. Как уже отмечалось, сердце­вина рассеивания вмещает в себя лучшую (по кучности) половину всех пробоин. Очевидно, что вероятность попадания в цель будет меньше 50 проц. во столько раз, во сколько площадь цели меньше площади сердцеви­ны.

Площадь же сердцевины рассеивания легко определить по специальным таблицам стрельбы, имеющимся для каждого вида оружия.

Количество попаданий, необходимое для надежного поражения той или иной цели, величина, как правило, известная. Так, для поражения бронетранспортера достаточно одного прямого попадания, для разрушения пулеметного окопа - два-три попадания и т. д.

Зная вероятность поражения той или иной цели и потребное количество попаданий, можно рассчитать ожидаемый расход снарядов на пораже­ние цели. Так, если вероятность попадания равна 25 проц., или 0,25, а для надежного поражения цели необходимо три прямых попадания, то чтобы узнать расход снарядов, вторую величину делят на первую.

Баланс времени, в течение которого выполняется огневая задача, включает в себя время на подготовку стрельбы и время на саму стрельбу. Время на подготовку стрельбы определяется практически и зависит не только от конструктивных особенностей вооружения, но и натренированности стрелка или членов экипажа. Чтобы определить время на стрельбу, величину ожидаемого расхода боеприпасов делят на скорострельность, т. е. на количество пуль, снарядов, выпускаемых в единицу времени. К полученной таким образом цифре прибавляют время на подготовку к стрельбе.