Подготовка снайпера. Внутренняя и внешняя баллистика. Форма траектории полета пули и ее значение Траектории получаемые при углах возвышения

1.1.1. Выстрел. Периоды выстрела и их характеристика.

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходит следующее явление. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании заряда образуется большое количество сильно нагретых газов, создающих высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы – вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу.

При сгорании порохового заряда примерно 25-35 % выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25 % энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40 % энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001 – 0, 06 сек).

При выстреле различают четыре последовательных периода (рис.116):

Предварительный;

Первый или основной;

Третий или период последействия газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течении этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования. Оно достигает 250-500 кг/см в зависимости от устройства нарезов, веса пули и твердости ее оболочки. Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме.

В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество азов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см. пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать. К концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза – дульное давление – составляет у различных образцов оружия 300-900 кг/см. Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости. У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Рис. 116 - Периоды выстрела

Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течении этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/сек, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола . Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

1.1.2. Начальная и максимальная скорость.

Начальная скорость пули (v o)- скорость движения пули у дульного среза ствола.

За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытном путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.

Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет.

Величина начальной скорости пули зависит от:

1)Длины ствола.

2) Веса пули.

3) Веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжания.

1)Чем длиннее ствол, тем больше время на пулю действуют пороховые газы и тем больше начальная скорость пули.

2)При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули. Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули.

3) Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули. Длина ствола и вес порохового заряда увеличивается при конструировании оружия до наиболее рациональных размеров.

С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается.. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полете пули.

В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).

С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули. Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.

Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле (камеры сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать при стрельбе. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.

Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола.

1.1.3 Отдача оружия и угол вылета (рис. 117).

Отдачей называется движение оружия (ствола) назад во время выстрела . Отдача ощущается в виде толчка в плечо, руку или грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад.

Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кгм и воспринимается стреляющим безболезненно.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи - часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Энергия отдачи образуется при стрельбе из такого оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под действием которой дульная часть ствола оружия отклоняется кверху.

Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательные движения – вибрирует.

В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п.

У автоматического оружия, имеющего газоотводное отверстие в стволе, в результате давления газов на переднюю стенку газовой камеры, дульная часть ствола оружия, при выстреле несколько отклоняется в сторону, противоположную расположению газоотводного отверстия.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводит к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола – этот угол называется углом вылета .

Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, и отрицательным, когда она ниже.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при привидении его к нормальному бою.

С целью уменьшения вредного влияния отдачи на результаты стрельбы в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства – компенсаторы. Истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

1.2. Основные термины и понятия теории внешней баллистики

Внешняя баллистика – это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

1.2.1.Траектория полета пули и её элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете (рис.118) .

Пуля (граната) при полете в воздухе подвергается действию двух сил :

Силы тяжести

Силы сопротивления.

Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится ее опрокинуть.

В результате действия этих сил скорость пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами (рис. 119):

1) Трением воздуха.

2) Образованием завихрений.

3) Образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем и этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты).

При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующаяся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления. Действие силы сопротивления на полет пули (гранаты) очень велико. Она вызывает уменьшение скорости и дальности полета пули (гранаты).

Для изучения траектории пули (гранаты) приняты следующие определения (рис.120)

1) Центр дульного среза ствола называется точкой вылета . Точка вылета является началом траектории.

2) Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. Горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

3) Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения .

4) Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

5) Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения . Если этот угол отрицательный, то он называется углом склонения (снижения).

6) Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

7) Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

8) Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

9) Точка пересечения траектории с горизонтом оружия называется точкой падения.

10) Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения.

11) Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

12) Скорость пули (гранаты) в точке падения называется окончательной скоростью.

13) Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета .

14) Наивысшая точка траектория называется вершиной траектории .

15) Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется исходящей ветвью траектории .

16) Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

17) Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

18) Угол, заключенный между линией возвышения и линей прицеливания, называется углом прицеливания.

19)Угол, заключенный между линей прицеливания и горизонтом оружия, называется углом места цели.

20) Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

21) Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линей прицеливания.

23) Расстояние от точки вылета до цели по линии цели называется наклонной дальностью.

24) Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

25) Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи.

Траектория пули в воздухе имеет следующие свойства:

Нисходящая ветвь короче и круче восходящей;

Угол падения больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания - на

нисходящей ветви траектории, а при стрельбе под небольшими углами бросания – в точке

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей.

1.2.2. Форма траектории и ее практическое значение (рис. 121)

Форма траектории зависит от величины угла возвышения . С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения , при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35 градусов.

Рис. 121 Формы траектории

Траектории , получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными .

Траектории , получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными .

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную

Траектории , имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными .

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории.

Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результат стрельбы оказывают ошибки в определении установки прицела).

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения – траектория тем более настильна, чем меньше угол падения.

Настильная траектория влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

1.2.3. Прямой выстрел (рис. 122).

Прямой выстрел – выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении.

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высо-те, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от:

Высоты цели;

Настильности траектории;

Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела. Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

1.2.4. Поражаемое пространство (глубина поражаемого пространства) (рис.123).

При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на

каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Поражаемое пространство (глубина поражаемого пространства) – расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели.

Глубина поражаемого пространства зависит от:

От высоты цели (она будет тем больше, чем выше цель);

От настильности траектории (она будет тем больше, чем настильнее

траектория);

От угла наклона местности (на переднем скате она уменьшается, на обратном скате

увеличивается).

В том случае, когда цель расположена на скате или имеется угол места цели, глубину поражаемого пространства определять вышеуказанными способами, при этом полученный результат необходимо умножить на отношение угла падения к углу встречи.

Величина угла встречи зависит от направления ската:

На встречном скате угол встречи равен сумме углов падения и ската;

На обратном скате – разности этих углов;

При этом величина угла встречи зависит также от угла места цели:

При отрицательном угле места цели угол встречи увеличивается на величину угла места

При положительном угле места цели – уменьшается на его величину.

Поражаемое пространство в некоторой степени компенсирует ошибки, допускаемые при выборе прицела, и позволяет округлять измеренное расстояние до цели в большую сторону.

Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с продолжением линии прицеливания.

1.2.5. Прикрытое пространство (рис. 123).

Прикрытое пространство – пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи.

Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория.

Мертвое (не поражаемое) пространство -часть прикрытого пространства, на котором цель не может быть поражена при данной траектории.

Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Глубину прикрытого пространства (ПП) можно определить по таблицам превышения траекторий над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальности стрельбы. Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины прикрытого и мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Рис. 123 – Прикрытое, мертвое и поражаемое пространство

1.2.6. Влияние условий стрельбы на полет пули (гранаты).

За нормальные (табличные) условия приняты следующие:

А) Метеорологические условия:

Атмосферное (барометрическое) давление на горизонте оружия 750 мм рт.ст. ;

Температура воздуха на горизонте оружия + 15 град. С. ;

Относительная влажность воздуха 50 % (относительной влажностью

называется отношение количества водяных паров, содержащихся в воздухе, к

наибольшему количеству водяных паров, которое может содержаться в воздухе

при данной температуре);

Ветер отсутствует (атмосфера неподвижна);

Б)Баллистические условия:

Вес пули (гранаты), начальная скорость и угол вылета равны значениям,

указанным в таблицах стрельбы;

Температура заряда + 15 град. С.;т

Форма пули (гранаты) соответствует установленному чертежу;

Высота мушки установлена по данным приведения оружия к нормальному бою; - высота (деления) прицела соответствуют табличным углам прицеливания.

В)Топографические условия:

Цель находится на горизонте оружия;

Боковой наклон оружия отсутствует;

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.

Влияние атмосферного давления

1) С увеличением атмосферного давления плотность воздуха увеличивается, а в следствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули (гранаты).

2) С уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается.

Влияние температуры

1) При повышении температуры плотность воздуха уменьшается, а в следствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули.

2) С понижением температуры плотность и сила сопротивления воздуха увеличиваются и дальность полета пули (гранаты) уменьшаются.

При повышении температуры порохового заряда увеличивается скорость горения пороха, начальная скорость и дальность полета пули (гранаты).

При стрельбе в летних условиях поправки на изменение температуры воздуха и порохового заряда незначительные и практически не учитываются. При стрельбе зимой (в условиях низких температур) эти поправки необходимо учитывать, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

Влияние ветра

1) При попутном ветре уменьшается скорость полета пули (гранаты)относительно воздуха. С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается.Поэтому при попутном ветре пуля полетит дальше, чем при безветрии.

2) При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увеличится и дальность полета пули уменьшится

Продольный (попутный, встречный) ветер на полет пули оказывает незначительное влияние, и в практике стрельбы из стрелкового оружия поправки на такой ветер не вводятся.

При стрельбе из гранатомета поправки на сильный продольный ветер следует учитывать.

3) Боковой ветер оказывает давление на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направления. Боковой ветер оказывает значительное влияние, особенно на полет гранаты, и его необходимо учитывать при стрельбе из гранатометов и стрелкового оружия.

4) Ветер дующий под острым углом к плоскости стрельбы, оказывает одновременно влияние и на изменение дальности полета пули и на боковое ее отклонение.

Влияние влажности воздуха

Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули (гранаты), поэтому оно не учитывается при стрельбе.

Влияние установки прицела

При стрельбе с одной установкой прицела (с одним углом прицеливания), но под различными углами места цели, в результате ряда причин, в т.ч. Изменения плотности воздуха на разных высотах, а следовательно, и силы сопротивления воздуха, изменяется величина наклонной (прицельной дальности полета пули (гранаты).

При стрельбе под небольшими углами места цели (до +_ 15 град.) эта дальность полета пули (гранаты) изменяется весьма незначительно, поэтому допускается равенство наклонной и полной горизонтальной дальности полета пули, т.е. неизменность формы (жесткость) траектории (рис. 124).

Траекторией называется кривая линия, описываемая центром тяжести пули в полете.
Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными. При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Элементы траектории

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории.
Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.
Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия.
Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.
Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения).
Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.
Угол бросания
Угол вылета - угол, заключенный между линией возвышения и линией бросания.
Точка падения - точка пересечения траектории с горизонтом оружия.
Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.
Полная горизонтальная дальность - расстояние от точки вылета до точки падения.
Окончательная скорость - скорость пули (гранаты) в точке падения.
Полное время полета - время движения пули (гранаты) от точки вылета до точки падения.
Вершина траектории - наивысшая точка траектории над горизонтом оружия.
Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.
Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории.
Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие.
Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания.
Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.
Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.
Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.
Линия цели - прямая, соединяющая точку вылета с целью.
Наклонная дальность - расстояние от точки вылета до цели по линии цели.
Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).
Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

Пуля, получив при вылете из канала ствола определенную начальную скорость, стремиться по инерции сохранить величину и направление этой скорости.

Если бы полет пули совершался в безвоздушном пространстве, и на нее не действовала сила тяжести, пуля двигалась бы прямолинейно, равномерно и бесконечно. Однако на пулю, летящую в воздушной среде, действуют силы, которые изменяют скорость ее полета и направление движения. Этими силами являются сила тяжести и сила сопротивления воздуха (рис. 4).

Рис. 4. Силы, действующие на пулю во время ее полета

Вследствие совместного действия этих сил пуля теряет скорость и изменяет направление своего движения, перемещаясь в воздухе по кривой линии, проходящей ниже направления оси канала ствола.

Линия, которую описывает в пространстве движущаяся пуля (ее центр тяжести), называется траекторией .

Обычно баллистика рассматривает траекторию над горизонтом оружия - воображаемой бесконечной горизонтальной плоскостью, проходящей через точку вылета (рис. 5).

Рис. 5. Горизонт оружия

Движение пули, а следовательно, и форма траектории зависят от многих условий. Поэтому, чтобы уяснить себе, как образуется в пространстве траектория пули, необходимо рассмотреть прежде всего, как действуют на пулю в отдельности сила тяжести и сила сопротивления воздушной среды.

Действие силы тяжести. Представим себе, что на пулю после вылета ее из канала ствола не действует никакая сила. В этом случае, как говорилось выше, пуля двигалась бы по инерции бесконечно, равномерно и прямолинейно по направлению оси канала ствола; за каждую секунду она пролетела бы одинаковые расстояния с постоянной скоростью, равной начальной. В этом случае, если бы ствол оружия был направлен прямо в цель, пуля, следуя в направлении оси канала ствола, попала бы в нее (рис. 6).

Рис. 6. Движение пули по инерции (если бы не было силы тяжести и сопротивления воздуха)

Допустим теперь, что на пулю действует только одна сила тяжести. Тогда пуля начнет падать вертикально вниз, как и всякое свободно падающее тело.

Если предположить, что на пулю при ее полете по инерции в безвоздушном пространстве действует сила тяжести, то под действием этой силы пуля опустится ниже от продолжения оси канала ствола - в первую секунду - на 4,9 м, во вторую - на 19,6 м и т.д. В этом случае, если навести ствол оружия в цель, пуля никогда в нее не попадет, так как, подвергаясь действию силы тяжести, она пролетит под целью (рис.7).

Рис. 7. Движение пули (если бы на нее действовала сила тяжести,

но не действовало сопротивление воздуха)

Вполне очевидно, что для того, чтобы пуля пролетела определенное расстояние и попала в цель, необходимо направить ствол оружия куда-то выше цели. Для этого нужно, чтобы ось канала ствола и плоскость горизонта оружия составляли некоторый угол, который называется углом возвышения (рис. 8).

Как видно из рис. 8, траектория пули в безвоздушном пространстве, на которую действует сила тяжести, представляет собой правильную кривую, которая называется параболой . Самая высокая точка траектории над горизонтом оружия называется ее вершиной . Часть кривой от точки вылета до вершины называется восходящей ветвью . Такая траектория пули характерна тем, что восходящая и нисходящая ветви совершенно одинаковы, а угол бросания и падения равны между собой.

Рис. 8. Угол возвышения (траектория пули в безвоздушном пространстве)

Действие силы сопротивления воздушной среды. На первый взгляд кажется маловероятным, чтобы воздух, обладающий такой малой плотностью, мог оказывать существенное сопротивление движению пули и этим значительно уменьшать ее скорость.

Однако опытами установлено, что сила сопротивления воздуха, действующего на пулю, выпущенную из винтовки образца 1891/30 гг., представляет собой большую величину - 3,5 кг.

Учитывая, что пуля весит всего лишь несколько граммов, становиться вполне очевидным большое тормозящее действие, которое оказывает воздух на летящую пулю.

Во время полета пуля расходует значительную часть своей энергии на то, чтобы раздвинуть частицы воздуха, мешающие ее полету.

Как показывает фотоснимок пули, летящей со сверхзвуковой скоростью (свыше 340 м/с), перед ее головной частью образуется уплотнение воздуха (рис. 9). От этого уплотнения расходится во все стороны головная баллистическая волна. Частицы воздуха, скользя по поверхности пули и срываясь с ее боковых стенок, образуют позади пули зону разреженного пространства. Стремясь заполнить образовавшуюся пустоту позади пули, частицы воздуха создают завихрения, в результате чего за дном пули тянется хвостовая волна.

Уплотнение воздуха впереди головной части пули тормозит ее полет; разряженная зона позади пули засасывает ее и этим еще больше усиливает торможение; стенки пули испытывают трение о частицы воздуха, что также замедляет ее полет. Равнодействующая этих трех сил и составляет силу сопротивления воздуха.

Рис. 9. Фотоснимок пули, летящей со сверхзвуковой скоростью

(свыше 340 м/сек.)

Огромное влияние, оказываемое сопротивлением воздуха на полет пули, также видно из следующего примера. Пуля, выпущенная из винтовки Мосина образца 1891/30 гг. или из снайперской винтовки Драгунова (СВД). В обычных условиях (при сопротивлении воздуха), имеет наибольшую горизонтальную дальность полета 3400 м, а при стрельбе в безвоздушном пространстве она могла бы пролететь 76 км.

Следовательно, под действием силы сопротивления воздуха траектория пули теряет форму правильной параболы, приобретая форму несимметричной кривой линии; вершина делит ее на две неравные части, из которых восходящая ветвь всегда длиннее и отложе нисходящей. При стрельбе на средние дистанции можно условно принимать отношение длины восходящей ветви траектории к нисходящей, как 3:2.

Вращение пули вокруг своей оси. Известно, что тело приобретает значительную устойчивость, если ему придать быстрое вращательное движение вокруг своей оси. Примером устойчивости вращающегося тела может служить игрушка “волчок”. Невращающийся “волчок” не будет стоять на своей заостренной ножке, но если “волчку” придать быстрое вращательное движение вокруг своей оси, он будет устойчиво стоять на ней (рис. 10).

Чтобы пуля приобрела способность бороться с опрокидывающим действием силы сопротивления воздуха, сохранила устойчивость при полете, ей придают быстрое вращательное движение вокруг своей продольной оси. Это быстрое вращательное движение пуля приобретает благодаря винтообразным нарезам в канале ствола оружия (рис. 11). Под действием давления пороховых газов пуля продвигается по каналу ствола вперед, одновременно вращаясь вокруг своей продольной оси. По вылете из ствола пуля по инерции сохраняет полученное сложное движение - поступательное и вращательное.

Не вдаваясь в подробности объяснения физических явлений, связанных с действием сил на тело, испытывающее сложное движение, необходимо все же сказать о том, что пуля при полете совершает правильные колебания и своей головной частью описывает вокруг траектории окружности (рис. 12). При этом продольная ось пули как бы “следит” за траекторией, описывая вокруг нее коническую поверхность (рис. 13).

Рис. 12. Коническое вращение головной части пули

Рис. 13. Полет вращающейся пули в воздухе

Если применить законы механики к летящей пуле, то станет очевидным, что чем больше скорость ее движения и чем пуля длиннее, тем сильнее воздух стремиться ее опрокинуть. Поэтому пулям патронов разного типа необходимо придавать различную скорость вращения. Так, легкая пуля, выпущенная из винтовки, имеет скорость вращения 3604 об./сек.

Однако вращательное движение пули, столь необходимое для придания ей устойчивости во время полета, имеет и свои отрицательные стороны.

На быстро вращающуюся пулю, как уже было сказано, оказывает непрерывное опрокидывающее действие сила сопротивления воздуха, в связи с чем головная часть пули описывает вокруг траектории окружность. В результате сложения этих двух вращательных движений возникает новое движение, отклоняющее ее головную часть в сторону от плоскости стрельбы1 (рис. 14). При этом одна боковая поверхность пули подвергается давлению частиц больше, чем другая. Такое неодинаковое давление воздуха на боковые поверхности пули и отклоняет ее в сторону от плоскости стрельбы. Боковое отклонение вращающейся пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 15).

Рис. 14. В результате двух вращательных движений пуля постепенно поворачивает головную часть вправо (в сторону вращения)

Рис. 15. Явление деривации

По мере удаления пули от дульного среза оружия величина деривационного отклонения ее быстро и прогрессивно возрастает.

При стрельбе на ближние и средние расстояния деривация не имеет большого практического значения для стрелка. Так, при дальности стрельбы на 300 м деривационное отклонение равно 2 см, а на 600 м - 12 см. Деривацию приходится учитывать только при особо точной стрельбе на дальние расстояния, внося соответствующие поправки в установку прицела, сообразуясь с таблицей деривационных отклонений пули для определенной дальности стрельбы.

Представлены основные понятия: периоды выстрела, элементы траектории полёта пули, прямой выстрел и т.д.

Для того чтобы освоить технику стрельбы из любого оружия, необходимо знать ряд теоретических положений, без которых ни один стрелок не сможет показывать высоких результатов и его обучение будет малоэффективным.
Баллистика - наука о движении снарядов. В свою очередь, баллистику разделяют на две части: внутреннюю и внешнюю.

Внутренняя баллистика

Внутренняя баллистика изучает явления, происходящие в канале ствола во время выстрела, движение снаряда по каналу ствола, характер сопровождающих это явление термо- и аэродинамических зависимостей, как в канале ствола, так и за его пределами в период последействия пороховых газов.
Внутренняя баллистика решает вопросы наиболее рационального использования энергии порохового заряда во время выстрела с тем, чтобы снаряду заданного веса и калибра сообщить определенную начальную скорость (V0) при соблюдении прочности ствола. Это дает исходные данные для внешней баллистики и проектирования оружия.

Выстрелом называется выбрасывание пули (гранаты) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.
От удара бойка по капсюлю боевого патрона, посланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор.
В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад.
При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола - снайперская винтовка Драгунова, часть пороховых газов, кроме того, после прохождения через него в газовую камеру, ударяет в поршень и отбрасывает толкатель с затвором назад.
При сгорании порохового заряда примерно 25-35% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25 % энергии - на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижной части оружия, газообразной и не сгоревшей части пороха); около 40 % энергии не используется и теряется после вылета пули из ствола канала.

Выстрел происходит в очень короткий промежуток времени (0,001-0,06с.). При выстреле различают четыре последовательных периода:

  • предварительный
  • первый, или основной
  • второй
  • третий, или период последних газов

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250 - 500 кг/см2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки. Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины - винтовочный патрон 2900 кг/см2. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4 - 6 см пути. Затем вследствие быстрого скорости движение пули объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится до момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза дульное давление составляет у различных образцов оружия 300 - 900 кг/см2. Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

Третий период, или период после действия газов длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200 - 2000 м/с, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

Начальная скорость пули и ее практическое значение

Начальной скоростью называется скорость движения пули у дульного среза ствола. За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.
Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет. Величина начальной скорости пули зависит от:

  • длины ствола
  • веса пули
  • веса, температуры и влажности порохового заряда
  • формы и размеров зерен пороха
  • плотности заряжания

Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.
Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули.
С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
Формы и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.
Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле (камеры сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.
Отдачей называется движение оружия назад во время выстрела. Отдача ощущается в виде толчка в плечо, руку или грунт. Действие отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.

Сила отдачи и сила сопротивления отдаче (упор приклада) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под воздействием которой дульная часть ствола оружия отклоняется кверху. Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил. Кроме того, при выстреле ствол оружия совершает колебательные движения - вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклоняться от первоначального положения в любую сторону (вверх, вниз, вправо, влево).
Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнения оружия и т.п.
Сочетание влияния вибрации ствола, отдачи оружия и других причин приводят к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола. Этот угол называется углом вылета.
Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, отрицательным - когда ниже. Влияние угла вылета на стрельбу устраняется при приведении его к нормальному бою. Однако при нарушении правил прикладки оружия, использовании упора, а также правил ухода за оружием и его сбережением, изменяется величина угла вылета и бой оружия. С целью уменьшения вредного влияния отдачи на результаты стрельбы применяются компенсаторы.
Итак, явления выстрела, начальная скорость пули, отдача оружия имеют большое значение при стрельбе и влияют на полет пули.

Внешняя баллистика

Это наука, изучающая движение пули после прекращения действия на нее пороховых газов. Основную задачу внешней баллистики составляет изучение свойств траектории и закономерностей полета пули. Внешняя баллистика дает данные для составления таблиц стрельбы, расчета шкал прицелов оружия, и выработки правил стрельбы. Выводы из внешней баллистики широко используются в бою при выборе прицела и точки прицеливания в зависимости от дальности стрельбы, направления и скорости ветра, температуры воздуха и других условий стрельбы.

Траектория полета пули и ее элементы. Свойства траектории. Виды траектории и их практическое значение

Траекторией называется кривая линия, описываемая центром тяжести пули в полете.
Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольших угла наибольшей дальности, называются навесными. При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность рои разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Элементы траектории

Точка вылета - центр дульного среза ствола. Точка вылета является началом траектории.
Горизонт оружия - горизонтальная плоскость, проходящая через точку вылета.
Линия возвышения - прямая линия, являющаяся продолжением оси канала ствола наведенного оружия.
Плоскость стрельбы - вертикальная плоскость, проходящая через линию возвышения.
Угол возвышения - угол, заключенный между линией возвышения и горизонтом оружия. Если этот угол отрицательный, то он называется углом склонения (снижения).
Линия бросания - прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули.
Угол бросания
Угол вылета - угол, заключенный между линией возвышения и линией бросания.
Точка падения - точка пересечения траектории с горизонтом оружия.
Угол падения - угол, заключенный между касательной к траектории в точке падения и горизонтом оружия.
Полная горизонтальная дальность - расстояние от точки вылета до точки падения.
Окончательная скорость - скорость пули (гранаты) в точке падения.
Полное время полета - время движения пули (гранаты) от точки вылета до точки падения.
Вершина траектории - наивысшая точка траектории над горизонтом оружия.
Высота траектории - кратчайшее расстояние от вершины траектории до горизонта оружия.
Восходящая ветвь траектории - часть траектории от точки вылета до вершины, а от вершины до точки падения - нисходящая ветвь траектории.
Точка прицеливания (наводки) - точка на цели (вне ее), в которую наводится оружие.
Линия прицеливания - прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания.
Угол прицеливания - угол, заключенный между линией возвышения и линией прицеливания.
Угол места цели - угол, заключенный между линией прицеливания и горизонтом оружия. Этот угол считается положительным (+), когда цель выше, и отрицательным (-), когда цель ниже горизонта оружия.
Прицельная дальность - расстояние от точки вылета до пересечения траектории с линией прицеливания. Превышение траектории над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания.
Линия цели - прямая, соединяющая точку вылета с целью.
Наклонная дальность - расстояние от точки вылета до цели по линии цели.
Точка встречи - точка пересечения траектории с поверхностью цели (земли, преграды).
Угол встречи - угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.

Прямой выстрел, поражаемое и мертвое пространство наиболее близко соприкасаются с вопросами стрелковой практики. Основная задача изучения этих вопросов - получить твердые знания в использовании прямого выстрела и поражаемого пространства для выполнения огневых задач в бою.

Прямой выстрел его определение и практическое использование в боевой обстановке

Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении, называется прямым выстрелом. В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от высоты цели, настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела.
Дальность прямого выстрела может определяться по таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

Прямой снайперский выстрел в городских условиях
Высота установки оптических прицелов над каналом ствола оружия в среднем составляет 7 см. На дистанции 200 метров и прицеле "2" наибольшие превышения траектории, 5 см на дистанции 100 метров и 4 см - на 150 метров, практически совпадают с линией прицеливания - оптической осью оптического прицела. Высота линии прицеливания на середине дистанции 200 метров составляет 3,5 см. Происходит практическое совпадение траектории пули и линии прицеливания. Разницей в 1,5 см можно пренебречь. На дистанции 150 метров высота траектории 4 см, а высота оптической оси прицела над горизонтом оружия составляет 17-18 мм; разница по высоте составляет 3 см, что также не играет практической роли.

На расстоянии 80 метров от стрелка высота траектории пули будет 3 см, а высота прицельной линии - 5 см, та же самая разница в 2 см не имеет решающего значения. Пуля ляжет всего на 2 см ниже точки прицеливания. Вертикальный разброс пуль в 2 см настолько мал, что он принципиального значения не имеет. Поэтому, стреляя с делением "2" оптического прицела, начиная с 80 метров дистанции и до 200 метров, цельтесь противнику в переносицу - вы туда и попадете ±2/3 см выше ниже на всей этой дистанции. На 200 метров пуля попадет строго в точку прицеливания. И даже далее, на дистанции до 250 метров, цельтесь с тем же прицелом "2" противнику в "макушку", в верхний срез шапки - пуля после 200 метров дистанции резко понижается. На 250 метров, целясь таким образом, вы попадете ниже на 11 см - в лоб или переносицу.
Вышеописанный способ может пригодиться в уличных боях, когда расстояния в городе и есть примерно 150-250 метров и все делается быстро, на бегу.

Поражаемое пространство его определение и практическое использование в боевой обстановке

При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели, называется поражаемым пространством (глубиной поражаемого пространства).
Глубина поражаемого пространства зависит от высоты цели (она будет тем больше, чем выше цель), от настильности траектории (она будет тем больше, чем настильнее траектория) и от угла наклона местности (на переднем скате она уменьшается, на обратном скате - увеличивается).
Глубину поражаемого пространства можно определить по таблицам превышения траектории над линией прицеливания путем сравнения превышения нисходящей ветви траектории на соответствующую дальность стрельбы с высотой цели, а в том случае, если высота цели меньше 1/3 высоты траектории, то по форме тысячной.
Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с линией прицеливания. Прикрытое пространство его определение и практическое использование в боевой обстановке.

Прикрытое пространство его определение и практическое использование в боевой обстановке

Пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством.
Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория. Глубину прикрытого пространства можно определить по таблицам превышения траектории над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальность стрельбы. Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Мертвое пространство его определения и практическое использование в боевой обстановке

Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (не поражаемым) пространством.
Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство. Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины поражаемого пространства, прикрытого пространства, мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Явление деривации

Вследствие одновременного воздействия на пулю вращательного движения, придающего ей устойчивое положение в полете, и сопротивления воздуха, стремящегося опрокинуть пулю головной частью назад, ось пули отклоняется от направления полета в сторону вращения. В результате этого пуля встречает сопротивление воздуха больше одной своей стороной и поэтому отклоняется от плоскости стрельбы все больше и больше в сторону вращения. Такое отклонение вращающейся пули в сторону от плоскости стрельбы называется деривацией. Это довольно сложный физический процесс. Деривация возрастает непропорционально расстоянию полета пули, вследствие чего последняя забирает все больше и больше в сторону и ее траектория в плане представляет собой кривую линию. При правой нарезке ствола деривация уводит пулю в правую сторону, при левой - в левую.

Дистанция, м Деривация, см Тысячные
100 0 0
200 1 0
300 2 0,1
400 4 0,1
500 7 0,1
600 12 0,2
700 19 0,2
800 29 0,3
900 43 0,5
1000 62 0,6

На дистанциях стрельбы до 300 метров включительно деривация не имеет практического значения. Особенно это характерно для винтовки СВД, у которой оптический прицел ПСО-1 специально смещен влево на 1,5 см. Ствол при этом слегка развернут влево и пули слегка (на 1 см) уходят левее. Принципиального значения это не имеет. На дистанции 300 метров силой деривации пули возвращаются в точку прицеливания, то есть по центру. И уже на дистанции 400 метров пули начинают основательно уводиться вправо, поэтому, чтобы не крутить горизонтальный маховик, цельтесь противнику в левый (от вас) глаз. Деривацией пулю уведет на 3- 4 см вправо, и она попадет противнику в переносицу. На дистанции 500 метров цельтесь противнику в левую (от вас) сторону головы между глазом и ухом - это и будет приблизительно 6-7 см. На дистанции 600 метров - в левый (от вас) обрез головы противника. Деривация уведет пулю вправо на 11-12 см. На дистанции 700 метров возьмите видимый просвет между точкой прицеливания и левым краем головы, где-то над центром погона на плече противника. На 800 метров - дать поправку маховиком горизонтальных поправок на 0,3 тысячной (сетку подать вправо, среднюю точку попадания переместить влево), на 900 метров - 0,5 тысячной, на 1000 метров - 0,6 тысячной.

Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории

Внешняя баллистика

Внешняя баллистика - это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Траектория пули (вид сбоку)

Образование силы сопротивления воздуха

Траектория и ее элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете.

Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха - баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.

Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 15° и начальной скорости 800 м/сек в безвоздушном пространстве полетела бы на дальность 32 620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха.

Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Действие силы сопротивления воздуха на полет пули: ЦТ - центр тяжести; ЦС - центр сопротивления воздуха

Чем глаже поверхность пули, тем меньше сила трения и. сила сопротивления воздуха.

Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.

Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение.

Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклонится не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т. е. вправо. Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха - она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д. Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось - конус с вершиной в центре тяжести. Происходит так называемое медленное коническое, или прецессионное, движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории.

Медленное коническое движение пули


Деривация (вид траектории сверху)

Действие силы сопротивления воздуха на полет гранаты

Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией.

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.

В таблицах стрельбы деривация дается как поправка направления в тысячных. Однако при стрельбе из стрелкового оружия величина деривации незначительная (например, на дальности 500 м она не превышает 0,1 тысячной) и ее влияние на результаты стрельбы практически не учитывается.

Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты.

Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед.

Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому стрельбы улучшается.

Для изучения траектории пули (гранаты) приняты следующие определения.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.


Элементы траектории

Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения.

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения. Если этот угол отрицательный, то он называется углом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания.

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

Точка пересечения траектории с горизонтом оружия называется точкой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули (гранаты) в точке падения называется окончательной скоростью.

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называется вершиной траектории.

Кратчайшее расстояние от вершины траектории до горизонта оружия называется высотой траектории.

Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания.

Угол, заключенный между линией прицеливания и горизонтом оружия, называется углом места цели. Угол места цели считается положительным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия. Угол места цели может быть определен с помощью приборов или по формуле тысячной.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели. Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Траектория пули в воздухе имеет следующие свойства :

Нисходящая ветвь короче и круче восходящей;

Угол падения больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания - на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания - в точке падения;

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей;

Траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

Траектория гранаты (вид сбоку)

Траекторию гранаты в воздухе можно разделить на два участка: активный - полет гранаты под действием реактивной силы (от точки, вылета до точки, где действие реактивной силы прекращается) и пассивный - полет гранаты по инерции. Форма траектории гранаты примерно такая же, как и у пули.

Форма траектории

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол наибольшей дальности, настильные, навесные и сопряженные траектории

Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными.

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибки в определении установки прицела); в этом заключается практическое значение настильной траектории.

Превышение траектории полета пули над точкой прицеливания

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания . При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.