Внутренняя баллистика. Выстрел и его периоды. Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории Элементы баллистики

Пуля, получив при вылете из канала ствола определенную начальную скорость, стремиться по инерции сохранить величину и направление этой скорости.

Если бы полет пули совершался в безвоздушном пространстве, и на нее не действовала сила тяжести, пуля двигалась бы прямолинейно, равномерно и бесконечно. Однако на пулю, летящую в воздушной среде, действуют силы, которые изменяют скорость ее полета и направление движения. Этими силами являются сила тяжести и сила сопротивления воздуха (рис. 4).

Рис. 4. Силы, действующие на пулю во время ее полета

Вследствие совместного действия этих сил пуля теряет скорость и изменяет направление своего движения, перемещаясь в воздухе по кривой линии, проходящей ниже направления оси канала ствола.

Линия, которую описывает в пространстве движущаяся пуля (ее центр тяжести), называется траекторией .

Обычно баллистика рассматривает траекторию над горизонтом оружия - воображаемой бесконечной горизонтальной плоскостью, проходящей через точку вылета (рис. 5).

Рис. 5. Горизонт оружия

Движение пули, а следовательно, и форма траектории зависят от многих условий. Поэтому, чтобы уяснить себе, как образуется в пространстве траектория пули, необходимо рассмотреть прежде всего, как действуют на пулю в отдельности сила тяжести и сила сопротивления воздушной среды.

Действие силы тяжести. Представим себе, что на пулю после вылета ее из канала ствола не действует никакая сила. В этом случае, как говорилось выше, пуля двигалась бы по инерции бесконечно, равномерно и прямолинейно по направлению оси канала ствола; за каждую секунду она пролетела бы одинаковые расстояния с постоянной скоростью, равной начальной. В этом случае, если бы ствол оружия был направлен прямо в цель, пуля, следуя в направлении оси канала ствола, попала бы в нее (рис. 6).

Рис. 6. Движение пули по инерции (если бы не было силы тяжести и сопротивления воздуха)

Допустим теперь, что на пулю действует только одна сила тяжести. Тогда пуля начнет падать вертикально вниз, как и всякое свободно падающее тело.

Если предположить, что на пулю при ее полете по инерции в безвоздушном пространстве действует сила тяжести, то под действием этой силы пуля опустится ниже от продолжения оси канала ствола - в первую секунду - на 4,9 м, во вторую - на 19,6 м и т.д. В этом случае, если навести ствол оружия в цель, пуля никогда в нее не попадет, так как, подвергаясь действию силы тяжести, она пролетит под целью (рис.7).

Рис. 7. Движение пули (если бы на нее действовала сила тяжести,

но не действовало сопротивление воздуха)

Вполне очевидно, что для того, чтобы пуля пролетела определенное расстояние и попала в цель, необходимо направить ствол оружия куда-то выше цели. Для этого нужно, чтобы ось канала ствола и плоскость горизонта оружия составляли некоторый угол, который называется углом возвышения (рис. 8).

Как видно из рис. 8, траектория пули в безвоздушном пространстве, на которую действует сила тяжести, представляет собой правильную кривую, которая называется параболой . Самая высокая точка траектории над горизонтом оружия называется ее вершиной . Часть кривой от точки вылета до вершины называется восходящей ветвью . Такая траектория пули характерна тем, что восходящая и нисходящая ветви совершенно одинаковы, а угол бросания и падения равны между собой.

Рис. 8. Угол возвышения (траектория пули в безвоздушном пространстве)

Действие силы сопротивления воздушной среды. На первый взгляд кажется маловероятным, чтобы воздух, обладающий такой малой плотностью, мог оказывать существенное сопротивление движению пули и этим значительно уменьшать ее скорость.

Однако опытами установлено, что сила сопротивления воздуха, действующего на пулю, выпущенную из винтовки образца 1891/30 гг., представляет собой большую величину - 3,5 кг.

Учитывая, что пуля весит всего лишь несколько граммов, становиться вполне очевидным большое тормозящее действие, которое оказывает воздух на летящую пулю.

Во время полета пуля расходует значительную часть своей энергии на то, чтобы раздвинуть частицы воздуха, мешающие ее полету.

Как показывает фотоснимок пули, летящей со сверхзвуковой скоростью (свыше 340 м/с), перед ее головной частью образуется уплотнение воздуха (рис. 9). От этого уплотнения расходится во все стороны головная баллистическая волна. Частицы воздуха, скользя по поверхности пули и срываясь с ее боковых стенок, образуют позади пули зону разреженного пространства. Стремясь заполнить образовавшуюся пустоту позади пули, частицы воздуха создают завихрения, в результате чего за дном пули тянется хвостовая волна.

Уплотнение воздуха впереди головной части пули тормозит ее полет; разряженная зона позади пули засасывает ее и этим еще больше усиливает торможение; стенки пули испытывают трение о частицы воздуха, что также замедляет ее полет. Равнодействующая этих трех сил и составляет силу сопротивления воздуха.

Рис. 9. Фотоснимок пули, летящей со сверхзвуковой скоростью

(свыше 340 м/сек.)

Огромное влияние, оказываемое сопротивлением воздуха на полет пули, также видно из следующего примера. Пуля, выпущенная из винтовки Мосина образца 1891/30 гг. или из снайперской винтовки Драгунова (СВД). В обычных условиях (при сопротивлении воздуха), имеет наибольшую горизонтальную дальность полета 3400 м, а при стрельбе в безвоздушном пространстве она могла бы пролететь 76 км.

Следовательно, под действием силы сопротивления воздуха траектория пули теряет форму правильной параболы, приобретая форму несимметричной кривой линии; вершина делит ее на две неравные части, из которых восходящая ветвь всегда длиннее и отложе нисходящей. При стрельбе на средние дистанции можно условно принимать отношение длины восходящей ветви траектории к нисходящей, как 3:2.

Вращение пули вокруг своей оси. Известно, что тело приобретает значительную устойчивость, если ему придать быстрое вращательное движение вокруг своей оси. Примером устойчивости вращающегося тела может служить игрушка “волчок”. Невращающийся “волчок” не будет стоять на своей заостренной ножке, но если “волчку” придать быстрое вращательное движение вокруг своей оси, он будет устойчиво стоять на ней (рис. 10).

Чтобы пуля приобрела способность бороться с опрокидывающим действием силы сопротивления воздуха, сохранила устойчивость при полете, ей придают быстрое вращательное движение вокруг своей продольной оси. Это быстрое вращательное движение пуля приобретает благодаря винтообразным нарезам в канале ствола оружия (рис. 11). Под действием давления пороховых газов пуля продвигается по каналу ствола вперед, одновременно вращаясь вокруг своей продольной оси. По вылете из ствола пуля по инерции сохраняет полученное сложное движение - поступательное и вращательное.

Не вдаваясь в подробности объяснения физических явлений, связанных с действием сил на тело, испытывающее сложное движение, необходимо все же сказать о том, что пуля при полете совершает правильные колебания и своей головной частью описывает вокруг траектории окружности (рис. 12). При этом продольная ось пули как бы “следит” за траекторией, описывая вокруг нее коническую поверхность (рис. 13).

Рис. 12. Коническое вращение головной части пули

Рис. 13. Полет вращающейся пули в воздухе

Если применить законы механики к летящей пуле, то станет очевидным, что чем больше скорость ее движения и чем пуля длиннее, тем сильнее воздух стремиться ее опрокинуть. Поэтому пулям патронов разного типа необходимо придавать различную скорость вращения. Так, легкая пуля, выпущенная из винтовки, имеет скорость вращения 3604 об./сек.

Однако вращательное движение пули, столь необходимое для придания ей устойчивости во время полета, имеет и свои отрицательные стороны.

На быстро вращающуюся пулю, как уже было сказано, оказывает непрерывное опрокидывающее действие сила сопротивления воздуха, в связи с чем головная часть пули описывает вокруг траектории окружность. В результате сложения этих двух вращательных движений возникает новое движение, отклоняющее ее головную часть в сторону от плоскости стрельбы1 (рис. 14). При этом одна боковая поверхность пули подвергается давлению частиц больше, чем другая. Такое неодинаковое давление воздуха на боковые поверхности пули и отклоняет ее в сторону от плоскости стрельбы. Боковое отклонение вращающейся пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 15).

Рис. 14. В результате двух вращательных движений пуля постепенно поворачивает головную часть вправо (в сторону вращения)

Рис. 15. Явление деривации

По мере удаления пули от дульного среза оружия величина деривационного отклонения ее быстро и прогрессивно возрастает.

При стрельбе на ближние и средние расстояния деривация не имеет большого практического значения для стрелка. Так, при дальности стрельбы на 300 м деривационное отклонение равно 2 см, а на 600 м - 12 см. Деривацию приходится учитывать только при особо точной стрельбе на дальние расстояния, внося соответствующие поправки в установку прицела, сообразуясь с таблицей деривационных отклонений пули для определенной дальности стрельбы.

1.1.1. Выстрел. Периоды выстрела и их характеристика.

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходит следующее явление. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании заряда образуется большое количество сильно нагретых газов, создающих высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы – вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу.

При сгорании порохового заряда примерно 25-35 % выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25 % энергии – на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40 % энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001 – 0, 06 сек).

При выстреле различают четыре последовательных периода (рис.116):

Предварительный;

Первый или основной;

Третий или период последействия газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течении этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования. Оно достигает 250-500 кг/см в зависимости от устройства нарезов, веса пули и твердости ее оболочки. Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме.

В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество азов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см. пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать. К концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза – дульное давление – составляет у различных образцов оружия 300-900 кг/см. Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости. У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Рис. 116 - Периоды выстрела

Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течении этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/сек, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола . Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

1.1.2. Начальная и максимальная скорость.

Начальная скорость пули (v o)- скорость движения пули у дульного среза ствола.

За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытном путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.

Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет.

Величина начальной скорости пули зависит от:

1)Длины ствола.

2) Веса пули.

3) Веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжания.

1)Чем длиннее ствол, тем больше время на пулю действуют пороховые газы и тем больше начальная скорость пули.

2)При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули. Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули.

3) Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули. Длина ствола и вес порохового заряда увеличивается при конструировании оружия до наиболее рациональных размеров.

С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается.. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полете пули.

В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).

С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули. Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.

Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле (камеры сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать при стрельбе. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули.

Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола.

1.1.3 Отдача оружия и угол вылета (рис. 117).

Отдачей называется движение оружия (ствола) назад во время выстрела . Отдача ощущается в виде толчка в плечо, руку или грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад.

Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кгм и воспринимается стреляющим безболезненно.

При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи - часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Энергия отдачи образуется при стрельбе из такого оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под действием которой дульная часть ствола оружия отклоняется кверху.

Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательные движения – вибрирует.

В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п.

У автоматического оружия, имеющего газоотводное отверстие в стволе, в результате давления газов на переднюю стенку газовой камеры, дульная часть ствола оружия, при выстреле несколько отклоняется в сторону, противоположную расположению газоотводного отверстия.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводит к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола – этот угол называется углом вылета .

Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, и отрицательным, когда она ниже.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при привидении его к нормальному бою.

С целью уменьшения вредного влияния отдачи на результаты стрельбы в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства – компенсаторы. Истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.

1.2. Основные термины и понятия теории внешней баллистики

Внешняя баллистика – это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

1.2.1.Траектория полета пули и её элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете (рис.118) .

Пуля (граната) при полете в воздухе подвергается действию двух сил :

Силы тяжести

Силы сопротивления.

Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится ее опрокинуть.

В результате действия этих сил скорость пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.

Сила сопротивления воздуха вызывается тремя основными причинами (рис. 119):

1) Трением воздуха.

2) Образованием завихрений.

3) Образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем и этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты).

При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующаяся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления. Действие силы сопротивления на полет пули (гранаты) очень велико. Она вызывает уменьшение скорости и дальности полета пули (гранаты).

Для изучения траектории пули (гранаты) приняты следующие определения (рис.120)

1) Центр дульного среза ствола называется точкой вылета . Точка вылета является началом траектории.

2) Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. Горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

3) Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения .

4) Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

5) Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения . Если этот угол отрицательный, то он называется углом склонения (снижения).

6) Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

7) Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания .

8) Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

9) Точка пересечения траектории с горизонтом оружия называется точкой падения.

10) Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения.

11) Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

12) Скорость пули (гранаты) в точке падения называется окончательной скоростью.

13) Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета .

14) Наивысшая точка траектория называется вершиной траектории .

15) Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется исходящей ветвью траектории .

16) Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

17) Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

18) Угол, заключенный между линией возвышения и линей прицеливания, называется углом прицеливания.

19)Угол, заключенный между линей прицеливания и горизонтом оружия, называется углом места цели.

20) Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

21) Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линей прицеливания.

23) Расстояние от точки вылета до цели по линии цели называется наклонной дальностью.

24) Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

25) Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи.

Траектория пули в воздухе имеет следующие свойства:

Нисходящая ветвь короче и круче восходящей;

Угол падения больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания - на

нисходящей ветви траектории, а при стрельбе под небольшими углами бросания – в точке

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей.

1.2.2. Форма траектории и ее практическое значение (рис. 121)

Форма траектории зависит от величины угла возвышения . С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол возвышения , при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35 градусов.

Рис. 121 Формы траектории

Траектории , получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными .

Траектории , получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными .

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную

Траектории , имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными .

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории.

Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результат стрельбы оказывают ошибки в определении установки прицела).

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения – траектория тем более настильна, чем меньше угол падения.

Настильная траектория влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

1.2.3. Прямой выстрел (рис. 122).

Прямой выстрел – выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении.

В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высо-те, как правило, выбирается на нижнем краю цели.

Дальность прямого выстрела зависит от:

Высоты цели;

Настильности траектории;

Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела. Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.

1.2.4. Поражаемое пространство (глубина поражаемого пространства) (рис.123).

При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на

каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.

Поражаемое пространство (глубина поражаемого пространства) – расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели.

Глубина поражаемого пространства зависит от:

От высоты цели (она будет тем больше, чем выше цель);

От настильности траектории (она будет тем больше, чем настильнее

траектория);

От угла наклона местности (на переднем скате она уменьшается, на обратном скате

увеличивается).

В том случае, когда цель расположена на скате или имеется угол места цели, глубину поражаемого пространства определять вышеуказанными способами, при этом полученный результат необходимо умножить на отношение угла падения к углу встречи.

Величина угла встречи зависит от направления ската:

На встречном скате угол встречи равен сумме углов падения и ската;

На обратном скате – разности этих углов;

При этом величина угла встречи зависит также от угла места цели:

При отрицательном угле места цели угол встречи увеличивается на величину угла места

При положительном угле места цели – уменьшается на его величину.

Поражаемое пространство в некоторой степени компенсирует ошибки, допускаемые при выборе прицела, и позволяет округлять измеренное расстояние до цели в большую сторону.

Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с продолжением линии прицеливания.

1.2.5. Прикрытое пространство (рис. 123).

Прикрытое пространство – пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи.

Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория.

Мертвое (не поражаемое) пространство -часть прикрытого пространства, на котором цель не может быть поражена при данной траектории.

Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Глубину прикрытого пространства (ПП) можно определить по таблицам превышения траекторий над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальности стрельбы. Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.

Глубина мертвого пространства равна разности прикрытого и поражаемого пространства.

Знание величины прикрытого и мертвого пространства позволяет правильно использовать укрытия для защиты от огня противника, а также принимать меры для уменьшения мертвых пространств путем правильного выбора огневых позиций и обстрела целей из оружия с более навесной траекторией.

Рис. 123 – Прикрытое, мертвое и поражаемое пространство

1.2.6. Влияние условий стрельбы на полет пули (гранаты).

За нормальные (табличные) условия приняты следующие:

А) Метеорологические условия:

Атмосферное (барометрическое) давление на горизонте оружия 750 мм рт.ст. ;

Температура воздуха на горизонте оружия + 15 град. С. ;

Относительная влажность воздуха 50 % (относительной влажностью

называется отношение количества водяных паров, содержащихся в воздухе, к

наибольшему количеству водяных паров, которое может содержаться в воздухе

при данной температуре);

Ветер отсутствует (атмосфера неподвижна);

Б)Баллистические условия:

Вес пули (гранаты), начальная скорость и угол вылета равны значениям,

указанным в таблицах стрельбы;

Температура заряда + 15 град. С.;т

Форма пули (гранаты) соответствует установленному чертежу;

Высота мушки установлена по данным приведения оружия к нормальному бою; - высота (деления) прицела соответствуют табличным углам прицеливания.

В)Топографические условия:

Цель находится на горизонте оружия;

Боковой наклон оружия отсутствует;

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.

Влияние атмосферного давления

1) С увеличением атмосферного давления плотность воздуха увеличивается, а в следствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули (гранаты).

2) С уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается.

Влияние температуры

1) При повышении температуры плотность воздуха уменьшается, а в следствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули.

2) С понижением температуры плотность и сила сопротивления воздуха увеличиваются и дальность полета пули (гранаты) уменьшаются.

При повышении температуры порохового заряда увеличивается скорость горения пороха, начальная скорость и дальность полета пули (гранаты).

При стрельбе в летних условиях поправки на изменение температуры воздуха и порохового заряда незначительные и практически не учитываются. При стрельбе зимой (в условиях низких температур) эти поправки необходимо учитывать, руководствуясь правилами, указанными в наставлениях по стрелковому делу.

Влияние ветра

1) При попутном ветре уменьшается скорость полета пули (гранаты)относительно воздуха. С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается.Поэтому при попутном ветре пуля полетит дальше, чем при безветрии.

2) При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увеличится и дальность полета пули уменьшится

Продольный (попутный, встречный) ветер на полет пули оказывает незначительное влияние, и в практике стрельбы из стрелкового оружия поправки на такой ветер не вводятся.

При стрельбе из гранатомета поправки на сильный продольный ветер следует учитывать.

3) Боковой ветер оказывает давление на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направления. Боковой ветер оказывает значительное влияние, особенно на полет гранаты, и его необходимо учитывать при стрельбе из гранатометов и стрелкового оружия.

4) Ветер дующий под острым углом к плоскости стрельбы, оказывает одновременно влияние и на изменение дальности полета пули и на боковое ее отклонение.

Влияние влажности воздуха

Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули (гранаты), поэтому оно не учитывается при стрельбе.

Влияние установки прицела

При стрельбе с одной установкой прицела (с одним углом прицеливания), но под различными углами места цели, в результате ряда причин, в т.ч. Изменения плотности воздуха на разных высотах, а следовательно, и силы сопротивления воздуха, изменяется величина наклонной (прицельной дальности полета пули (гранаты).

При стрельбе под небольшими углами места цели (до +_ 15 град.) эта дальность полета пули (гранаты) изменяется весьма незначительно, поэтому допускается равенство наклонной и полной горизонтальной дальности полета пули, т.е. неизменность формы (жесткость) траектории (рис. 124).


Траекторией называется кривая линия, описываемая центром тяжести пули в полете.

Рис. 3. Траектория


Рис. 4. Параметры траектории полета пули

Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее.

В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Параметр
траектории
Характеристика параметра Примечание
Точка вылета Центр дульного среза ствола Точка вылета является началом траектории
Горизонт оружия Горизонтальная плоскость, проходящая через точку вылета Горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения
Линия возвышения Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия
Плоскость стрельбы Вертикальная плоскость, проходящая через линию возвышения
Угол возвышения Угол, заключенный между линией возвышения и горизонтом оружия Если этот угол отрицательный, то он называется углом склонения (снижения)
Линия бросания Прямая, линия, являющаяся продолжением оси канала ствола в момент вылета пули
Угол бросания Угол, заключенный между линией бросания и горизонтом оружия
Угол вылета Угол, заключенный между линией возвышения и линией бросания
Точка падения Точка пересечения траектории с горизонтом оружия
Угол падения Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия
Полная горизонтальная дальность Расстояние от точки вылета до точки падения
Окончательная скоростью Скорость пули в точке падения
Полное время полета Время движения пули от точки вылета до точки падения
Вершина траектории Наивысшая точка траектории
Высота траектории Кратчайшее расстояние от вершины траектории до горизонта оружия
Восходящая ветвь Часть траектории от точки вылета до вершины
Нисходящая ветвь Часть траектории от вершины до точки падения
Точка прицеливания (наводки) Точка на цели или вне ее, в которую наводится оружие
Линия прицеливания Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания
Угол прицеливания Угол, заключенный между линией возвышения и линией прицеливания
Угол места цели Угол, заключенный между линией прицеливания и горизонтом оружия Угол места цели считается положительным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия.
Прицельная дальностью Расстояние от точки вылета до пересечения траектории с линией прицеливания
Превышение траектории над линией прицеливания Кратчайшее расстояние от любой точки траектории до линии прицеливания
Линия цели Прямая, соединяющая точку вылета с целью При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания
Наклонная дальностью Расстояние от точки вылета до цели по линии цели При стрельбе прямой наводкой наклонная дальность практически совпадает с прицельной дальностью.
Точка встречи Точка пересечения траектории с поверхностью цели (земли, преграды)
Угол встречи Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°
Прицельная линией Прямая линия, соединяющая середину прорези прицела с вершиной мушки
Прицеливание (наводка) Придание оси канала ствола оружия необходимого для стрельбы положения в пространстве Для того чтобы пуля долетела до цели и попала в нее или желаемую точку на ней
Горизонтальная наводкой Придание оси канала ствола требуемого положения в горизонтальной плоскости
Вертикальной наводкой Придание оси канала ствола требуемого положения в вертикальной плоскости

Траектория пули в воздухе имеет следующие свойства:

  • нисходящая ветвь короче и круче восходящей;
  • угол падения больше угла бросания;
  • окончательная скорость пули меньше начальной;
  • наименьшая скорость полета пули при стрельбе под большими углами бросания — на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания — в точке падения;
  • время движения пули по восходящей ветви траектории меньше, чем по нисходящей;
  • траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

Виды траекторий и их практическое значение.

При стрельбе из любого образца оружия с увеличением угла возвышения от 0° до 90° горизонтальная дальность сначала увеличивается до определенного предела, а затем уменьшается до нуля (рис. 5).

Угол возвышения, при котором получается наибольшая дальность, называется углом наибольшей дальности . Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Угол наибольшей дальности делит все траектории на два вида: на траектории настильные и навесные (рис. 6).


Рис. 5. Поражаемая зона и наибольшие горизонтальные и прицельные дальности при стрельбе под различными углами возвышения. Рис. 6. Угол наибольшей дальности. настильные, навесные и сопряженные траектории

Настильными траекториями называют траектории, получаемые при углах возвышения, меньших угла наибольшей дальности (см. рис, траектории 1 и 2) .

Навесными траекториями называют траектории, получаемые при углах возвышения, больших угла наибольшей дальности (см. рис, траектории 3 и 4) .

Сопряженными траекториями называют траектории, получаемые при одной и той же горизонтальной дальности двумя траекториями, одна из которых настильная, другая — навесная (см. рис, траектории 2 и 3).

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибка в определении установки прицела): в этом заключается практическое значение траектории.

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильная, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения. Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.

Читать полный конспект

Выстрел представляет собой сложный комплекс физических и химических явлений. Событие выстрела можно условно разделить на две стадии - движение снаряда в канале ствола орудия и комплекс явлений, происходящих после вылета снаряда из ствола.

Выстрелом называется выбрасывание пули из канала ствола под действием пороховых газов, образующихся при сгорании порохового заряда. От удара бойка по капсюлю патрона возникает пламя, воспламеняющее пороховой заряд. При этом образуется большое количество сильно нагретых газов, которые создают высокое давление, действующее во все стороны с одинаковой силой. При давлении газов 250–500 кг/см 2 пуля сдвигается с места и врезается в нарезы канала ствола, получая вращательное движение. Порох продолжает гореть, следовательно, количество газов увеличивается. Затем вследствие быстрого повышения скорости движения пули объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать. Однако скорость пули в канале ствола продолжает расти, так как газы, хотя и в меньшей степени, но по-прежнему давят на нее. Пуля продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Весь процесс выстрела происходит за очень короткий промежуток времени (0,001–0,06 с). Далее полет пули в воздухе продолжается по инерции и в значительной степени зависит от ее начальной скорости.

Начальной скоростью пули называется скорость, с которой пуля покидает канал ствола. Величина начальной скорости пули зависит от длины ствола, массы пули, массы порохового заряда и других факторов. Возрастание начальной скорости увеличиваете дальность полета пули, ее пробивное и убойное действие, уменьшает влияние внешних условий на ее полет. Движение оружия назад во время выстрела называется отдачей. Давление пороховых газов в канале ствола действует во все стороны с одинаковой силой. Давление газов на дно пули заставляет ее двигаться вперед, а давление на дно гильзы передается на затвор и вызывает движение оружия назад. При отдаче образуется пара сил, под действием которой дульная часть оружия отклоняется кверху. Сила отдачи действует вдоль оси канала ствола, а упор приклада в плечо и центр тяжести оружия расположены ниже направления этой силы, поэтому при стрельбе дульная часть оружия отклоняется кверху.

Отдача стрелкового оружия ощущается в виде толчка в плечо, руку или в грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у автомата Калашникова невелика и воспринимается стреляющим безболезненно. Правильное и однообразное удержание оружия уменьшает влияние отдачи и повышает результативность стрельбы. Наличие дульных тормозов-компенсаторов ил компенсаторов у оружия улучшает результаты стрельбы очередями и уменьшает отдачу.

В момент выстрела ствол оружия в зависимости от угла возвышения занимает определенное положение. Полет пули в воздухе начинается по прямой линии, представляющей продолжение оси канала ствола в момент вылета пули. Эта линия называется линией бросания . При полете в воздухе на пулю действуют две силы: сила тяжести и сила сопротивления воздуха. Сила тяжести все больше отклоняет пулю вниз от линии бросания, а сила сопротивления воздуха замедляет движение пули. Под действием этих двух сил пуля продолжает полет по кривой, расположенной ниже линии бросания. Форма траектории зависит от величины угла возвышения и начальной скорости пули, она влияет на величину дальности прямого выстрела, прикрытого, поражаемого и мертвого пространства. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность уменьшаться.

Угол возвышения, при котором полная горизонтальная дальность полета пули становится наибольшей, называется углом наибольшей дальности . Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35 °. Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными.

Прямым выстрелом называется выстрел, при котором траектория полета пули не поднимается над линией прицеливания выше цели на всем своем протяжении.

Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и настильнее траектория, тем больше дальность прямого выстрела и, следовательно, расстояние, на котором цель может быть поражена с одной установкой прицела. Практическое значение прямого выстрела заключается в том, что в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте будет выбираться по нижнему обрезу цели.

Пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством .

Прикрытое пространство тем больше, чем выше укрытие и настильнее траектория. Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (непоражаемым) пространством. Оно тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.

Периодизация выстрела

Выстрел происходит в очень короткий промежуток времени (0,001-0,06с.). При выстреле различают четыре последовательных периода:

  • предварительный;
  • первый, или основной;
  • второй;
  • третий, или период последних газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250 - 500 кг/см 2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки (например, у стрелкового оружия под патрон образца 1943 г. давление форсирования равно около 300 кг/см 2). Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.

Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины (например, у стрелкового оружия под патрон образца 1943г. - 2800 кг/см 2 , а под винтовочный патрон 2900 кг/см 2). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4 - 6 см пути. Затем вследствие быстрого скорости движение пули объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится до момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза дульное давление составляет у различных образцов оружия 300 - 900 кг/см 2 (например, у самозарядного карабина Симонова - 390 кг/см 2 , у станкового пулемета Горюнова - 570 кг/см 2). Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

Рис. 1. Артиллерия линейного корабля "Марат"

Баллистика (от греч. βάλλειν - бросать) - наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

Основные понятия

Рис. 2. Элементы стрельбы корабельной артиллерии

Основной задачей стрельбы является попадание в цель. Для этого орудию необходимо придать строго определённое положение в вертикальной и горизонтальной плоскостях. Если навести орудие так, чтобы ось канала ствола была направлена на цель, то в цель мы не попадём, так как траектория полёта снаряда будет всегда проходить ниже направления оси канала ствола, снаряд до цели не долетит. Для формализации терминологического аппарата рассматриваемой тематики, введём основные определения, используемые при рассмотрении теории артиллерийской стрельбы.
Точкой вылета называется центр дульного среза орудия.

Точкой падения называется точка пересечения траектории с горизонтом орудия.

Горизонтом орудия называется горизонтальная плоскость, проходящая через точку вылета.

Линией возвышения называется продолжение оси канала ствола наведённого орудия.

Линией бросания ОВ называется продолжение оси канала ствола в момент выстрела. В момент выстрела орудие вздрагивает, вследствие чего снаряд бросается не по линии возвышения ОА, а по линии бросания ОВ (см. рис. 2).

Линией цели ОЦ называется линия, соединяющая орудие с целью (см. рис. 2).

Линией прицеливания (визирования) называется линия, идущая от глаза наводчика через оптическую ось прицела в точку наводки. При стрельбе прямой наводкой, когда линия прицеливания направлена в цель, линия прицеливания совпадает с линией цели.

Линией падения называется касательная к траектории в точке падения.

Рис. 3. Стрельба по вышележащей цели

Рис. 4. Стрельба по нижележащей цели

Углом возвышения (греческая фи) называется угол между линией возвышения и горизонтом орудия. Если ось канала ствола направлена ниже горизонта, то этот угол называется углом снижения (см. рис. 2).

Дальность стрельбы из орудия зависит от угла возвышения и условий стрельбы. Следовательно, чтобы добросить снаряд до цели, надо орудию придать такой угол возвышения, при котором дальность стрельбы будет соответствовать расстоянию до цели. В таблицах стрельбы указано какие углы прицеливания нужно придать орудию, чтобы снаряд полетел на нужную дальность.

Углом бросания (греческая тета ноль) называется угол между линией бросания и горизонтом орудия (см. рис. 2).

Углом вылета (греческая гамма) называется угол между линией бросания и линией возвышения. В морской артиллерии угол вылета имеет малую величину и его иногда в расчёт не принимают, полагая, что снаряд бросается под углом возвышения (см. рис. 2).

Углом прицеливания (греческая альфа) называется угол между линией возвышения и линией прицеливания (см. рис. 2).

Углом места цели (греческая эпсилон) называется угол между линией цели и горизонтом орудия. При стрельбе корабля по морским целям угол места цели равен нулю, так как линия цели направлена по горизонту орудия (см. рис. 2).

Углом падения (греческая тета с латинской буквой с) называется угол между линией цели и линией падения (см. рис. 2).

Углом встречи (греческая мю) называется угол между линией падения и касательной к поверхности цели в точке встречи (см. рис. 2).
От значения величины этого угла сильно зависит стойкость брони корабля, по которому ведётся огонь, к пробитию снарядами. Очевидно, чем ближе этот угол к 90 градусам, тем вероятность пробития выше, верно и обратное.
Плоскостью стрельбы называется вертикальная плоскость, проходящая через линию возвышения. При стрельбе корабля по морским целям линия прицеливания направлена по горизонту, в этом случае угол возвышения равен углу прицеливания. При стрельбе корабля по береговым и воздушным целям угол возвышения равен сумме угла прицеливания и угла места цели (см. рис. 3). При стрельбе береговой батареи по морским целям угол возвышения равен разности угла прицеливания и угла места цели (см. рис. 4). Таким образом, величина угла возвышения равна алгебраической сумме угла прицеливания и угла места цели. Если цель выше горизонта, угол места цели имеет знак "+", если цель ниже горизонта, угол места цели имеет знак "-".

Влияние сопротивления воздуха на траекторию полёта снаряда

Рис. 5. Изменение траектории полёта снаряда от сопротивления воздуха

Траектория полёта снаряда в безвоздушном пространстве представляет собой симметричную кривую линию, называемую в математике параболой. Восходящая ветвь совпадает по форме с нисходящей ветвью и, следовательно, угол падения равен углу возвышения.

При полёте в воздухе снаряд расходует часть скорости на преодоление сопротивления воздуха. Таким образом, на снаряд в полёте действуют две силы - сила тяжести и сила сопротивления воздуха, которая уменьшает скорость и дальность полёта снаряда, как проиллюстрировано на рис. 5. Величина силы сопротивления воздуха зависит от формы снаряда, его размеров, скорости полёта и от плотности воздуха. Чем длиннее и заострённее головная часть снаряда, тем сопротивление воздуха меньше. Форма снаряда особенно сказывается при скоростях полёта, превышающих 330 метров в секунду (то есть при сверхзвуковых скоростях).

Рис. 6. Недальнобойный и дальнобойный снаряды

На рис. 6 слева представлен недальнобойный снаряд старого образца и более продолговатый, заострённый дальнобойный снаряд справа. Также видно, что у дальнобойного снаряда в донной части делается коническое сужение. Дело в том, что сзади снаряда образуется разреженное пространство и завихрения, которые значительно увеличивают сопротивление воздуха. Сужением дна снаряда достигается уменьшение величины сопротивления воздуха, возникающего вследствие разреженности и завихрений за снарядом.

Сила сопротивления воздуха пропорциональна скорости его полёта, но не прямо пропорциональна. Зависимость формализуется более сложно. Вследствие действия сопротивления воздуха у траектории полёта снаряда восходящая ветвь длиннее и отложе нисходящей. Угол падения больше угла возвышения.

Помимо уменьшения дальности полёта снаряда и изменения формы траектории, сила сопротивления воздуха стремится опрокинуть снаряд, как это видно из рис. 7.

Рис. 7. Силы, действующие на снаряд в полёте

Следовательно, невращающийся продолговатый снаряд под действием сопротивления воздуха будет переворачиваться. При этом снаряд может попасть в цель в любом положении, в том числе боком или дном, как показано на рис. 8.

Рис. 8. Вращение снаряда в полёте под действием силы сопротивления воздуха

Чтобы снаряд в полёте не переворачивался, ему придают вращательное движение с помощью нарезов в канале ствола.

Если же рассмотреть воздействие воздуха на вращающийся снаряд, то можно увидеть, что это приводит к боковому отклонению траектории от плоскости стрельбы, как изображено на рис. 9.

Рис. 9. Деривация

Деривацией называется отклонение снаряда от плоскости стрельбы вследствие его вращения. Если нарезы вьются слева вверх направо, то снаряд отклоняется вправо.

Влияние угла возвышения и начальной скорости снаряда на дальность его полёта

Дальность полёта снаряда зависит от углов возвышения, под которыми он бросается. Увеличение дальности полёта с увеличением угла возвышения происходит только до некоторого предела (40-50 градусов), при дальнейшем увеличении угла возвышения, дальность начинает уменьшаться.

Углом предельной дальности называется угол возвышения, при котором получается наибольшая дальность стрельбы при данной начальной скорости и снаряде. При стрельбе в безвоздушном пространстве наибольшая дальность полёта снаряда получается при угле возвышения 45 градусов. При стрельбе в воздухе величина угла предельной дальности отличается от этого значения и у разных орудий бывает неодинаковой (обычно меньше 45 градусов). Для сверхдальнобойной артиллерии, когда снаряд значительную часть пути летит на большой высоте в сильно разреженном воздухе, угол предельной дальности бывает более 45 градусов.

Для орудия данного образца и при стрельбе определенным типом боеприпаса каждому углу возвышения соответствует строго определенная дальность полёта снаряда. Следовательно, чтобы забросить снаряд на нужное нам расстояние, необходимо орудию придать угол возвышения, соответствующий этому расстоянию.

Траектории снарядов, выпущенных при углах возвышения меньших, чем угол предельной дальности, называются настильными траекториями .

Траектории снарядов, выпущенных при углах возвышения больших, чем угол предельной дальности, называются "навесными траекториями" .

Рассеивание снарядов

Рис. 10. Рассеивание снарядов

Если из одного и того же орудия, одинаковым боеприпасом, при одном и том же направлении ствола орудия, при одинаковых, на первый взгляд, условиях произвести несколько выстрелов, то снаряды не попадут в одну точку, а полетят по разным траекториям, образуя пучок траекторий, как проиллюстрировано на рис. 10. Это явление называется рассеиванием снарядов .

Причиной рассеивания снарядов является невозможность достижения абсолютно одинаковых условий для каждого выстрела. В таблице приведены основные факторы, вызывающие рассеивание снарядов и возможные пути уменьшения этого рассеивания.

Основные группы причин рассеивания Условия, порождающие причины рассеивания Меры борьбы за уменьшение рассеивания
1. Разнообразие начальных скоростей
  • Разнообразие свойств пороха (состав, содержание влаги и растворителя).
  • Разнообразие веса зарядов.
  • Разнообразие температуры зарядов.
  • Разнообразие плотности заряжания.

(размеры и расположение ведущего пояска, досылка снарядов).

  • Разнообразие формы и веса снарядов.
  • Хранение в герметической укупорке. Каждую стрельбу производить зарядами одной партии.
  • Поддержание должной температуры в погребе.
  • Единообразие заряжания.
  • Каждую стрельбу производить снарядами одного весового знака.
2. Разнообразие углов бросания
  • Разнообразие углов возвышения (мёртвые ходы в прицельном устройстве и в механизме вертикального наведения).
  • Разнообразие углов вылета.
  • Разнообразие наводки.
  • Тщательный уход за материальной частью.
  • Хорошая тренировка наводчиков.
3. Разнообразие условий в полёте снаряда

Разнообразие влияния воздушной среды (плотность, ветер).

Площадь, на которую падают снаряды, выпущенные из орудия при одном и том же направлении канала ствола, называется площадью рассеивания .

Середина площади рассеивания называется средней точкой падения .

Воображаемая траектория, проходящая через точку вылета и среднюю точку падения, называется средней траекторией .

Площадь рассеивания имеет форму эллипса, поэтому площадь рассеивания называется эллипсом рассеивания .

Интенсивность, с которой снаряды попадают в различные точки эллипса рассеивания, описывается двумерным Гауссовским (нормальным) законом распределения. Отсюда, если следовать в точности законам теории вероятностей, можно сделать вывод, что эллипс рассеивания является идеализацией. Процент попаданий снарядов внутрь эллипса описывается правилом трёх сигма, а именно, вероятность попадания снарядов в эллипс, величина оси которого равна утроенному квадратному корню из дисперсий соответствующих одномерных Гауссовских законов распределения равна 0.9973.
В силу того, что количество выстрелов из одного орудия, особенно крупного калибра, как уже было указано выше, в силу износа зачастую не превышает и одной тысячи, этой неточностью можно пренебречь и считать, что все снаряды попадают в эллипс рассеивания. Любое сечение пучка траекторий полёта снарядов также представляет собой эллипс. Рассеивание снарядов по дальности всегда больше, чем в боковом направлении и по высоте. Величину срединных отклонений можно найти в основной таблице стрельбы и по ней определить размеры эллипса.

Рис. 11. Стрельба по цели, не имеющей глубины

Поражаемым пространством называется пространство, на протяжении которого траектория проходит через цель.

Согласно рис. 11, поражаемое пространство равно расстоянию по горизонту АС от основания цели до конца траектории, проходящей через вершину цели. Каждый снаряд, упавший вне поражаемого пространства, прошёл либо выше цели, либо упал до неё. Поражаемое пространство ограничивается двумя траекториями - траекторией ОА, проходящей через основание цели, и траекторией ОС, проходящей через верхнюю точку цели.

Рис. 12. Стрельба по цели, имеющей глубину

В случае, если поражаемая цель имеет глубину, величина поражаемого пространства увеличивается на величину глубины цели, как проиллюстрировано на рис. 12. Глубина цели будет зависеть от размеров цели и её положения относительно плоскости стрельбы. Рассмотрим цель, наиболее вероятную для морской артиллерии - судно неприятеля. В таком случае, если цель идёт от нас или на нас, глубина цели равна её длине, когда цель идёт перпендикулярно к плоскости стрельбы, глубина равна ширине цели, как проиллюстрировано на рисунке.

Учитывая тот факт, что эллипс рассеивания имеет большую длину и малую ширину, можно сделать вывод о том, что при малой глубине цели снарядов в цель попадает меньше, чем при большой её глубине. То есть, чем больше глубина цели, тем легче в неё попасть. С увеличением дальности стрельбы поражаемое пространство цели уменьшается, так как увеличивается угол падения.

Прямым выстрелом называется выстрел, при котором всё расстояние от точки вылета до точки падения является поражаемым пространством (см. рис. 13).

Рис. 13. Прямой выстрел

Это получается в том случае, если высота траектории не превышает высоту цели. Дальность прямого выстрела зависит от крутизны траектории и высоты цели.

Дальностью прямого выстрела (или дальностью настильности) называется расстояние, на котором высота траектории не превышает высоты цели.

Наиболее важные труды по баллистике

XVII век

  • - теория Тартальи,
  • 1638 год - труд Галилео Галилея о параболическом движении тела, брошенного под углом.
  • 1641 год - ученик Галилея – Торичелли, развивая параболическую теорию выводит выражение горизонтальной дальности, что легло впоследствии в основу артиллерийских таблиц стрельбы.
  • 1687 год - Исаак Ньютон доказывает влияние сопротивления воздуха на брошенное тело, вводя понятие коэффициента формы тела, а также проводя прямую зависимость сопротивления движения от поперечного сечения (калибра) тела (снаряда).
  • 1690 год - Иван Бернулли математически описывает главную задачу баллистики, решив задачу определения движения шара в сопротивляющейся среде.

XVIII век

  • 1737 год - Биго де Морог (1706-1781) опубликовал теоретическое исследование вопросов внутренней баллистики, что заложило основу рационального конструирования орудий.
  • 1740 год - англичанин Робинс научился определять начальные скорости снаряда и доказал, что парабола полета снаряда имеет двоякую кривизну – ее нисходящая ветвь короче восходящей, дополнительно он опытным путем пришел к выводу, что сопротивление воздуха полету снарядов при начальных скоростях выше 330 м/с возрастает скачкообразно и должно рассчитываться по иной формуле.
  • Вторая половина XVIII века
  • Даниил Бернулли занимается вопросом сопротивления воздуха движению снарядов;
  • математик Леонард Эйлер развивает работы Робинса, труды Эйлера по внутренней и внешней баллистике ложатся в основу создания артиллерийских таблиц стрельбы.
  • Мордашев Ю. Н., Абрамович И. Е., Меккель М. А. Учебник комендора палубной артиллерии. М.: Военное издательство Министерства вооружённых сил союза ССР. 1947. 176 с.