Центры производства меди в России: характеристика, главные предприятия. Медная руда

Медь - один из первых металлов, который стал широко использоваться человеком.

Легкоплавкость меди сделала ее первым металлом, выплавляемым человеком. Она стала основой зарождающейся металлургии сплавов, создав орудия Бронзового века. Столетия спустя высокая электропроводность меди сделала ее главным материалом при изготовлении электрических проводов и генераторов. Она сделала возможной вторую промышленную революцию, заложив основы электротехники.

Михеевское месторождение медно-порфировых руд в Челябинской области - одно из крупнейших медных месторождений в России: международной независимой аналитической консультационной группой CRU «Михеевское» включено в число 50 крупнейших медных месторождений мира.

1. В настоящее время, есть технологии которые позволяют извлекать медь из руды с содержанием – 0,4%! Делают это так.

2. Карьер.

3. Медно-порфировые руды здесь содержат медь, золото, серебро.

На месторождении построен один из самых больших в России медных горно-обогатительных комбинатов по переработке до 18 млн тонн медной руды в год.

Горный взрыв.

5. Для разрыхления горной массы буровые установки бурят скважины, куда закладывается взрывчатое вещество.

6. После взрыва экскаваторы начинают погрузку руды в самосвалы

7. Огромные карьерные экскаваторы Komatsu PC4000 с объемом ковша 22 куб.м - надежные, высокопроизводительные и эффективные - добывают медную руду из карьера.

9. Самосвалы Komatsu транспортируют крупные куски руды до 1 м в диаметре к дробильному комплексу, расположенному в карьере на отметке 220 м, а также складируют пустую породу в отвалах. Бульдозеры сгребают отвальные породы, очищая территорию и формируя отвалы.

10. Очень впечатляет, когда мимо тебя проносится махина весом более 300 тонн на скорости 50 км/ч!

11. Разрыхлённую породу, огромные машины привозят на «Гирационную дробилку» производительностью 4 тысяч тонн руды в час.

12. Разгрузка.

13. Самосвалы засыпают руду с двух сторон. После этого дробилка дробит породу на куски до 150 мм, для получения мелких фракц

14. Сброс ста восьмидесяти тонн руды в дробилку.

15. Гирационная дробилка состоит из двух конусов, между которыми происходит дробление продукта. Неподвижный конус имеет внутреннюю рабочую поверхность, облицованную плитами из износостойкой стали.

16. С дробилки руда поступает на движущийся конвейер длиной 1 414 м, который транспортирует ее на обогатительную фабрику.

17. Но, часть руды, засыпается в рудное хранилище.

18. На запасах руды из рудного склада, комбинат может работать трое суток.

19. Со склада руда с помощью пластинчатых питателей поступает сразу на два конвейера, которые ведут на обогатительную фабрику.

20. Руда проходит 2 стадии измельчения в огромных мельницах: сначала при помощи помольных шаров измельчается крупная руда, затем в трех дробилках додрабливается галечная руда.

21. Мельница.

23. Фундамент флотационных машин.

24. Здесь получается пульпа.

25. Пульпа - взвесь частичек ценной руды и воды + флотационный реагент. Флотационный реагент, смачивает частички ценной руды, но не смачивает частички пустой породы. После смешения, в пульпу подаётся воздух. Воздушные пузырьки всплывая, цепляют на себя частички ценной руды.

Эта пена и несёт ценную руду.

Затем пульпа поступает в отстойник, где частички пустой породы оседают.

26. Когда частичка ценной руды, покрытая флотационным реагентом, встречается с пузырьком воздуха, вода не смачивая флотационный реагент, скатывается с поверхности частички. И частичка прикрепляется к пузырьку. Крупинки пустой породы, смачиваются водой и к пузырькам не прикрепляются. Воздушные пузырьки, вместе с ценной породой всплывают.

Процесс контролируется постоянно. Для ручного анализа пульпы, оператору необходимо 4-5 часов. Машина проводит эту операцию за минуты.

27. Цех флотационных машин.

28. Цикл замкнутый. По одним трубам идёт обогащённая руда, по другим отработанная порода. Пена с ценной рудой, сдвигается в приёмный бункер. Пузырьки лопаются и руда оседает в бункере.

31. Вся система контролируется тремя операторами.

32. Получившийся концентрат поступает в сгустители и сгущается до 60–65% твердого, после чего отправляется в прессы на фильтрацию.

34. В конце пустая порода отгружается в хвостохранилище. Хвостохранилище имеет замкнутый цикл и вода после осветления снова подается на фабрику после
вторичного использования.

35. Был приятно удивлён, как работает это производство. Всё чётко и слаженно. Очень понравилась чистота и забота об экологии, что большая редкость.

Везде, где можно, посажены деревья и кустарники. Смога и «выхлопа» нет. Воздух над комбинатом прозрачен. Я уезжал с сожалением, что много чего не успел отснять. Придётся напросится в гости еще раз.

Особую опасность для окружающей среды района представляет радиационное загрязнение атмосферы радоном и его короткоживущими дочерними продуктами распада, а также долгоживущими естественными радионуклидами (ЕРН), содержащимися в витающей минеральной пыли (радиоактивных аэрозолях). Радиоактивные аэрозоли поступают в воздушную среду при буровзрывных работах, при дроблении руды на обогатительных фабриках, а также при пылении отвалов, хвостохранилищ и складов готовой продукции. Имеющаяся гидравлическая связь между подземными водоносными горизонтами создает условия для проникновения в них загрязненных поверхностных вод. До начала промышленного освоения района речные воды по качеству были близки к питьевым. В водах колодцев и родников отсутствовали даже такие индикаторы техногенного загрязнения, как нитраты и нитриты. В настоящий период в них присутствуют азот аммонийный, нитраты, нитриты, ТМ, техногенная органика и нефтепродукты. Общая минерализация подземных вод увеличилась в 3 раза, содержание в них сульфатов в 5–6 раз.

    Состояние и перспективы железорудной промышленности Урала.

Уральская железорудная провинция является второй в Российской Федерации по количеству запасов железных руд, которые превышают 13 млрд т. Большая их часть заключена в месторождениях ванадийсодержащих титаномагнетитовых руд Свердловской области, крупнейшими из которых являются Гусевогорское и Качканарское. Руды их комплексные, главным компонентом в них является титан, попутными – ванадий, железо и фосфор в составе апатита. Содержание железа в рудах таких объектов невелико, всего 16,6%. Количество прогнозных ресурсов, локализованных на Урале, невелико; перспективы выявления новых объектов имеются лишь на севере Урала.

Бакальская группа железорудных месторождений находится на западном склоне Южного Урала в Саткинском районе Челябинской области. Суммарные запасы сырья состоянию на 1 января 2007 года составляли 994,0 млн. тонн, в том числе, сидеритов с содержанием железа в руде 28-32% - 428 млн т.

Освоение Сосновского карьера было начато в 2008 году. Общий объем запасов оценивается в 70 млн.т, планируется добывать 1,3 млн.т. Руда Теченского месторождения содержит до 50 % железа и мало примесей, т.е. она достаточно высокого качества.

    Запасы и ресурсы меди в России, пространственное распределение ресурсов меди (показать на карте).

Российские балансовые запасы меди составляют 92,7 млн т; это почти в пять раз меньше, чем в недрах лидера мировой медной промышленности – Чили. По производству меди Россия занимает седьмое место в мировом рейтинге производителей горнорудной медной продукции, ежегодно обеспечивая до 4,5% добываемой в мире меди; выпуск металла в стране в семь раз меньше, чем в Чили.

Прогнозные ресурсы меди в России достигают 69 млн. т.

Ресурсный потенциал российских месторождений меди, тыс. т.:

Запасы и ресурсы меди в России, млн.т.:

Пространственное распределение запасов меди в России:

Главным источником меди в России является Норильско-Хараелахская металлогеническая зона (Красноярский край). Здесь, в Норильском рудном районе, сконцентрированы крупнейшие сульфидные медно-никелевые месторождения страны: Октябрьское, содержащее почти четверть российских запасов меди, и Талнахское (более 10%). Месторождение Октябрьское уникально; в мире среди месторождений такого типа подобных ему по объему и качеству медных руд нет. Руды Октябрьского и Талнахского месторождений в среднем содержат 1,1-1,7% меди, в «медистых» рудах ее содержание увеличивается до 2,5-4,5%, а в «богатых» (массивных) рудах – до 2,7-5,8%. В месторождениях Южного и Среднего Урала содержится около 23% запасов меди России; подавляющее большинство их относится к медно-колчеданному типу. Крупнейший из таких объектов – Гайское месторождение в Оренбургской области – заключает 4,6 млн т разведанных запасов меди при среднем содержании ее в рудах 1,3%; руды содержат также цинк (более 0,5%), кадмий, золото и серебро. Перспективы наращивания сырьевой базы меди Урала оцениваются как высокие, здесь локализовано более 3,3 млн. т прогнозных ресурсов меди категории Р1, большая часть – в медноколчеданных проявлениях.

    Месторождения меди в Челябинской области и Башкирии: воздействие на окружающую среду.

Михеевское месторождение медно-порфировых руд. Расположено в Варненском р-не, открыто в 1987. Рудное тело представляет собой дайковое поле в массиве гранитоидов. В результате исследования на Михеевском месторождении выделены следующие типы руд: окисленные, рыхлые сульфидные, скальные (первичные) сульфидные. В минеральном составе окисленных руд преобладают гётит и малахит; сульфидных - пирит; реже встречается халькопирит, в верхних горизонтах присутствуют лимонит и малахит. Штокверк Михеевского месторождение имеет форму вытянутого опрокинутого конуса, что делает возможным открытый способ отработки месторождение (обеспечен низкий коэффициент вскрыши). Содержание меди в скважинах до 1,5-4,0% (ср. 0,5-0,6%). Запасы меди на Михеевском месторождение составили ок. 1,5 млн. т.

Томинское месторождение является одним из крупнейших медных месторождений в России: доказанные эксплуатационные запасы руды на месторождении достигают 331 миллион тонн. Международной независимой аналитической консультационной группой CRU месторождение включено в 50 крупнейших медных месторождений мира. На месторождении РМК планирует разработать 331 млн. тонн руды, из которой извлечь 1,5 млн. тонн меди, 31 тонна золота и 71 тонна – серебра. Содержание меди на Томинском месторождении достаточно низкое: в среднем 0,58%.

Крупные месторождения медноколчеданных руд – Учалинское, Сибайское, Подольское, Юбилейное, Ново-Учалинское, Западно-Озерное, Октябрьское – сосредоточены на территории Учалинского, Баймакского и Хайбуллинского районов Башкирского Зауралья. Месторождения медноколчеданных руд Республики Башкортостан составляют значительную часть сырьевой базы цветной металлургии Урала. Республика является одним из крупнейших производителей медных и цинковых концентратов. Доля республики в общероссийской добыче меди в концентратах составляет 10-12 %, в общеуральской – 35 %.

    Запасы и ресурсный потенциал никеля в России (показать на карте).

По количеству запасов никеля Россия находится на втором месте в мире, уступая лишь Австралии; в ее недрах заключено около 14% мировых запасов металла. В то же время ресурсная база России невелика и характеризуется невысокой степенью достоверности: из 12,8 млн т прогнозных ресурсов никеля на долю наиболее достоверной категории Р1 приходится только 14,4%. Большая часть прогнозных ресурсов, в том числе более 46% ресурсов категории Р1 , локализовано в Норильско-Хараелахской металлогенической зоне на севере Красноярского края. Руды крупнейшего Октябрьского и Талнахского месторождений содержат в среднем 0,7-0,85% никеля, в богатых – 3,14-3,53%. На втором месте Имандра-Варзугская металлогеническая зона (Ждановское месторождение). Содержание никеля в рудах Ждановского месторождения невелико – 0,56%.

Ресурсный потенциал никелевых месторождений России:

Распределение балансовых запасов никеля по территории РФ:

    Новохоперское месторождение никеля: экономическая оценка эффективности добычи и экологические последствия.

Еланское и Елкинское месторождение медно-никелевых руд были открыты в Воронежской области еще в 60-х годах прошлого века, но не разрабатывались в силу аграрной ценности земель Воронежской области (эталонный чернозём), сложности залегания, гидрологической опасности разработки для Азовского бассейна (угроза обмеления и загрязнения рек Хопёр и Дон) и близости Хоперского государственного природного заповедника. Конкурс на освоение месторождений завершился 22 мая 2012 года. Победителем был признан Медногорский медно-серный комбинат, который входит в холдинг Уральской горно-металлургической компании (УГМК). Проект «Воронежский никель» построен по типичной колониальной схеме, где российскому горнодобывающему предприятию отведена исключительно роль поставщика сырья на Запад. В настоящее время российская промышленность никель почти не потребляет. В настоящее время потребление никеля внутри России составляет только 23 -25 тыс. т, т.е. менее 10% от добычи - всё остальное вывозится на международный рынок. Ничтожно потребление никеля отечественной электроникой и производством катализаторов. Страна является крупнейшим экспортёром необработанного никеля - с 1994 г. его экспорт увеличился 2,2 раза.

При планировании добычи ресурсов не учтены прямые и отложенные экономические потери, в том числе связанные с выводом элитных черноземов. Годовой оборот сельскохозяйственной продукции в Воронежской области превышает 300 млн. долларов в год. По предварительным данным, производство медно-никелевого концентрата предполагает обороты на порядок меньше, при этом качество традиционной продукции Воронежской области значительно снизится. Залежи руды находятся прямо под притоком Хопра – рекой Еланью Пр разработке руд неизбежен значительный отток пресной воды на технические нужды: процесс обогащения одной тонны концентрата требует 50 тонн воды. Использование водоносных слоев и образование депрессионной воронки, вследствие строительства шахт, повлечет за собой обмеление Хопра, осушение пойменных водоёмов, болот, старовозрастных заболоченных черноольховых лесов (более 1000 га которых выделены в генетический резерват ольхи чёрной) и снижение биологического разнообразия Хоперского заповедника. Отмечена и сложность залегания полезных ископаемых: верхняя часть рудного тела находится под 300-метровым слоем осадочных пород, само оно уходит вертикально вниз на глубину более километра, что делает добычу более дорогой и может потенциально влиять на распределение средств не в пользу затрат на возмещение экологического ущерба. Особую опасность представляет наличие мышьяка в медно-никелевых рудах, его содержание в воронежских рудах примерно 0,05%, в концентрате будет около 0,1% (предельно допустимая концентрация 0,06%).

    Запасы жидких углеводородов в России и пространственное распространение прогнозных ресурсов нефти (показать на карте).

Запасы жидких углеводородов – нефти и газового конденсата, заключенных в месторождениях, фигурирующих в Государственном балансе запасов РФ, достигают 32,4 млрд т; запасы категорий А+В+С1 составляют в этом объеме 20,1 млрд т. Исходя из этой оценки, страна находится на пятом месте в мире после Венесуэлы, Саудовской Аравии, Канады и Ирана; на ее долю приходится около 8% мировых запасов Характерной чертой российской сырьевой базы является то, что углеводородное сырье часто образует гигантские по масштабу скопления. В стране имеется 83 крупных месторождения, запасы каждого из которых составляют от 60 до 300 млн т нефти, и 12 уникальных, с запасами, превышающими 300 млн т. На крупные и уникальные объекты приходится 57% разведанных запасов нефти России, они обеспечивают 58% национальной нефтедобычи. Девять уникальных и 56 крупных месторождений находятся в Западно-Сибирском нефтегазоносном бассейне (НГБ) – втором по масштабу в мире после НГБ Персидского залива. В его недрах заключено почти две трети запасов нефти России, локализовано более 40% ее перспективных и более половины прогнозных ресурсов.

Распределение прогнозных ресурсов нефти по основным нефтегазоносным районам России:

    Экологические последствия добычи нефти в Западной Сибири.

Обобщенной характеристикой качества запасов нефти является их подразделение на активные и трудноизвлекаемые. В общем объеме запасов нефти наблюдается устойчивая тенденция к возрастанию доли трудноизвлекаемых запасов (до 50 %), из них 75 % запасов сосредоточены в Западной Сибири. Трудноизвлекаемые запасы играют сдерживающую роль при вводе месторождений в разработку. Для увеличения доходов нефтяные компании применяют тактику выборочной отработки наиболее рентабельных месторождений. До сих пор добыча нефти сопровождается сверхнормативным сжиганием попутного нефтяного газа. Уровень утилизации попутного газа на месторождениях, введенных в разработку в 90-х годах, очень низкий, а на мелких месторождениях утилизация попутного газа практически не производится. Ежегодные потери попутного газа в Западной Сибири составляют 6 -7 млрд. м3. % сжигания газа составляет в среднем 75-80 %, в то время как по условиям лицензий он не должен превышать 5 %. Добыча нефти и газа в Западной Сибири сопровождается существенными изменениями геологической среды. Снижение пластового давления вызывает уплотнение пород и постепенную осадку земной поверхности. Учитывая, что в условиях Западной Сибири понижение поверхности даже на 0,5 м вызывает резкое увеличение распространения болот, можно предполагать увеличение заболоченности территории и оттаивание многолетнемерзлых пород. Основными источниками загрязнения окружающей среды являются скважины, факелы для сжигания попутного газа, нефте- и газопроводы, водоводы высокого давления и другие производственные объекты. При разведке и добыче нефти и газа велик риск экологических аварий и катастроф, сопровождающихся выбросами и разливами нефти, пожарами на нефтяных и газовых скважинах, разрывами трубопроводов. На месторождениях Западной Сибири проложено 100 тыс. км промысловых трубопроводов, из которых 30 % имеют 30-летний срок службы, но ежегодно заменяется не более 2 % трубопроводов вместо 10 %, предусмотренных нормативами. Воздействие на почвенный покров проявляется в его загрязнении нефтепродуктами и высокоминерализованными водами, которые поднимаются на поверхность вместе с добываемой нефтью, с содержанием солей до 16-18 г/л. Причинами разлива минерализованных вод и засоления земель чаще всего являются аварии водоводов, происходящие вследствие быстрой коррозии труб. Сильное засоление почв губительно практически для всех местных растений, и на засоленных участках растительные сообщества гибнут полностью.

    Запасы и прогнозные ресурсы углей в РФ (показать на карте).

Россия обладает мощной сырьевой базой углей, занимая по количеству запасов (274 млрд. т) второе место в мире после США. Ресурсный потенциал страны также значителен –прогнозные ресурсы угля только наиболее достоверной категории Р1 оцениваются в 462,7 млрд т.Особенностью российской минерально-сырьевой базы угольной промышленности является концентрация основной части запасов в восточных регионах, главным образом, в Кузнецком и Канско-Ачинском угольных бассейнах. На европейскую часть страны, где находятся основные потребители угольной продукции, приходится всего 8% запасов углей России; они сосредоточены в основно м в Печорском и Донецком бассейнах. Кузнецкий бассейн в Кемеровской области заключает около четверти российских запасов углей (68,2 млрд т); около половины из них (33 млрд т) – это коксующиеся угли. Второй по значимости угледобывающий регион России – Канско-Ачинский буроугольный бассейн (Красноярский край и Кемеровская область);его запасы углей превышают 118 млрд т. Пласты бурого угля залегают на небольшой глубине и имеют значительную мощность (на некоторых месторождениях – до 70 м), что в мировой практике является уникальным сочетанием. Угли отличаются хорошим качеством: среднее содержание серы составляет 0,3-1%, зольность – 6-15%; характерна высокая для бурых углей теплотворная способность: низшая теплота сгорания – 15,5 МДж/кг.

Прогнозные ресурсы углей категории Р1 в РФ, млрд.т.:

    Воздействие угольной промышленности на природную среду.

Угольные шахты и разрезы Кузбасса добывают более 40 % угля в России, из которых 60 % приходится на долю коксующихся марок. Снижение угледобычи в Кузбассе со 159 млн. тонн (1988 г.) до 102,7 млн. тонн (2000 г.) не решает экологических проблем угольной промышленности, они стали более актуальными в связи с ликвидацией убыточных и нерентабельных шахт, разрезов и обогатительных фабрик. При ведении горных работ разрушается гидрогеологическая среда, а выдача на поверхность огромной массы горных пород (по Кузбассу более 8 млрд. м3) приводит к оседанию земной поверхности, образованию депрессионных воронок и разрушению сложившихся биоценозов Общая площадь депрессионных воронок в регионе достигает 2 тыс. км2, ежегодно под угольные разработки отторгается около 1,5 тыс. га, площадь нарушенных земель увеличивается на 65,5 тыс. га. Угледобывающий комплекс оказывает большое воздействие на гидросферу, что проявляется в изменении водного режима территории (подтопление или чаще всего иссушение), загрязнении грунтовых и сточных вод. Под промышленными отвалами, золошламонакопителями, шламохранилищами, хвостохранилищами и свалками бытовых отходов занято в области 40 тыс. га. Площадь земель по ликвидируемым шахтам составляет 11066,9 га, в том числе застроенная - 1385,9 га, нарушенная - 4971 га. Площадь, подлежащая рекультивации - 4938,5 га, рекультивировано после реструктуризации угольной промышленности Кузбасса 157,4 га. В атмосферу угольными шахтами и разрезами выбрасываются от 1,5 до 2 млрд. м3 метана, сбрасывается во внешние водоемы 34,4 % всех взвешенных веществ и 10 % нефтепродуктов, содержание которых достигает 40 мг/л, в том числе нитритов - до 0,6 мг/л, нитратов - до 4 мг/л (Сенкус В.В., Майер В.Ф. Экологические проблемы горнодобывающих предприятий в Кузбассе)

    Запасы и ресурсы урана в России (показать на карте). Использование высокообогащенного урана в качестве топлива для АЭС.

Запасы урана в недрах России превышают 700 тыс.т; по этому показателю страна находится на третьем месте после Австралии и Казахстана, а по добыче металла занимает шестое место в мире. Прогнозные ресурсы урана значительны, но наиболее достоверные ресурсы категории P1 составляют лишь 111 тыс.т. Основу минерально-сырьевой базы (МСБ) России формируют месторождения Стрельцовского рудного поля в Забайкальском крае. На некоторых из них – Стрельцовском, Антей, Аргунском – селективная отработка богатых руд ведется уже в течение многих лет. Большая часть ядерных материалов, производимых в России, поставляется на экспорт. Крупнейший экспортер российских товаров и услуг ядерного топливного цикла на мировом рынке – компания ОАО «Техснабэкспорт» (TENEX). Акции компании на 100% принадлежат ОАО «Атомэнергопром» . Спрос на уран для внутренних и экспортных потребностей России удовлетворяется природным сырьем лишь примерно на 20%. Дефицит на протяжении более 20 лет восполнялся поставками урана из государственных резервов, а также гексафторидом урана, поставляемым по договору ВОУ-НОУ. В соответствии с ним высокообогащенный уран (ВОУ), извлекаемый из российских ядерных боеприпасов, перерабатывался на российских предприятиях в низкообогащенный уран (НОУ), который затем поставлялся в США и использовался для изготовления топлива для американских АЭС. Взамен Россия получала из США гексафторид урана с природным соотношением изотопов.

Распределение запасов и ресурсов урана по территориям субъектов РФ:

    Факторы, влияющие на освоение урановых рудников Восточной Сибири. Последствия подземного выщелачивания урановых руд.

Резко континентальный климат с высоким перепадом температур, оказывающим значительное влияние на формирование криолитозоны и управление тепловым режимом шахт в зоне пониженных температур горного массива (от -5...7°C и до +8... + 10°C). Глубина распространения пониженных температур в этом регионе превышает 600 м от поверхности и достигает отметки 800-1000 м. В связи с этим возникает проблема пылеподавления и обеспечения безопасности радоновыделения в условиях пониженных температур, необходимость обеспечения экологической безопасности поверхностных и подземных водных ресурсов. Это связано с высокой плотностью и вязкостью мерзлых пород, предопределяющих повышенную энергоемкость их разрушения и высокую степень пылеобразования при бурении и взрывных работах. Запыленность рудничного воздуха в шахтах и рудниках в области вечной мерзлоты нередко в сотни раз превышает санитарные нормы. Радиационная составляющая отработки урановых месторождений заключается в оценке радонового дебита будущих рудников, а затем на его основе в расчете количества воздуха, необходимого для их оптимального проветривания. В дальнейшем производится также расчет рационального воздухораспределения по горным выработкам в зависимости от их радиационных характеристик

Высоким уровнем сейсмичности (более 7 баллов), что указывает на высокий уровень концентрации тектонических напряжений, определяющих напряженно-деформированное состояние (НДС) массива, изменения которого необходимо учитывать при проходке шахтных стволов, подготовительных и очистных выработок и на весь период эксплуатации горного предприятия;

Приуроченностью оруднения к тектоническим разломам, что затрудняет обеспечение безопасности и эффективности ведения горных работ.

Подземное выщелачивание урана:

Скважинное подземное выщелачивание применяется при отработке пластовых экзогенных месторождений. Главными условиями его применимости являются высокая естественная проницаемость и обводненность рудовмещающей среды. При использовании этого способа месторождение разделяется на полигоны, последовательно разбуриваемые системами закачных и откачных скважин, причем на одну откачную приходится две-три или более откачных. Время выщелачивания урана из пород на каждом полигоне составляет 1-3 года. В зависимости от состава используемых рабочих растворов выделяют кислотную схему выщелачивания урана (растворы серной кислоты) и карбонатную схему (растворы карбонатов-бикарбонатов натрия и аммония). Выбор кислотной или карбонатной схемы решается экономическими расчетами с учетом химического состава руд и типом урановой минерализации.

Последствия подземного выщелачивания урановых руд:

Для подземной разработки урановых руд характерны просадки (оседания) горных пород, промышленный карст (провалы), оползневые смещения грунтов, затопление грунтовыми водами земель, уплотнение грунтов и эрозия почв (в радиусе депрессивной воронки). При геотехнологической разработке (подземном выщелачивании) происходит проседание земной поверхности, разрушение почв, занятие земель отстойными прудами (бассейнами). На участках подземного выщелачивания загрязнение подземных вод ураном и другими радионуклидами происходит в результате потери контроля за потоками выщелачивающих растворов.

При разгрузке продуктивного раствора в прудах- накопителях выделяется радон. В этих прудах опасна также концентрация отвальных песков, содержащих радионуклиды и тяжелые металлы. При добыче урана методом подземного выщелачивания техногенные водоносные горизонты могут обогащаться селеном и другими элементами – спутниками урана, что исключает использование вод для питьевого водоснабжения.

    Структура традиционного природопользования п-ва Таймыр. Основные тенденции в традиционном природопользовании Таймыра.

В Таймырском автономном округе живут пять коренных народов, очень различных по своим связям с кормящим ландшафтом.

Это - ненцы создатели высокоспециализированной хозяйственной системы тундрового крупностадного оленеводства (западная – приенисейская часть округа).

Нганасаны – охотники на диких оленей (центральная часть п-во Таймыр). После организации колхозов также стали ориентироваться на домашнее оленеводство

Долгане - самый "молодой" из северных народов, впитавший в традиционный хозяйственный комплекс опыт природопользования четырех соседних этносов (восточная часть округа). Основное занятие – кочевое оленеводство с промыслом песца и рыболовством.

Небольшая группа хантайских эвенков с хозяйственным укладом, типичным для северной тайги (оз. Хантайское). Они представляли собой до коллективизации замкнутую кочевую группу, основную роль в жизнеобеспечении которой играло рыболовство, а единственным источником денежного дохода был пушной промысел. Отличительной особенностью было относительно сильно развитое оленеводство.

Энцы - один из самых малочисленных этносов в России. В настоящее время их осталось менее 200 человек. Они рассеянны среди ненецкого населения западной части округа, по образу жизни и природопользованию теперь практически не отличаются от него.

Основные тенденции в традиционном природопользовании Таймыра:

Возрождение промысла дикого северного оленя, который развивался наиболее интенсивно в 80-е гг. В 2000 г популяция дикого северного оленя на Таймыре стала крупнейшей в мире, ее промысловая численность достигла одного миллиона голов. Еще в 90-е гг. промысел дикого оленя пошел на спад в связи с возросшей стоимостью вертолетных перевозок и трудностями со сбытом мяса. Начался новый вид охоты – для добычи пантов, от которой нарушается структура популяций. Когда была разрешена заготовка пантов диких северных оленей, их добычу осуществляли от самых крупных самцов также во время преодоления ими водных преград. Для ускорения данного процесса панты срубали топором и часто с лобной костью, отчего животные погибали. Варварскую заготовку оленьих пантов вели и браконьеры. Противоречие между домашним оленеводством и дикими оленями. Проблема возникла в середине 1960-х годов, когда численность таймырской популяции дикого северного оленя после длительной депрессии резко пошла вверх. Суть ее заключается в невозможности вести крупностадное товарное оленеводство в районах, через которые проходят во время миграций большие стада диких оленей.

Промышленное загрязнение оленьих пастбищ Норильским горно-металлургическим комбинатом. Площади растительных сообществ с ягельным покровом сократились на них на 18 %ов. Кроме того, на расстоянии до 175-190 километров от комбината (до северного берега Хантайского озера) распространяются обширные зоны превышения предельно допустимых уровней содержания тяжелых металлов в кормовых растениях и мясе северных оленей.

Сохранение кочевого образа жизни и переход на оседлость. Коэффициент рождаемости у коренного населения в поселках более чем 1,5 раза ниже, а смертность почти в два раза выше, чем в семьях оленеводов-кочевников. Соответственно, более чем в 3,5 раза различается и естественный прирост населения. Полукочевое население занимает промежуточное положение.

    Проблема сохранения традиционного природопользования Туруханского таежного севера.

Кризисные процессы в этнохозяйственных процессах Туруханского таежного севера:

Коренные жители - кеты, селькупы и эвенки. Причиной кризисного состояния кетского населения является формирование современной системы промыслового природопользования, ориентированной главным образом на добычу соболя (так называемый лимитирующий ресурс), произошло за последние три-четыре десятилетия и сопровождалось значительным перераспределением угодий между коренным и некоренным населением в пользу последнего. Фактически в 1960-е годы на Енисее начался второй за его историю период освоения ресурсов соболя, связанный с активной экспансией русских охотников. До этого основой пушного охотничьего промысла была белка. Экономические стимулы к освоению таежных угодий были слабее, что способствовало сохранению экстенсивных традиционных форм промысла.

Минералы и горные породы России и СССР

Часть 1. Минералы. Класс 1. Простые вещества (самородные элементы)
Медь - Cu

Крупнейшие месторождения меди

К сожалению, в мире известно лишь одно действительно очень крупное , уникальное месторождение самородной меди - на южном берегу озера Верхнего (штат Мичиган, США), где залежи меди сосредоточены на полуострове Кивино (более правильная транскрипция - Кьюинау).

Месторождение состоит из нескольких разобщенных рудных участков, которые можно даже считать отдельными месторождениями . За 100 лет эксплуатации (с 1854 г.) на этом полуострове было добыто 5 млн. тонн меди ; но месторождения озера Верхнего известны были и в древности, в доколумбовой Америке: медь здесь добывали индейские племена - дакоты и гуроны.

Рудовмещающими породами являются миндалекаменные базальтовые лавы , богатые пустотами ("газовыми пузырями"); базальтовые покровы перемежаются с пластами конгломератов . Самородная медь заполняет миндалины в верхних частях покровов и замещает конгломераты. Залежи меди прослежены по простиранию рудоносной зоны на 10-12 м. Самородная медь и редко самородное серебро сопровождаются цеолитами , кальцитом , кварцем , хлоритом , пренитом, гематитом , датолитом, путеллитом, минералом, впервые найденным именно на этом месторождении, - водными силикатами кальция, магния, железа и алюминия, образующимися только в близповерхностных условиях.

Самородная медь. Длина образца 10 см.
Пластинчатое выделение. Восточная Сибирь

Весь этот парагенезис свидетельствует о малой глубине формирования и низкотемпературном вулканогенно-гидротермальном происхождении месторождения в условиях резкого дефицита серы (сульфиды отсутствуют в этих рудах начисто). На месторождении развиты также секущие кальцитовые жилы, в которых были встречены крупнейшие самородки меди, в том числе и самый большой из доселе найденных в мире: пластина величиной 13,7 х 6,7 х 2,4 м и массой около 420 т.

Близко по условиям образования месторождение самородной меди на острове Ванкувер в Канаде, где самородная медь образовалась в результате переработки слоистых вулканических пород - остывших потоков лавы - гидротермальными растворами

Не столь гигантское, хотя и достаточно крупное месторождение меди Корокоро в Боливии , приуроченное к песчаникам . Оруденелые песчаники распространены здесь на площади 30 тыс. км2, но обычно их мощность всего 0,5-2 м, лишь на отдельных участках она возрастает до 12 м. Самородная медь ассоциирует здесь с халькозином , гипсом , кальцитом , кварцем , баритом , целестином , - что указывает на участие в рудообразовании низкотемпературных гидротермальных растворов (ниже 100°С). Образование самородной меди, по-видимому, обусловлено ее восстановлением из сульфатных растворов органическим веществом, содержащимся в песчаниках.

На месторождения озера Верхнего в США и Корокоро в Боливии приходится большая часть самородной меди , добываемой в мире. Редкость подобных месторождений обусловлена тем, что для их возникновения требуются весьма специфические условия, сочетающие восстановительную среду и низкую активность серы.

Интересно, что медь в сульфатных растворах может переноситься довольно далеко от первичных месторождений - до тех пор, пока они не попадут в восстановительную обстановку (например, в среду, богатую органикой), где происходит отложение самородной меди. Так объясняют появление тонкодисперсной меди в торфяниках долины реки Лёвиха (Средний Урал) на значительном расстоянии от Левихинского медноколчеданного месторождения, а также в Сысертском районе.

Значительно реже медь образуется как магматический минерал , например, вкрапления меди обнаружены в полевых шпатах в массиве габбро близ Тосканы (Италия), а также в полевых шпатах, роговой обманке и пироксенах в магматических породах - сиенитах и диабазах в ЮАР и Намибии.

Стоит упомянуть, что самородная медь обнаружена и на Луне : зернышки меди в срастании с никелем и трилитом удалось обнаружить в лунном ретолите.

Еще раньше медь была найдена в метеоритах , здесь она также сопровождает троилит и самородное железо и возникает на завершающем этапе образования метеоритного вещества. Тем самым медь, подобно железу, никелю, титану, золоту и серебру входит в число элементов, встречающихся не только на Земле, но и на других космических телах.


Самородная медь, почковидные агрегаты. Длина 25 мм, Урал

Прежде крупные самородки меди, массой до нескольких тонн встречались и в России , в частности, на Среднем Урале - на ныне исчерпанном Гумешевском руднике. Один из таких самородков (массой 860 кг) находится в музее Горного института в Санкт-Петербурге. Другие крупные самородки из Гумешек хранятся в Москве в музее им. В.И.Вернадского и в Екатеринбурге - в Уральском геологическом музее.

В Гумешках самородная медь возникла в зоне окисления за счет растворения первичных сульфидов меди и взаимодействия медносульфатных растворов с гематитом или с растворами сульфатов железа. Аналогичным путем образуются корки и пленки "цементной" меди (в виде тонкозернистых и сферолитовых агрегатов) на железных предметах (например, на обломках буров, трубок, крепежных стойках и т.п.) в горных выработках.

Обычными спутниками самородной меди в зоне окисления являются ее оксиды (куприт , тенорит), карбонаты (малахит и азурит) и хризоколла , а также основной фосфат меди - либетенит Сu 2 (РO 4)(ОН) и другие вторичные минералы меди, а также такие обычные в подобной обстановке минералы как гётит , гипс , ярозит.

Гипергенная самородная медь часто образует псевдоморфозы по халькозину , куприту , азуриту , халькантиту, кальциту арагониту и другим минералам. Самые красивые коллекционные образцы самородной меди (кристаллы дендриты) встречаются на территории России в зоне окисления на турьинских медных рудниках (Северный Урал), где их описал еще в 1837 г. Густав Розе.

Познакомиться с изображениями и описаниями других объектов природы России и сопредельных стран - минералов и горных пород , почв , грибов , водорослей , лишайников , листостебельных мхов , деревьев, кустарников, кустарничков и лиан , травянистых растений (цветов) , ягод и других дикорастущих сочных плодов , водных беспозвоночных животных , насекомых-вредителей леса , дневных бабочек , пресноводных и проходных рыб ,

Самая распространенная медная руда на нашей планете – это борнит. Но кроме него медь добывают и из других руд, о которых мы и поговорим в рамках данной статьи.

1

Под данной рудой подразумевают скопления минералов, в которых медь присутствует в таких количествах, которые считаются пригодными для переработки ее в промышленных целях. Общепринятым показателем разумности разработки месторождения принято считать ситуацию, когда в нем скопления меди составляют не менее 0,5–1 %.

При этом порядка 90 % запасов данного металла на земле встречаются в рудах, содержащих не только медь, но и другие металлы (например, никель).

Масштабная добыча меди в России осуществляется в Восточной Сибири, на Урале и Кольском полуострове. Самые крупные залежи этого металла присутствуют на территории Чили (по оценкам экспертов – около 190 миллионов тонн). К другим странам, занимающимся разработкой таких руд, относят США, Замбию, Казахстан, Польшу, Канаду, Заир, Армению, Конго, Перу, Узбекистан. В общей сложности, на планете совокупный запас меди на разведанных месторождениях составляет примерно 680 миллионов тонн.

Все медные залежи принято делить на шесть генетических групп и девять промышленно-геологических типов:

  • стратиформная группа (медные сланцы и песчаники);
  • колчеданная (самородная медь, жильный и медно-колчеданный тип);
  • гидротермальная (медно-порфировые руды);
  • магматическая (медно-никелевая руда);
  • скарновая;
  • карбонатовая (железомедный и карбонатитовый тип).

В нашей стране основная добыча меди осуществляется на медистых сланцах и песчаниках, из медноколчеданной, медно-никелевой и медно-порфировой руды.

2

В природе медь достаточно редко встречается в самородном виде. Чаще всего она "прячется" в различных соединениях. Наиболее известными из них являются следующие:

3

Намного реже встречаются иные медные минералы, среди которых можно выделить такие:

4

Данный металл, чьи характеристики (например, высокая ) обусловили его широкую востребованность) получают из описанных нами минералов и руд тремя способами – гидрометаллургическим, пирометаллургическим и электролизом. Самой распространенной является пирометаллургическая технология, использующая в качестве исходного сырья минерал халькопирит. Общая схема пирометаллургического процесса включает в себя несколько операций. Первой из них является обогащение медной руды окислительным обжигом либо флотацией.

Метод флотации базируется на разном показателе смачиваемой пустой породы и частиц, содержащих медь. За счет этого некоторые минеральные элементы прилипают (избирательно) к воздушным пузырькам и транспортируются ими на поверхность. Такая несложная технология дает возможность получить концентрат порошкообразного вида, в котором содержание меди варьируется от 10 до 35 процентов.

Окислительный обжиг (не стоит путать его с ) чаще используется тогда, когда начальное сырье содержит в себе серу в больших количествах. Руда в этом случае нагревается до температуры 700–800 градусов, что приводит к окислению сульфидов и снижению содержания серы в 2 раза. После этого выполняется плавка на штейн (сплав с сульфидами железа и меди, получаемый в отражательных или в шахтных печах) при температуре 1450 градусов.

Медный штейн, который получается после всех этих операций, продувается в конвертерах горизонтальной конструкции без подачи дополнительного топлива (химические реакции дают необходимое для процесса тепло) с боковым дутьем для окисления железа и сульфидов. Получившуюся серу переводят в SO2, а окислы – в шлак.

В итоге из конвертера выходит так называемая черная медь, в которой содержание металла составляет примерно 91 %. Впоследствии ее подвергают очистке с применением огневого рафинирования (удаление ненужных примесей) и подкисленного раствора купороса (медного). Такую очистку называют электролитической, после нее содержание меди достигает показателя в 99,9 %.

При гидрометаллургическом способе производства меди ее получают посредством выщелачивания металла серной кислотой (очень слабым раствором) и выделением из получившегося раствора меди, а также других драгоценных металлов. Такая методика рекомендована для работы с бедными рудами.

Металлы, находящиеся в подгруппе меди отличаются небольшой химической активностью, по этой причине они встречаются в виде химических соединений, а также самородками. Много веков назад медь можно было встретить лишь в виде сернистых соединений - халькопирита и халькозина. А все потому, что медь обладает высоким химическим сродством к сере. Большая часть первичных руд содержит медь в сульфидной форме - CuS.
С течением времени, особенно в условиях вулканической деятельности, при действии большого количества кислорода, сульфиды меди становились окислами. Самородки меди образовывались в природе вовремя сильного нагревания окисленной сернистой руды. К примеру, если окисленные минералы меди и сернистые руды залегали под толстым слоем горной породы, то их нагревали природные катаклизмы и земное тепло. В подобных природных «металлургических цехах» выплавлялись колоссальные объемы меди. На территории Северной Америки нашли самородок весом 420 тонн. Однако это редкость, самородной меди на планете примерно 1%.

Мировые месторождения меди

Много меди, как и прочих полезных ископаемых, расположено на дне океанов. На дне лежат скопления круглых камней, в которых находится примерно 0,5% меди. Согласно анализу геологов запасы медной руды в океане достигают 5 млрд. тонн.
Существует почти 250 минералов меди, однако лишь 20 из применяются в промышленности. В основным медным рудам относят:

  • халькозин - Cu 2 S, который содержит 79,8% меди
  • халькопирит - CuFeS 2 , в котором присутствует 30% меди. Эта руда составляет почти 50% всех месторождений меди
  • борнит - Cu 5 FeS 4 , содержит от 52 до 65% меди
  • ковеллин - CuS, содержит 64% меди.

По генетическим и промышленно-геологическим параметрам месторождения меди бывают:

  • стратиформными, которые включают медные сланцы и песчаники
  • колчеданными. К этой группе относится самородная и жильная медь
  • гидротермальными
  • магматическими, включающие самые распространенные руды медно-никелевого типа
  • карбонатовыми. В эту группу входят железомедные и карбонатитовые руды.

Запасы меди в мире

Наибольшее количество меди, примерно 65%, залегает на территории Северной и Южной Америке. Европейские государства имеют 15% ресурсов, азиатские - 11%, африканские- 4,5%.
Самые крупные подтвержденные запасы меди зафиксированы Чили. Там находится почти 20% мирового запаса. А в США - 12,7%. Помимо этих стран, меди много в Польше, Индонезии, Иране, Казахстане, Китае, Узбекистане, на Филиппинах, а также в Заире, Замбии, Бразилии, Канаде, Мексике, Панаме, Перу и Австралии. В каждом из этих государств по оценкам специалистов имеется около 10 млн. тонн.

Добыча медной руды

Вследствие низкого содержания меди в руде ее добыча связанна с переработкой больших объемов горных пород. Для того, чтобы выплавить 1 т меди нужно переработать свыше 200 т руды.
Методы добычи меди:

  • открытый способ. Если рудные месторождения находятся близко к земной поверхности, то их разрабатывают таким способом глубина открытых разработок составляет 150-300 м. Метод характеризуется более низкими потерями
  • подземный способ. Этим методом руду добывают с глубины 500 м, а иногда и с 800-1000 м.

Существует пять технологических систем разработки месторождений:

  • при помощи самоходного оборудования. Эта технология широко применяется
  • при помощи вибрационных механизмов непрерывного действия
  • при помощи твердеющей закладки выработанного пространства. При этом происходит сплошная выемка запасов мощных залежей с наименьшими потерями. С применением подобных систем снижаются потери в 3-4 раза
  • метод выемки руды горизонтальными пластами. Во время наполнения выработанного пространства (в рудниках под землей) твердеющими соединениями применяют футерованные резиной или базальтом трубы, период эксплуатации которых в 50-100 раз выше, чем у стальных
  • циклично-поточная технология реализации горных работ.

Центры производства меди

Производственные центры по добыче меди присутствуют в разных регионах России. Самыми богатыми месторождениями руды может похвастаться Казахстан. Имеются и месторождения на Урале. По последним данным Россия по добыче медной руды находится на первом месте в мире.
Медные предприятия возводятся в непосредственной близости к рудникам. Сырьевой фактор - это определяющая составляющая, по причине малого содержания концентратов в исходном сырье. На территории Урала расположено 11 медных комплексов, выпускающие 43% меди в стране. Кроме собственного сырья на производстве используется и привезенное из Казахстана. Есть и заводы с утилизацией отходов. К примеру, сернистые газы, как побочный продукт добычи меди, применяются для создания серной кислоты, из которой потом делают удобрения.