Bops (armor-piercing feathered sub-caliber projectiles). Anti-tank projectiles and their varieties

One of the tasks of the modern basic battle tank is the destruction of similar enemy equipment, for which he needs a powerful weapon and appropriate armor-piercing shells. Russian tanks are armed with several anti-tank ammunition, allowing you to deal with well-protected enemy equipment. In addition, in the near future, new samples intended for use with weapons of advanced technology should go into large-scale production.

Armor-piercing feathered sub-caliber projectiles (BOPS) show the highest armor penetration characteristics. Such ammunition appeared several decades ago, and later proved to be a convenient means of destroying armored vehicles, which have powerful protection of various types. As a result, at present, it is BOPS that turn out to be the main tool for tanks to fight other tanks. The development of this class of projectiles continues.


Serial "Mango"

According to various sources, Russian armored units are currently armed with several types of BOPS, and the most widespread representative of this class is the 3BM-42 Mango product. The development of a new projectile with increased power under the code "Mango" began in the first half of the eighties. Through the use of certain materials, technologies and solutions, it was necessary to increase armor penetration in comparison with existing projectiles. Use future projectile 3BM-42 was supposed to be with the existing tank guns of the 2A46 family.

The T-72B3 main tank carries an improved automatic loader compatible with extended projectile lengths. Photo Vitalykuzmin.net

A few years later, the 3VBM-17 round with the 3BM-42 BOPS entered service. It includes the so-called. a burning cylinder, inside of which a driving device with a projectile is rigidly attached. Also, a separate partially combustible cartridge case with means of ignition is used for the shot. The cavities of the sleeve and cylinder are filled with tubular powder, which ensures the acceleration of the projectile.

The creators of the Mango projectile coped with the task of increasing armor penetration, and they did it in a very interesting way. The projectile has a special design, due to which an increase in the main characteristics is achieved. At the same time, outwardly, 3BM-42 is almost no different from other products of its class. This BOPS is a hollow cylindrical body of small diameter, made of steel and equipped with a tail stabilizer. The front end of the body is closed with a ballistic cap and the so-called. armor-piercing damper. Two tungsten cores are located one behind the other in the housing cavity, held in place by a low-melting metal jacket.

A resettable lead device made of aluminum is installed on the projectile. It has a conical shape with a widening front. Interaction with the bore is provided by several rings on the outer surface of the device. Shot 3VBM-17, including a cylinder, a projectile and a leading device, has a length of 574 mm with a diameter of 125 mm. The mass of the projectile itself is 4.85 kg.


Shot 3VBM-17 with a projectile 3BM-42 "Mango". Photo Fofanov.armor.kiev.ua

The combustion of gunpowder in the sleeve and cylinder makes it possible to accelerate the projectile with the driving device to a speed of no more than 1700 m / s. After exiting the barrel, the master device is reset. Upon hitting the target, the containment jacket melts, after which the tungsten cores can penetrate the armor. The maximum armor penetration at a distance of 2 km is determined as 500 mm. With a meeting angle of 60 ° at the same distance, this characteristic is reduced to 220 mm.

The 3VBM-17 shot with the 3BM-42 projectile was put into service in 1986 and had a noticeable effect on fighting qualities all existing main tanks Soviet army. This product is still used in tank troops and is almost the basis of their arsenals. Subsequently, modernization was carried out, which consisted in increasing the length of the body and cores. As a result, "Mango-M" weighs 5 kg and can penetrate up to 270 mm of armor at an angle of 60 °.

Long way "Lead"

Soon after the appearance of the Mango BOPS, well-known unpleasant events began in our country that hit a mass of spheres, including the development of promising shells for tank guns. Only towards the end of the 1990s was it possible to obtain real results in the form of another projectile with enhanced performance. This ammunition was the result of development work with the code "Lead".


Scheme of the product "Mango". Figure Btvt.narod.ru

Experience has shown that a further increase in the main combat characteristics is associated with a mandatory increase in the length of the projectile. This parameter was increased to 740 mm, but this fact did not allow the use of the future projectile with existing tank loaders. As a result, the next project for the modernization of armored vehicles had to include an update of the automation that serves the gun.

From the point of view of the general appearance, the 3VBM-20 shot with the 3BM-46 "Lead-1" projectile is somewhat similar to the older 3VBM-17 and also consists of a projectile in a burning cylinder and a cartridge case with a metal pallet. At the same time, the design of the projectile itself is seriously different from the existing one. This time it was decided to use a monolithic depleted uranium core (according to other sources, from a tungsten alloy), which is actually the basis of the projectile. A ballistic cap and tail stabilizers are attached to the metal core, the diameter of which is less than the caliber of the barrel.

For a longer projectile, an improved lead device was created. It is distinguished by its large length and the presence of two contact zones. In front of the device there is a large cylinder of the usual type, and the second zone is created by three rear supports. After exiting the barrel, such a master device is reset and releases the projectile.


"Mango-M" and a cartridge case with a propelling charge. Photo btvt.narod.ru

According to available data, Lead-1 has a mass of 4.6 kg and is capable of accelerating to a speed of 1750 m/s. Due to this, it penetrates up to 650 mm of homogeneous armor at a shot distance of 2000 m and a zero encounter angle. It is known about the existence of the "Lead-2" project, which provided for the replacement of the core with a product made of another material. Thus, similar shells from uranium and tungsten could appear in the arsenals.

Due to its long length, the new type of projectile could not be used with existing automatic loaders for mass-produced tanks. This problem was solved in the middle of the 2000s. The T-90A armored vehicles of the new series were equipped with modified machine guns compatible with "long" shells. In the future, the upgraded T-72B3 began to receive similar equipment. Thus, a significant part of the equipment of the armored forces can use not only the relatively old "Mango" with limited characteristics.

"Vacuum" for "Armata"

The observed increase in the protection characteristics of tanks of a potential enemy is a real challenge for weapons developers. Further research work led to the conclusion about the need for a new increase in the length of the ammunition. An BOPS 1000 mm long could show the optimal ratio of characteristics, but such a projectile, for obvious reasons, could not be used with the 2A46 gun and its automatic loader.


Projectile 3BM-46 with a leading device. Photo Fofanov.armor.kiev.ua

The way out of this situation was the creation of a completely new weapon with additional equipment. The promising gun later became known under the index 2A82, and the new projectile received the code "Vacuum". From a certain time new complex weapons began to be considered in the context of the project of the promising Armata tank. In case of successful completion of work on the gun and BOPS, new tank could get them as the main weapon.

According to some sources, the Vacuum project was turned off in favor of new developments. In connection with the start of the development of the 2A82-1M gun, instead of such a projectile, it was proposed to create a smaller BOPS with the code "Vacuum-1". It was supposed to have a length of "only" 900 mm and be equipped with a carbide core. In the recent past, representatives of the defense industry mentioned that organizations from Rosatom were involved in the development of a new projectile. Their participation is due to the need to use depleted uranium.

According to some reports, a projectile called "Vacuum-2" is being created in parallel. In its design, it should be similar to a product with a unit, but at the same time differ in material. It is proposed to make it from a tungsten alloy, more familiar to domestic BOPS. Also, for use with the 2A82-M gun, high-explosive fragmentation ammunition with controlled detonation with the code "Telnik" and guided missile 3UBK21 "Sprinter". Accurate information about the creation of a new 125-mm cumulative projectile is not yet available.


Main tank T-14 with 2A82-1M gun. Photo by NPK "Uralvagonzavod" / uvz.ru

The appearance and exact technical characteristics of the promising BOPS of the Vacuum family have not yet been specified. It is only known that a projectile with a uranium core will penetrate about 900-1000 mm of homogeneous armor. Probably, such characteristics can be obtained with an ideal angle of impact. Other details are missing.

Promising "Slate"

According to various reports of past years, promising domestically developed tanks were also supposed to receive armor-piercing projectile under the name "Slate". However, there was not too much information about him, which led to confusion and misconceptions. So, for some time it was believed that the "Slate" was intended for new 125-mm guns. It is now known that this product is planned to be used with a more powerful 152 mm 2A83 gun.

Apparently, the projectile for high-powered cannons will be similar in appearance to other representatives of its class. It will receive a high elongation core equipped with a ballistic cap and an armor-piercing damper in the head part, as well as a relatively small-caliber stabilizer. Earlier it was reported that the "Grifel-1" and "Grifel-2" projectiles will be equipped with tungsten and uranium cores. At the same time, there are no data on the parameters of the armor penetration of new shells.


Models of 125-mm guns 2A82-1M. Photo Yuripasholok.livejournal.com

According to various estimates, based on the caliber and estimated energy indicators, the Leads will be able to penetrate at least 1000-1200 mm of homogeneous armor at the optimal angle of impact. However, there are reports of some characteristic problems in the development of such ammunition. Due to certain objective limitations, the efficiency of using shot energy for 152-mm guns may be lower than for systems of a smaller caliber. Whether it will be possible to cope with such problems and fully use the energy reserve of the propellant charge is unknown.

The promising 2A83 tank gun is currently being developed in the context of the further development of the Armata unified tracked platform. The already created main tank T-14 is equipped with an uninhabited turret with a 2A82-1M gun. In the foreseeable future, a new version of the tank is expected to appear, featuring a different fighting compartment and a more powerful 2A83 gun. Along with them, the improved Armata will also receive the BOPS of the Grifel line.

Shells of the present and future

At present, the armored forces are armed with several armor-piercing feathered sub-caliber shells, designed for use with tools of a rather old, but successful 2A46 line. A significant part of the main tanks of existing models has a relatively old automatic loader, and therefore can only use Mango shells and older products. At the same time, late-series T-90A tanks, as well as modernized T-72B3 tanks, are equipped with improved automatic loaders, thanks to which they can use relatively long shells of the Lead line.


The alleged appearance of the BOPS type "Slate". Picture Otvaga2004.mybb.ru

BOPS 3BM-42 and 3BM-46 have fairly high performance, and due to this they are able to deal with a wide range of targets present on the battlefield. At the same time, sub-caliber ammunition is not the only means of combating enemy tanks. For the same purpose, our tanks can use guided missiles and cumulative shots. Thus, "Mango", "Lead" and other tank ammunition ensure the fight against various targets in a wide range of ranges.

The next generation of Russian tanks, so far represented only by the T-14 Armata, is equipped with a new 2A82-1M gun, which shows higher performance and is compatible with new ammunition. The new family of shells and missiles will provide a noticeable increase in combat qualities and is quite capable of bringing the Armata to a leading position in the world.

It is no secret that in the recent past there has been a significant lag of domestic BOPS from modern foreign models. However, the situation is gradually changing, and new models of this kind are coming into service. In the foreseeable future, armored units will receive fundamentally new combat vehicles with modern weapons and ammunition. There is every reason to believe that the gap will at least narrow. Moreover, one cannot rule out the possibility of being ahead of foreign competitors with understandable consequences for the combat capability of the army.

According to the websites:
http://vpk.mane/
http://ria.ru/
http://tass.ru/
http://otvaga2004.ru/
http://btvt.narod.ru/
http://russianarms.ru/
http://fofanov.armor.kiev.ua/
http://gurkhan.blogspot.com/
http://bmpd.livejournal.com/

Immediately after the appearance of armor protection for military equipment, the designers of artillery weapons began work on creating means capable of effectively destroying it.

An ordinary projectile was not quite suitable for this purpose, its kinetic energy was not always enough to overcome a thick barrier made of heavy-duty steel with manganese additives. The sharp tip crumpled, the body collapsed, and the effect turned out to be minimal, at best - a deep dent.

The Russian engineer-inventor S. O. Makarov developed the design of an armor-piercing projectile with a blunt front. This technical solution provided a high level of pressure on the metal surface at the initial moment of contact, while the impact site was subjected to strong heating. Both the tip itself and the area of ​​the armor that had been hit melted. The remaining part of the projectile penetrated the resulting fistula, causing destruction.

Sergeant major Nazarov did not have theoretical knowledge of metallurgy and physics, but intuitively came to a very interesting design, which became the prototype of an effective class of artillery weapons. His sub-caliber projectile differed from the usual armor-piercing one in its internal structure.

In 1912, Nazarov suggested inside conventional ammunition to introduce a strong rod, which is not inferior to armor in its hardness. The officials of the War Ministry brushed aside the annoying non-commissioned officer, considering, obviously, that an illiterate retiree could not invent anything sensible. Subsequent events clearly demonstrated the harmfulness of such arrogance.

The Krupa firm received a patent for a sub-caliber projectile already in 1913, on the eve of the war. However, the level of development of armored vehicles at the beginning of the 20th century made it possible to do without special armor-piercing means. They were needed later, during the Second World War.

Operating principle under caliber projectile is based on a simple formula known from the school physics course: a moving body is directly proportional to its mass and the square of its speed. Therefore, to ensure the greatest destructive ability, it is more important to disperse the striking object than to make it heavier.

This simple theoretical position finds its practical confirmation. A 76mm sub-caliber projectile is twice as light as a conventional armor-piercing projectile (3.02 and 6.5 kg, respectively). But to provide striking power, it is not enough just to reduce the mass. Armor, as the song says, is strong, and additional tricks are needed to break through it.

If a steel bar with a uniform internal structure hits a solid barrier, it will collapse. This process, in slow motion, looks like the initial crushing of the tip, an increase in the contact area, strong heating and spreading of molten metal around the impact site.

Armor-piercing sub-caliber projectile works differently. Its steel body shatters upon impact, absorbing some of the thermal energy and protecting the heavy-duty interior from thermal destruction. The ceramic-metal core, having the shape of a somewhat elongated thread spool and a diameter three times smaller than the caliber, continues to move, punching a small-diameter hole in the armor. At the same time, it highlights a large number of heat, which creates a thermal distortion, which, in combination with mechanical pressure, produces a destructive effect.

The hole, which forms a sub-caliber projectile, has the shape of a funnel, expanding in the direction of its movement. It does not require damaging elements, explosives and a fuse, fragments of armor and core flying inside the combat vehicle pose a mortal threat to the crew, and the released one can cause detonation of fuel and ammunition.

Despite the diversity of anti-tank weapons, sabots, invented over a century ago, still have their place in the arsenal of modern armies.

IN War Thunder implemented many types of shells, each of which has its own characteristics. In order to competently compare different shells, choose the main type of ammunition before the battle, and in battle for different purposes in different situations to use suitable projectiles, you need to know the basics of their device and principle of operation. This article talks about the types of projectiles and their design, as well as gives advice on their use in combat. Do not neglect this knowledge, because the effectiveness of the weapon largely depends on the shells for it.

Types of tank ammunition

Armor-piercing caliber shells

Chamber and solid armor-piercing shells

As the name suggests, the purpose armor-piercing shells- to break through the armor and thereby hit the tank. Armor-piercing shells are of two types: chamber and solid. Chamber shells have a special cavity inside - a chamber, in which an explosive is located. When such a projectile penetrates the armor, the fuse is triggered and the projectile explodes. The crew of an enemy tank is hit not only by armor fragments, but also by explosions and fragments of a chamber shell. The explosion does not occur immediately, but with a delay, thanks to which the projectile has time to fly into the tank and explode there, causing the most damage. In addition, the sensitivity of the fuse is set to, for example, 15 mm, that is, the fuse will only work if the thickness of the armor being penetrated is above 15 mm. This is necessary so that the chamber projectile explodes in the fighting compartment when it breaks through the main armor, and does not cock against the screens.

A solid projectile does not have a chamber with an explosive, it is just a metal blank. Of course, solid shells deal much less damage, but they penetrate a greater thickness of armor than similar chamber shells, since solid shells are stronger and heavier. For example, the armor-piercing chamber projectile BR-350A from the F-34 cannon pierces 80 mm at a right angle at close range, and the solid BR-350SP projectile as much as 105 mm. The use of solid projectiles is very typical for British school tank building. Things got to the point that the British removed explosives from American 75-mm chamber shells, turning them into solid ones.

The lethal force of solid shells depends on the ratio of the thickness of the armor and the armor penetration of the shell:

  • If the armor is too thin, then the projectile will pierce through it and damage only those elements that it hits along the way.
  • If the armor is too thick (on the border of penetration), then small non-lethal fragments are formed that will not cause much harm.
  • Maximum armor action - in case of penetration of sufficiently thick armor, while the penetration of the projectile should not be completely used up.

Thus, in the presence of several solid shells, the best armor action will be with the one with greater armor penetration. As for chamber shells, the damage also depends on the amount of explosive in TNT equivalent, as well as on whether the fuse worked or not.


Sharp-headed and blunt-headed armor-piercing shells

An oblique blow to the armor: a - a sharp-headed projectile; b - blunt projectile; c - arrow-shaped sub-caliber projectile

Armor-piercing shells are divided not only into chamber and solid shells, but also into sharp-headed and dumb-headed ones. Pointed shells pierce thicker armor at a right angle, since at the moment of impact with the armor, all the impact force falls on a small area of ​​the armor plate. However, the efficiency of work on sloping armor in sharp-headed projectiles is lower due to a greater tendency to ricochet at large angles of impact with the armor. Vice versa, blunt projectiles they penetrate thicker armor at an angle than sharp-headed ones, but have less armor penetration at a right angle. Let's take for example the armor-piercing chamber shells of the T-34-85 tank. At a distance of 10 meters, the BR-365K sharp-headed projectile penetrates 145 mm at a right angle and 52 mm at an angle of 30 °, and the BR-365A blunt-headed projectile penetrates 142 mm at a right angle, but 58 mm at an angle of 30 °.

In addition to sharp-headed and blunt-headed shells, there are sharp-headed shells with an armor-piercing tip. When meeting armor plate at a right angle, such a projectile works like a sharp-headed one and has good armor penetration compared to a similar blunt-headed projectile. When hitting sloping armor, the armor-piercing tip “bites” the projectile, preventing ricochet, and the projectile works like a dumb-ass.

However, sharp-headed shells with an armor-piercing tip, like blunt-headed shells, have a significant drawback - greater aerodynamic resistance, due to which armor penetration drops more at a distance than sharp-headed shells. To improve aerodynamics, ballistic caps are used, due to which armor penetration is increased at medium and long distances. For example, on the German 128 mm KwK 44 L/55 gun, two armor-piercing chamber shells are available, one with a ballistic cap and the other without it. Armor-piercing sharp-headed projectile with an armor-piercing tip PzGr at a right angle pierces 266 mm at 10 meters and 157 mm at 2000 meters. But an armor-piercing projectile with an armor-piercing tip and a ballistic cap PzGr 43 at a right angle pierces 269 mm at 10 meters and 208 mm at 2000 meters. In close combat, there are no special differences between them, but at long distances the difference in armor penetration is huge.

Armor-piercing chamber shells with an armor-piercing tip and a ballistic cap are the most versatile type of armor-piercing ammunition that combines the advantages of sharp-headed and blunt-headed projectiles.

Table of armor-piercing shells

Sharp-headed armor-piercing shells can be chamber or solid. The same applies to blunt-headed shells, as well as sharp-headed shells with an armor-piercing tip, and so on. Let's put it all together possible options to the table. Under the icon of each projectile, the abbreviated names of the projectile type are written in English terminology, these are the terms used in the book "WWII Ballistics: Armor and Gunnery", according to which many shells in the game are configured. If you hover over the abbreviated name with the mouse cursor, a hint with decoding and translation will appear.


dumb-headed
(with ballistic cap)

sharp-headed

sharp-headed
with armor-piercing tip

sharp-headed
with armor-piercing tip and ballistic cap

Solid projectile

APBC

AP

APC

APCBC

Chamber projectile


APHE

APHEC

Sub-caliber shells

Coil sub-caliber projectiles

The action of the sub-caliber projectile:
1 - ballistic cap
2 - body
3 - core

Armor-piercing caliber shells have been described above. They are called caliber because the diameter of their warhead is equal to the caliber of the gun. There are also armor-piercing sub-caliber shells, the warhead diameter of which is smaller than the caliber of the gun. The simplest type of sub-caliber projectiles is coil (APCR - Armor-Piercing Composite Rigid). The coil sub-caliber projectile consists of three parts: a body, a ballistic cap and a core. The body serves to disperse the projectile in the barrel. At the moment of meeting with the armor, the ballistic cap and the body are crushed, and the core pierces the armor, hitting the tank with shrapnel.

At close range, sub-caliber shells penetrate thicker armor than caliber shells. Firstly, the sabot projectile is smaller and lighter than a conventional armor-piercing projectile, thanks to which it accelerates to higher speeds. Secondly, the core of the projectile is made of hard alloys with a high specific gravity. Thirdly, due to the small size of the core at the moment of contact with the armor, the impact energy falls on a small area of ​​​​the armor.

But coil sub-caliber shells also have significant drawbacks. Due to their relatively light weight, sub-caliber shells are ineffective at long distances, they lose energy faster, hence the drop in accuracy and armor penetration. The core does not have an explosive charge, therefore, in terms of armor action, sub-caliber shells are much weaker than chamber shells. Finally, sub-caliber shells do not work well against sloped armor.

Coil sub-caliber shells were effective only in close combat and were used in cases where enemy tanks were invulnerable against caliber armor-piercing shells. The use of sub-caliber shells made it possible to significantly increase the armor penetration of the existing guns, which made it possible to hit more modern, well-armored armored vehicles even with outdated guns.

Sub-caliber projectiles with a detachable pallet

APDS projectile and its core

Sectional view of an APDS projectile, showing the ballistic-tipped core

Armor-Piercing Discarding Sabot (APDS) - a further development of the design of sabot projectiles.

Coil sub-caliber projectiles had a significant drawback: the hull flew along with the core, increasing aerodynamic drag and, as a result, a drop in accuracy and armor penetration at a distance. For sub-caliber shells with a detachable pallet, a detachable pallet was used instead of the body, which first dispersed the projectile in the gun barrel, and then separated from the core by air resistance. The core flew to the target without a pallet and, due to the significantly lower aerodynamic resistance, did not lose armor penetration at a distance as quickly as coil sub-caliber shells.

During the Second World War, sub-caliber shells with a detachable pallet were distinguished by record-breaking armor penetration and flight speed. For example, the Shot SV Mk.1 sub-caliber projectile for the 17-pounder accelerated to 1203 m/s and pierced 228 mm of soft armor at a right angle at 10 meters, while the Shot Mk.8 armor-piercing caliber projectile only 171 mm under the same conditions.

Sub-caliber feathered shells

Separation of the pallet from BOPS

BOPS projectile

Armor-Piercing Fin-Stabilized Discarding Sabot (APFSDS) is the most modern type of armor-piercing projectile designed to destroy heavily armored vehicles protected by the latest types of armor and active protection.

These projectiles are a further development of sabot projectiles with a detachable pallet, they are even longer and have a smaller cross section. Spin stabilization is not very effective for high aspect ratio projectiles, so armor piercing finned sabots (BOPS for short) are stabilized by the fins and are generally used to fire smoothbore guns (however, early BOPS and some modern ones are designed to fire rifled guns).

Modern BOPS projectiles have a diameter of 2-3 cm and a length of 50-60 cm. To maximize the specific pressure and kinetic energy of the projectile, high-density materials are used in the manufacture of ammunition - tungsten carbide or an alloy based on depleted uranium. The muzzle velocity of the BOPS is up to 1900 m / s.

Concrete-piercing projectiles

The concrete projectile is artillery shell, designed to destroy long-term fortifications and solid buildings of capital construction, as well as to destroy enemy manpower and military equipment hidden in them. Often, concrete-piercing shells were used to destroy concrete pillboxes.

In terms of design, concrete-piercing shells occupy an intermediate position between armor-piercing chamber and high-explosive fragmentation shells. Compared to high-explosive fragmentation projectiles of the same caliber, with a close destructive potential of the explosive charge, concrete-piercing ammunition has a more massive and durable body, which allows them to penetrate deep into reinforced concrete, stone and brick barriers. Compared to armor-piercing chamber shells, concrete-piercing shells have more explosives, but a less durable body, so concrete-piercing shells are inferior to them in armor penetration.

The G-530 concrete-piercing projectile weighing 40 kg is included in the ammunition load of the KV-2 tank, the main purpose of which was the destruction of pillboxes and other fortifications.

HEAT rounds

Rotating HEAT projectiles

The device of the cumulative projectile:
1 - fairing
2 - air cavity
3 - metal cladding
4 - detonator
5 - explosive
6 - piezoelectric fuse

The cumulative projectile (HEAT - High-Explosive Anti-Tank) differs significantly from kinetic ammunition, which include conventional armor-piercing and sub-caliber shells. It is a thin-walled steel projectile filled with a powerful explosive - RDX, or a mixture of TNT and RDX. In front of the projectile in explosives there is a goblet-shaped or cone-shaped recess lined with metal (usually copper) - a focusing funnel. The projectile has a sensitive head fuse.

When a projectile collides with armor, an explosive is detonated. Due to the presence of a focusing funnel in the projectile, part of the explosion energy is concentrated at one small point, forming a thin cumulative jet consisting of the metal of the lining of the same funnel and explosion products. The cumulative jet flies forward at great speed (approximately 5,000 - 10,000 m / s) and passes through the armor due to the enormous pressure it creates (like a needle through oil), under the influence of which any metal enters a state of superfluidity or, in other words, leads itself as a liquid. The armored damaging effect is provided both by the cumulative jet itself and by hot drops of pierced armor squeezed inward.


The most important advantage of a HEAT projectile is that its armor penetration does not depend on the velocity of the projectile and is the same at all distances. That's why HEAT rounds used on howitzers, since conventional armor-piercing shells would be ineffective for them due to their low flight speed. But the cumulative shells of the Second World War also had significant drawbacks that limited their use. The rotation of the projectile at high initial speeds made it difficult to form a cumulative jet, as a result, the cumulative projectiles had a low initial speed, a small effective range and high dispersion, which was also facilitated by the shape of the projectile head, which was not optimal from the point of view of aerodynamics. The manufacturing technology of these shells at that time was not sufficiently developed, so their armor penetration was relatively low (approximately corresponded to the caliber of the projectile or slightly higher) and was unstable.

Non-rotating (feathered) cumulative projectiles

Non-rotating (feathered) cumulative projectiles (HEAT-FS - High-Explosive Anti-Tank Fin-Stabilised) are a further development of cumulative ammunition. Unlike early cumulative projectiles, they are stabilized in flight not by rotation, but by folding fins. The lack of rotation improves the formation of a cumulative jet and significantly increases armor penetration, while removing all restrictions on the speed of the projectile, which can exceed 1000 m/s. So, for early cumulative shells, typical armor penetration was 1-1.5 calibers, while for post-war shells it was 4 or more. However, feathered projectiles have a slightly lower armor effect compared to conventional HEAT projectiles.

Fragmentation and high-explosive shells

High-explosive shells

A high-explosive fragmentation projectile (HE - High-Explosive) is a thin-walled steel or cast iron projectile filled with an explosive (usually TNT or ammonite), with a head fuse. Upon hitting the target, the projectile immediately explodes, hitting the target with fragments and an explosive wave. Compared to concrete-piercing and armor-piercing chamber shells, high-explosive fragmentation shells have very thin walls, but they have more explosives.

The main purpose of high-explosive fragmentation shells is to defeat enemy manpower, as well as unarmored and lightly armored vehicles. High-explosive high-explosive shells of large caliber can be used very effectively to destroy lightly armored tanks and self-propelled guns, as they break through relatively thin armor and incapacitate the crew with the force of the explosion. Tanks and self-propelled guns with anti-projectile armor are resistant to high-explosive fragmentation shells. However, large-caliber projectiles can even hit them: the explosion destroys the tracks, damages the gun barrel, jams the turret, and the crew is injured and shell-shocked.

Shrapnel shells

The shrapnel projectile is a cylindrical body, divided by a partition (diaphragm) into 2 compartments. An explosive charge is placed in the bottom compartment, and spherical bullets are in the other compartment. A tube filled with a slowly burning pyrotechnic composition passes along the axis of the projectile.

The main purpose of the shrapnel projectile is to defeat the enemy's manpower. It happens in the following way. At the moment of the shot, the composition in the tube ignites. Gradually, it burns out and transfers the fire to the explosive charge. The charge ignites and explodes, squeezing out a partition with bullets. The head of the projectile comes off and the bullets fly out along the axis of the projectile, deviating slightly to the sides and hitting the enemy infantry.

In the absence of armor-piercing shells in the early stages of the war, gunners often used shrapnel shells with a tube set "on impact". In terms of its qualities, such a projectile occupied an intermediate position between high-explosive fragmentation and armor-piercing, which is reflected in the game.

Armor-piercing shells

Armor-piercing high-explosive projectile (HESH - High Explosive Squash Head) - a post-war type of anti-tank projectile, the principle of operation of which is based on the detonation of a plastic explosive on the surface of the armor, which causes armor fragments on the back to break off and damage the fighting compartment of the vehicle. An armor-piercing high-explosive projectile has a body with relatively thin walls, designed for plastic deformation when it encounters an obstacle, as well as a bottom fuse. The charge of an armor-piercing high-explosive projectile consists of a plastic explosive that “spreads” over the surface of the armor when the projectile meets an obstacle.

After “spreading”, the charge is detonated by a slow-acting bottom fuse, which causes the destruction of the rear surface of the armor and the formation of spalls that can hit the internal equipment of the vehicle or crew members. In some cases, penetrating armor can also occur in the form of a puncture, a breach, or a broken plug. The penetrating ability of an armor-piercing high-explosive projectile depends less on the angle of the armor in comparison with conventional armor-piercing projectiles.

ATGM Malyutka (1 generation)

Shillelagh ATGM (2 generations)

Anti-tank guided missiles

An anti-tank guided missile (ATGM) is a guided missile designed to destroy tanks and other armored targets. The former name of the ATGM is "anti-tank guided missile". ATGMs in the game are solid-propellant missiles equipped with on-board control systems (operating on the operator's commands) and flight stabilization, devices for receiving and decrypting control signals received via wires (or via infrared or radio command control channels). The warhead is cumulative, with armor penetration of 400-600 mm. The flight speed of missiles is only 150-323 m / s, but the target can be successfully hit at a distance of up to 3 kilometers.

The game features ATGMs of two generations:

  • First generation (manual command guidance system)- in reality, they are manually controlled by the operator using a joystick, eng. MCLOS. In realistic and simulation modes, these missiles are controlled using the WSAD keys.
  • Second generation (semi-automatic command guidance system)- in reality and in all game modes, they are controlled by pointing the sight at the target, eng. SACLOS. The reticle in the game is either the center of the crosshair of the optical sight, or a large white round marker (reload indicator) in the third person view.

In arcade mode, there is no difference between the generations of rockets, they are all controlled with the help of a sight, like second-generation rockets.

ATGMs are also distinguished by the launch method.

  • 1) Launched from the channel of the tank barrel. To do this, you need either a smooth barrel: an example is the smooth barrel of a 125-mm gun of the T-64 tank. Or a keyway is made in a rifled barrel, where a rocket is inserted, for example, in the Sheridan tank.
  • 2) Launched from guides. Closed, tubular (or square), for example, like the RakJPz 2 tank destroyer with the HOT-1 ATGM. Or open, rail (for example, like the IT-1 tank destroyer with the 2K4 Dragon ATGM).

As a rule, the more modern and the more caliber ATGM - the more it penetrates. ATGMs were constantly improved - manufacturing technology, materials science, and explosives improved. The penetrating effect of ATGMs (as well as cumulative projectiles) can be completely or partially neutralized combined armor and dynamic protection. As well as special anti-cumulative armor screens located at some distance from the main armor.

Appearance and device of shells

    Armor-piercing sharp-headed chamber projectile

    Pointed Projectile with armor-piercing tip

    Sharp-headed projectile with armor-piercing tip and ballistic cap

    Armor-piercing blunt projectile with ballistic cap

    Sub-caliber projectile

    Sub-caliber projectile with detachable pallet

    HEAT projectile

    Non-rotating (feathered) cumulative projectile

  • A denormalization phenomenon that increases the path of a projectile through armor

    Starting with game version 1.49, the effect of shells on sloped armor has been redesigned. Now the value of the reduced armor thickness (armor thickness ÷ cosine of the angle of inclination) is valid only for calculating the penetration of HEAT projectiles. For armor-piercing and especially sub-caliber shells, the penetration of sloping armor was significantly reduced due to the denormalization effect, when a short shell turns around during penetration, and its path in the armor increases.

    So, at an angle of inclination of the armor of 60 °, penetration for all shells fell by about 2 times. Now this is true only for cumulative and armor-piercing high-explosive shells. For armor-piercing shells, penetration in this case drops by 2.3-2.9 times, for conventional sub-caliber shells - by 3-4 times, and for sub-caliber shells with a detachable pallet (including BOPS) - by 2.5 times.

    List of shells in order of deterioration of their work on sloped armor:

    1. Cumulative And armor-piercing high-explosive- the most efficient.
    2. Armor-piercing blunt And armor-piercing sharp-headed with an armor-piercing tip.
    3. Armor-piercing sub-caliber with detachable pallet And BOPS.
    4. Armor-piercing sharp-headed And shrapnel.
    5. Armor-piercing sub-caliber- the most inefficient.

    Here, a high-explosive fragmentation projectile stands apart, in which the probability of penetrating the armor does not depend on its angle of inclination at all (provided that no ricochet has occurred).

    Armor-piercing shells

    For such projectiles, the fuse is cocked at the moment of penetration of the armor and undermines the projectile after a certain time, which ensures a very high armor effect. Two important values ​​are specified in the parameters of the projectile: fuse sensitivity and fuse delay.

    If the thickness of the armor is less than the sensitivity of the fuse, then the explosion will not occur, and the projectile will work like a regular solid one, damaging only those modules that are in its path, or simply fly through the target without causing damage. Therefore, when firing at unarmored targets, chamber shells are not very effective (as well as all others, except for high-explosive and shrapnel).

    The fuse delay determines the time after which the projectile will explode after breaking through the armor. Too little delay (in particular, for the Soviet MD-5 fuse) leads to the fact that when it hits hinged element tank (screen, track, undercarriage, caterpillar), the projectile explodes almost immediately and does not have time to penetrate the armor. Therefore, when firing at shielded tanks, it is better not to use such shells. Too much delay of the fuse can cause the projectile to go right through and explode outside the tank (although such cases are very rare).

    If a chamber projectile is detonated in a fuel tank or in an ammunition rack, then with a high probability an explosion will occur and the tank will be destroyed.

    Armor-piercing sharp-headed and blunt-headed projectiles

    Depending on the shape of the armor-piercing part of the projectile, its tendency to ricochet, armor penetration and normalization differ. As a general rule, blunt-headed shells are best used against enemies with sloped armor, and sharp-headed shells - if the armor is not sloped. However, the difference in armor penetration in both types is not very large.

    The presence of armor-piercing and / or ballistic caps significantly improves the properties of the projectile.

    Sub-caliber shells

    This type of projectile is characterized by high armor penetration at short distances and very high speed flight, which makes it easier to shoot at moving targets.

    However, when armor is penetrated, only a thin hard-alloy rod appears in the armored space, which causes damage only to those modules and crew members in which it hits (unlike an armor-piercing chamber projectile, which fills everything with fragments fighting compartment). Therefore, in order to effectively destroy a tank with a sub-caliber projectile, it is necessary to shoot at its weak spots: engine, ammo rack, fuel tanks. But even in this case, one hit may not be enough to disable the tank. If you shoot at random (especially at the same point), it may take a lot of shots to disable the tank, and the enemy may get ahead of you.

    Another problem with sub-caliber projectiles is a strong loss of armor penetration with distance due to their low mass. Studying the armor penetration tables shows at what distance you need to switch to a regular armor-piercing projectile, which, in addition, has a much greater lethality.

    HEAT rounds

    The armor penetration of these shells does not depend on the distance, which allows them to be used with equal efficiency for both close and long-range combat. However, due to design features, HEAT rounds often have a lower flight speed than other types, as a result of which the shot trajectory becomes hinged, accuracy suffers, and it becomes very difficult to hit moving targets (especially at long distances).

    The principle of operation of the cumulative projectile also determines its not very high damaging ability compared to the armor-piercing chamber projectile: the cumulative jet flies for a limited distance inside the tank and inflicts damage only to those components and crew members in which it directly hit. Therefore, when using a cumulative projectile, one should aim just as carefully as in the case of a sub-caliber one.

    If the cumulative projectile hit not the armor, but the hinged element of the tank (screen, track, caterpillar, undercarriage), then it will explode on this element, and the armor penetration of the cumulative jet will significantly decrease (each centimeter of the jet flight in the air reduces armor penetration by 1 mm) . Therefore, other types of shells should be used against tanks with screens, and one should not hope to penetrate the armor with HEAT shells by shooting at the tracks, undercarriage and gun mantlet. Remember that a premature detonation of a projectile can cause any obstacle - a fence, a tree, any building.

    HEAT shells in life and in the game have a high-explosive action, that is, they also work as high-explosive fragmentation shells of reduced power (a light body gives fewer fragments). Thus, large-caliber cumulative projectiles can be quite successfully used instead of high-explosive fragmentation when firing at lightly armored vehicles.

    High-explosive shells

    The striking ability of these shells depends on the ratio of the caliber of your gun and the armor of your target. Thus, shells with a caliber of 50 mm or less are only effective against aircraft and trucks, 75-85 mm - against light tanks with bulletproof armor, 122 mm - against medium tanks such as T-34, 152 mm - against all tanks, with the exception of head-on shooting at the most armored vehicles.

    However, it must be remembered that the damage inflicted significantly depends on the specific point of impact, so there are cases when even a 122-152 mm caliber projectile causes very minor damage. And in the case of guns with a smaller caliber, in doubtful cases, it is better to use an armor-piercing chamber or shrapnel projectile, which have greater penetration and high lethality.

    Shells - part 2

    What is the best way to shoot? Overview tank shells by _Omero_


The term "sub-caliber projectile" is most often used in tank forces. Such shells are used along with cumulative and high-explosive fragmentation. But if earlier there was a division into armor-piercing and sub-caliber ammunition, now it makes sense to talk only about armor-piercing sub-caliber projectiles. Let's talk about what a subcaliber is and what are its key features and principle of operation.

basic information

The key difference between sub-caliber shells and conventional armored shells is that the diameter of the core, that is, the main part, is less than the caliber of the gun. At the same time, the second main part - the pallet - is made according to the diameter of the gun. The main purpose of such ammunition is to defeat heavily armored targets. Usually this heavy tanks and fortified buildings.

It is worth noting that the armor-piercing sub-caliber projectile has increased penetration due to the high initial flight speed. Also increased the specific pressure when breaking through the armor. To do this, it is desirable to use materials having the highest possible specific gravity as the core. For these purposes, tungsten and depleted uranium are suitable. Stabilization of the flight of the projectile is implemented by plumage. There is nothing new here, since the principle of the flight of an ordinary arrow is used.

Armor-piercing sub-caliber projectile and its description

As we noted above, such ammunition is ideal for firing at tanks. It is interesting that the subcaliber does not have the usual fuse and explosive. The principle of operation of the projectile is completely based on its kinetic energy. In comparison, it is something like a massive high-velocity bullet.

The subcaliber consists of a coil body. A core is inserted into it, which is often made 3 times smaller than the caliber of the gun. High-strength metal-ceramic alloys are used as the core material. If earlier it was tungsten, today depleted uranium is more popular for a number of reasons. During the shot, the pallet takes over the entire load, thereby ensuring the initial flight speed. Since the weight of such a projectile is less than a conventional armor-piercing one, by reducing the caliber, it was possible to increase the flight speed. These are significant values. So, a feathered sub-caliber projectile flies at a speed of 1,600 m/s, while a classic armor-piercing projectile flies at 800-1,000 m/s.

The action of a sub-caliber projectile

Quite interesting is how such ammunition works. During contact with the armor, it creates a small diameter hole in it due to high kinetic energy. Part of the energy is spent on the destruction of the target's armor, and the projectile fragments fly into the armored space. Moreover, the trajectory is similar to a divergent cone. This leads to the fact that the mechanisms and equipment of the equipment fail, the crew is affected. Most importantly, due to the high degree of pyrophoricity of depleted uranium, numerous fires occur, which in most cases leads to the complete failure of the combat unit. We can say that the sub-caliber projectile, the principle of which we have considered, has increased armor penetration at long distances. Evidence of this is Operation Desert Storm, when the US Armed Forces used sub-caliber ammunition and hit armored targets at a distance of 3 km.

Varieties of PB shells

Currently, several effective designs of sub-caliber projectiles have been developed, which are used by the armed forces of various countries. In particular, we are talking about the following:

  • With non-separable tray. The projectile passes all the way to the target as a single whole. Only the core is involved in the penetration. This solution has not received sufficient distribution due to increased aerodynamic drag. As a result, the armor penetration rate and accuracy drop significantly with the distance to the target.
  • With non-detachable tray for conical implements. The essence of this solution is that when passing through the conical shaft, the pallet is crushed. This allows you to reduce aerodynamic drag.
  • Sub-caliber projectile with detachable pallet. The bottom line is that the pallet is torn off by air forces or by centrifugal forces (with a rifled gun). This allows you to significantly reduce air resistance in flight.

About cumulatives

For the first time, such ammunition was used by Nazi Germany in 1941. At that time, the USSR did not expect the use of such shells, since their principle of operation, although known, was not yet in service. The key feature of such projectiles was that they had high armor penetration due to the presence of instantaneous fuses and a cumulative recess. The problem, which was encountered for the first time, was that the projectile rotated during the flight. This led to the dispersion of the cumulative arrow and, as a result, reduced armor penetration. To eliminate the negative effect, it was proposed to use smoothbore guns.

Some interesting facts

It is worth noting that it was in the USSR that arrow-shaped armor-piercing sub-caliber shells were developed. This was a real breakthrough, as it was possible to increase the length of the core. Almost no armor protected from a direct hit of such ammunition. Only a successful angle of inclination of the armor plate and, consequently, its increased thickness in the reduced state could help out. In the end, BOPS had such an advantage as a flat flight path at a distance of up to 4 km and high accuracy.

Conclusion

A cumulative sub-caliber projectile is somewhat similar to a conventional sub-caliber. But in its body it has a fuse and an explosive. When breaking through the armor, such ammunition provides destructive action both equipment and manpower. Currently, the most common shells for cannons with a caliber of 115, 120, 125 mm, as well as artillery pieces of 90, 100 and 105 mm. In general, this is all the information on this topic.

) and 40 tons ("Puma", "Namer"). In this regard, overcoming the armor protection of these vehicles is a serious problem for anti-tank ammunition, which includes armor-piercing and cumulative projectiles, rockets and rocket-propelled grenades with kinetic and cumulative warheads, as well as striking elements with an impact core.

Among them, armor-piercing sub-caliber shells and missiles with a kinetic warhead are the most effective. Possessing high armor penetration, they differ from other anti-tank munitions in their high approach speed, low sensitivity to the effects of dynamic protection, the relative independence of the weapon guidance system from natural / artificial interference, and low cost. Moreover, these types of anti-tank munitions can be guaranteed to overcome the active protection system of armored vehicles, which is increasingly becoming widespread as a front line for intercepting striking elements.

Currently, only armor-piercing sub-caliber shells have been adopted for service. They are fired mainly from smooth-bore guns of small (30-57 mm), medium (76-125 mm) and large (140-152 mm) calibers. The projectile consists of a two-bearing leading device, the diameter of which coincides with the diameter of the barrel bore, consisting of sections separated after departure from the barrel, and a striking element - an armor-piercing rod, in the bow of which a ballistic tip is installed, in the tail - an aerodynamic stabilizer and a tracer charge.

As the material of the armor-piercing rod, ceramics based on tungsten carbide (density 15.77 g / cc), as well as metal alloys based on uranium (density 19.04 g / cc) or tungsten (density 19.1 g / cc) are used. cc). The diameter of the armor-piercing rod ranges from 30 mm (obsolete models) to 20 mm (modern models). The higher the density of the rod material and the smaller the diameter, the greater the specific pressure exerted by the projectile on the armor at the point of its contact with the front end of the rod.

Metal rods have much greater bending strength than ceramic ones, which is very important when the projectile interacts with active protection shrapnel elements or explosive dynamic protection plates. At the same time, the uranium alloy, despite its somewhat lower density, has an advantage over tungsten - the armor penetration of the first is 15-20 percent greater due to the ablative self-sharpening of the rod in the process of penetrating armor, starting from an impact speed of 1600 m / s, provided by modern cannon shots.

Tungsten alloy begins to exhibit ablative self-sharpening from 2000 m/s, requiring new ways to accelerate projectiles. At a lower speed, the front end of the rod flattens out, increasing the penetration channel and reducing the penetration depth of the rod into the armor.

Along with this advantage, the uranium alloy has one drawback - in the event of a nuclear conflict, neutron irradiation penetrating the tank induces secondary radiation in uranium that affects the crew. Therefore, in the arsenal of armor-piercing shells, it is necessary to have models with rods made of both uranium and tungsten alloys, designed for two types of military operations.

Uranium and tungsten alloys also have pyrophoricity - ignition of heated metal dust particles in air after breaking through the armor, which serves as an additional damaging factor. The specified property manifests itself in them, starting from the same speeds as the ablative self-sharpening. Another damaging factor is heavy metal dust, which has a negative biological effect on the crew of enemy tanks.

The leading device is made of aluminum alloy or carbon fiber, the ballistic tip and aerodynamic stabilizer are made of steel. The lead device serves to accelerate the projectile in the bore, after which it is discarded, so its weight must be minimized by using composite materials instead of aluminum alloy. The aerodynamic stabilizer is subjected to thermal effects from the powder gases generated during the combustion of the powder charge, which can affect the accuracy of shooting, and therefore it is made of heat-resistant steel.

The armor penetration of kinetic projectiles and missiles is determined as the thickness of a homogeneous steel plate, installed perpendicular to the axis of the projectile flight, or at a certain angle. In the latter case, the reduced penetration of the equivalent thickness of the plate is ahead of the penetration of the plate, installed along the normal, due to the large specific loads at the entrance and exit of the armor-piercing rod into / out of the inclined armor.

Upon entering the sloping armor, the projectile forms a characteristic roller above the penetration channel. The blades of the aerodynamic stabilizer, collapsing, leave a characteristic "star" on the armor, by the number of rays of which it is possible to determine the belonging of the projectile (Russian - five rays). In the process of breaking through the armor, the rod is intensively ground off and significantly reduces its length. When leaving the armor, it elastically bends and changes the direction of its movement.

A characteristic representative of the penultimate generation of armor-piercing artillery ammunition is the Russian 125-mm separate-loading round 3BM19, which includes a 4Zh63 cartridge case with the main propellant charge and a 3BM44M cartridge case containing an additional propellant charge and the 3BM42M "Lekalo" sub-caliber projectile itself. Designed for use in the 2A46M1 gun and newer modifications. The dimensions of the shot allow it to be placed only in modified versions of the automatic loader.

The ceramic core of the projectile is made of tungsten carbide, placed in a steel protective case. The leading device is made of carbon fiber. As the material of the sleeves (except for the steel pallet of the main propellant charge), cardboard impregnated with trinitrotoluene was used. The length of the cartridge case with the projectile is 740 mm, the length of the projectile is 730 mm, the length of the armor-piercing rod is 570 mm, and the diameter is 22 mm. The weight of the shot is 20.3 kg, the cartridge case with the projectile is 10.7 kg, the armor-piercing rod is 4.75 kg. The initial speed of the projectile is 1750 m / s, armor penetration at a distance of 2000 meters along the normal is 650 mm of homogeneous steel.

The latest generation of Russian armor-piercing artillery ammunition is represented by 125-mm separate-loading rounds 3VBM22 and 3VBM23, equipped with two types of sub-caliber projectiles - respectively 3VBM59 "Lead-1" with an armor-piercing rod made of tungsten alloy and 3VBM60 with an armor-piercing rod made of uranium alloy. The main propellant charge is loaded into the 4Zh96 "Ozon-T" cartridge case.

The dimensions of the new projectiles coincide with the dimensions of the Lekalo projectile. Their weight is increased to 5 kg due to the greater density of the rod material. To disperse heavy projectiles in the barrel, a more voluminous main propellant charge is used, which limits the use of shots, including Lead-1 and Lead-2 projectiles, only new cannon 2A82, which has an enlarged charging chamber. Armor penetration at a distance of 2000 meters along the normal can be estimated as 700 and 800 mm of homogeneous steel, respectively.

Unfortunately, the Lekalo, Lead-1 and Lead-2 projectiles have a significant design flaw in the form of centering screws located along the perimeter of the supporting surfaces of the leading devices (protrusions visible in the figure on the front supporting surface and points on the surface of the sleeve ). Centering screws are used for stable management projectile in the bore, but their heads at the same time have a destructive effect on the surface of the channel.

In foreign designs of the latest generation, precision obturator rings are used instead of screws, which reduces barrel wear by a factor of five when fired with an armor-piercing sub-caliber projectile.

The previous generation of foreign armor-piercing sub-caliber projectiles is represented by the German DM63, which is part of a unitary shot for the standard 120 mm NATO smoothbore gun. Armor-piercing rod is made of tungsten alloy. The weight of the shot is 21.4 kg, the weight of the projectile is 8.35 kg, the weight of the armor-piercing rod is 5 kg. Shot length is 982 mm, projectile length is 745 mm, core length is 570 mm, diameter is 22 mm. When firing from a cannon with a barrel length of 55 calibers, the initial speed is 1730 m / s, the speed drop on the flight path is declared at the level of 55 m / s for every 1000 meters. Armor penetration at a distance of 2000 meters normal is estimated at 700 mm of homogeneous steel.

The latest generation of foreign armor-piercing sub-caliber projectiles includes the American M829A3, which is also part of the unitary shot for the standard 120-mm NATO smoothbore gun. Unlike the D63 projectile, the armor-piercing rod of the M829A3 projectile is made of a uranium alloy. The weight of the shot is 22.3 kg, the weight of the projectile is 10 kg, the weight of the armor-piercing rod is 6 kg. Shot length is 982 mm, projectile length is 924 mm, core length is 800 mm. When firing from a cannon with a barrel length of 55 calibers, the initial speed is 1640 m/s, the speed drop is declared at the level of 59.5 m/s for every 1000 meters. Armor penetration at a distance of 2000 meters is estimated at 850 mm homogeneous steel.

When comparing Russian and American sub-caliber shells of the latest generation, equipped with armor-piercing cores from a uranium alloy, a difference in the level of armor penetration is visible, to a greater extent due to the degree of elongation of their striking elements - 26 times for the lead of the Lead-2 projectile and 37 times for the M829A3 projectile rod. In the latter case, a quarter greater specific load is provided at the point of contact between the rod and armor. In general, the dependence of the value of the armor penetration of shells on the speed, weight and elongation of their striking elements is presented in the following diagram.

An obstacle to increasing the elongation of the striking element and, consequently, the armor penetration of Russian projectiles is the automatic loader device, first implemented in 1964 in the Soviet T-64 tank and repeated in all subsequent models. domestic tanks, which provides for a horizontal arrangement of projectiles in a conveyor, the diameter of which cannot exceed the internal width of the hull, equal to two meters. Taking into account the case diameter of Russian shells, their length is limited to 740 mm, which is 182 mm less than the length of American shells.

In order to achieve parity with the cannon weapons of a potential enemy for our tank building, the priority for the future is the transition to unitary shots, located vertically in an automatic loader, the shells of which have a length of at least 924 mm.

Other ways to increase the effectiveness of traditional armor-piercing projectiles without increasing the caliber of guns have practically exhausted themselves due to restrictions on the pressure in the barrel chamber developed during the combustion of a powder charge, due to the strength of weapon steel. When moving to a larger caliber, the size of the shots becomes comparable to the width of the tank hull, forcing the shells to be placed in the aft niche of the turret with increased dimensions and a low degree of protection. For comparison, the photo shows a shot of 140 mm caliber and a length of 1485 mm next to a mock shot of a 120 mm caliber and a length of 982 mm.

In this regard, in the United States, as part of the MRM (Mid Range Munition) program, MRM-KE active rockets with a kinetic warhead and MRM-CE with a cumulative warhead have been developed. They are loaded into the cartridge case of a standard 120-mm cannon shot with a propellant charge of gunpowder. The caliber body of the shells contains a radar homing head (GOS), a striking element (an armor-piercing rod or a shaped charge), impulse trajectory correction engines, an accelerating rocket engine and a tail unit. The weight of one projectile is 18 kg, the weight of the armor-piercing rod is 3.7 kg. The initial speed at the level of the muzzle is 1100 m/s, after the completion of the accelerating engine, it increases to 1650 m/s.

Even more impressive figures have been achieved in the framework of the creation of an anti-tank kinetic rocket CKEM (Compact Kinetic Energy Missile), whose length is 1500 mm, weight 45 kg. The rocket is launched from a transport and launch container using a powder charge, after which the rocket is accelerated by an accelerating solid-propellant engine to a speed of almost 2000 m / s (Mach 6.5) in 0.5 seconds.

The subsequent ballistic flight of the rocket is carried out under the control of the radar seeker and aerodynamic rudders with stabilization in the air using the tail unit. The minimum effective firing range is 400 meters. The kinetic energy of the damaging element - armor-piercing rod at the end of jet acceleration reaches 10 mJ.

During the tests of the MRM-KE projectiles and the CKEM rocket, the main drawback of their design was revealed - unlike sub-caliber armor-piercing projectiles with a separating leading device, the inertia flight of the striking elements of a caliber projectile and a kinetic missile is carried out assembled with a body of large cross-section and increased aerodynamic resistance, which causes a significant drop in speed on the trajectory and a decrease in the effective firing range. In addition, the radar seeker, impulse correction engines and aerodynamic rudders have a low weight perfection, which makes it necessary to reduce the weight of the armor-piercing rod, which negatively affects its penetration.

The way out of this situation is seen in the transition to the separation in flight of the caliber body of the projectile / rocket and the armor-piercing rod after the completion of the rocket engine, by analogy with the separation of the leading device and the armor-piercing rod, which are part of the sub-caliber projectiles, after their departure from the barrel. Separation can be carried out with the help of an expelling powder charge, which is triggered at the end of the accelerating section of the flight. Reduced-sized seeker should be located directly in the ballistic tip of the rod, while the flight vector control must be implemented on new principles.

A similar technical problem was solved as part of the BLAM (Barrel Launched Adaptive Munition) project to create small-caliber guided artillery shells, performed at the Adaptive Aerostructures Laboratory AAL (Adaptive Aerostructures Laboratory) of Auburn University by order of the US Air Force. The aim of the project was to create a compact homing system that combines a target detector, a controlled aerodynamic surface and its drive in one volume.

The developers decided to change the direction of flight by deflecting the projectile tip at a small angle. At supersonic speed, a fraction of a degree deflection is enough to create a force capable of implementing a control action. A simple technical solution was proposed - the ballistic tip of the projectile rests on a spherical surface, which plays the role of a ball bearing, several piezoceramic rods are used to drive the tip, arranged in a circle at an angle to the longitudinal axis. Changing their length depending on the applied voltage, the rods deflect the tip of the projectile to the desired angle and with the desired frequency.

The calculations determined the strength requirements for the control system:
- accelerating acceleration up to 20,000 g;
- acceleration on the trajectory up to 5,000 g;
- projectile speed up to 5000 m / s;
— tip deflection angle up to 0.12 degrees;
— drive actuation frequency up to 200 Hz;
- drive power 0.028 watts.

Recent advances in the miniaturization of infrared sensors, laser accelerometers, computing processors and lithium-ion power supplies resistant to high accelerations (such as electronic devices for guided projectiles - American and Russian), make it possible in the period up to 2020 to create and adopt kinetic projectiles and missiles initial speed flight over two kilometers per second, which will significantly increase the effectiveness of anti-tank munitions, and also make it possible to abandon the use of uranium as part of their striking elements.