Sub-caliber shells of the present and the future. Bops (armour-piercing feathered sabots) Velocity of sabots

The appearance of tanks on the battlefield has become one of the major events military history of the last century. Immediately after this moment, the development of means to combat these formidable machines began. If we take a closer look at the history of armored vehicles, then, in fact, we will see the history of the confrontation between the projectile and armor, which has been going on for almost a century.

In this irreconcilable struggle, one or the other side periodically gained the upper hand, which led either to the complete invulnerability of the tanks, or to their huge losses. In the latter case, every time there were voices about the death of the tank and the "end of the tank era." However, today tanks remain the main strike force ground forces all the armies of the world.

Today, one of the main types of armor-piercing ammunition that are used to combat armored vehicles are sub-caliber ammunition.

A bit of history

The first anti-tank shells were ordinary metal ingots, which, due to their kinetic energy, pierced tank armor. Fortunately, the latter was not very thick, and even anti-tank guns could handle it. However, already before the start of World War II, tanks of the next generation began to appear (KV, T-34, Matilda), with a powerful engine and serious armor.

The major world powers entered World War II with anti-tank artillery caliber 37 and 47 mm, and finished it with guns that reached 88 and even 122 mm.

Increasing the caliber of the gun and initial speed projectile flight, the designers had to increase the mass of the gun, making it more complicated, more expensive and much less maneuverable. It was necessary to look for other ways.

And they were soon found: cumulative and sub-caliber ammunition appeared. Action cumulative ammunition based on the use of a directed explosion that burns through tank armor, under caliber projectile also does not have a high-explosive effect, it hits a well-protected target due to high kinetic energy.

The design of the sub-caliber projectile was patented back in 1913 by the German manufacturer Krupp, but their mass use began much later. This ammunition does not have a high-explosive effect, it is much more like an ordinary bullet.

For the first time, the Germans began to actively use sub-caliber shells during the French campaign. They had to use such ammunition even more widely after the start of hostilities on the Eastern Front. Only using sub-caliber shells, the Nazis could effectively resist the powerful Soviet tanks.

However, the Germans experienced a serious shortage of tungsten, which prevented them from mass production of such shells. Therefore, the number of such shots in the ammunition load was small, and the military personnel were given strict orders: to use them only against enemy tanks.

In the USSR, mass production of sub-caliber ammunition began in 1943, they were created on the basis of captured German samples.

After the war, work in this direction continued in most of the world's leading weapons powers. Today, sub-caliber ammunition is considered one of the main means of destroying armored targets.

Currently, there are even sub-caliber bullets that significantly increase the firing range of smoothbore weapons.

Operating principle

What is the basis of high armor-piercing action, which provides sub-caliber projectile? How is it different from the usual?

A sub-caliber projectile is a type of ammunition with a caliber of the warhead that is many times smaller than the caliber of the barrel from which it was fired.

It was found that a small-caliber projectile flying from high speed, has greater armor penetration than large-caliber. But in order to get high speed after a shot, a more powerful cartridge is needed, which means a gun of a more serious caliber.

It was possible to resolve this contradiction by creating a projectile, in which the striking part (core) has a small diameter compared to the main part of the projectile. The sub-caliber projectile does not have a high-explosive or fragmentation effect, it works on the same principle as a conventional bullet, which hits targets due to high kinetic energy.

The sub-caliber projectile consists of a solid core made of a particularly strong and heavy material, a body (pan) and a ballistic fairing.

The diameter of the pan is equal to the caliber of the weapon, it acts as a piston when fired, accelerating the warhead. On pallets sub-caliber shells for rifled guns, leading belts are installed. Typically, the pallet is in the form of a coil and is made of light alloys.

There are armor-piercing sub-caliber shells with a non-detachable pallet, from the moment of the shot until the target is hit, the coil and core act as a single whole. This design creates serious aerodynamic drag, significantly reducing flight speed.

Projectiles are considered more advanced, in which, after a shot, the coil is separated due to air resistance. In modern sub-caliber projectiles, the stability of the core in flight is provided by stabilizers. Often a tracer charge is installed in the tail section.

The ballistic tip is made of soft metal or plastic.

The most important element of a sub-caliber projectile is undoubtedly the core. Its diameter is about three times smaller than the caliber of the projectile, and high-density metal alloys are used to make the core: the most common materials are tungsten carbide and depleted uranium.

Due to the relatively small mass, the core of the sub-caliber projectile immediately after the shot accelerates to a significant speed (1600 m / s). Upon impact with the armor plate, the core pierces a relatively small hole in it. The kinetic energy of the projectile is partly used to destroy armor, and partly converted into heat. After breaking through the armor, red-hot fragments of the core and armor go into the armored space and spread like a fan, hitting the crew and internal mechanisms of the vehicle. This creates multiple fires.

As the armor passes, the core grinds and becomes shorter. Therefore very important characteristic, which affects armor penetration, is the length of the core. Also, the effectiveness of the sub-caliber projectile is affected by the material from which the core is made and the speed of its flight.

The latest generation of Russian sub-caliber projectiles ("Lead-2") is significantly inferior in armor penetration American counterparts. This is due to the greater length of the striking core, which is part of the American ammunition. An obstacle to increasing the length of the projectile (and, hence, armor penetration) is the device of automatic loaders for Russian tanks.

The armor penetration of the core increases with a decrease in its diameter and with an increase in its mass. This contradiction can be solved by using very dense materials. Initially, tungsten was used for the striking elements of such ammunition, but it is very rare, expensive, and also difficult to process.

Depleted uranium has almost the same density as tungsten, and is a virtually free resource for any country that has a nuclear industry.

Sub-caliber munitions with a uranium core are currently in service with the major powers. In the United States, all such ammunition is equipped only with uranium cores.

Depleted uranium has several advantages:

  • when passing through the armor, the uranium rod is self-sharpening, which provides better armor penetration, tungsten also has this feature, but it is less pronounced;
  • after breaking through the armor, under the influence of high temperatures, the remains of the uranium rod flare up, filling the armored space with poisonous gases.

To date, modern sub-caliber shells have almost reached their maximum efficiency. It can be increased only by increasing the caliber of tank guns, but this will require significant changes in the design of the tank. In the meantime, in the leading tank-building states, they are only engaged in modifying vehicles produced during the Cold War, and are unlikely to take such radical steps.

In the United States, active-rocket projectiles with a kinetic warhead are being developed. This is an ordinary projectile, which immediately after the shot turns on its own booster block, which significantly increases its speed and armor penetration.

Also, the Americans are developing a kinetic guided missile, the striking factor of which is a uranium rod. After firing from the launch canister, the upper stage turns on, which gives the ammunition a speed of Mach 6.5. Most likely, by 2020 there will be sub-caliber ammunition with a speed of 2000 m/s and higher. This will take their efficiency to a whole new level.

Sub-caliber bullets

In addition to sub-caliber shells, there are bullets that have the same design. Very widely such bullets are used for 12 gauge cartridges.

Sub-caliber bullets of 12 caliber have a smaller mass, after being fired they receive more kinetic energy and, accordingly, have a greater flight range.

Very popular sub-caliber bullets 12 caliber are: bullet Poleva and "Kirovchanka". There are other similar 12-gauge ammunition.

Video about sub-caliber ammunition

If you have any questions - leave them in the comments below the article. We or our visitors will be happy to answer them.

MOSCOW, July 23 - RIA Novosti, Andrey Kots. If a modern tank is fired upon with an armor-piercing "blank" from the Second World War, then, most likely, only a dent will remain at the site of the hit - penetrating through is practically impossible. The "puff" composite armor used today confidently withstands such a blow. But it can still be pierced with an "awl". Or "crowbar", as the tankers themselves call armor-piercing feathered sub-caliber shells (BOPS). About how these munitions work - in the material of RIA Novosti.

Awl instead of a sledgehammer

From the title it is clear that sub-caliber ammunition is a projectile with a caliber noticeably smaller than the caliber of the gun. Structurally, this is a "coil" with a diameter equal to the diameter of the barrel, in the center of which is the same tungsten or uranium "scrap" that hits the enemy's armor. When leaving the bore, the coil, which provided the core with sufficient kinetic energy and accelerated it to the desired speed, is divided into parts under the action of oncoming air flows, and a thin and strong feathered pin flies at the target. In a collision, due to its lower resistivity, it penetrates armor much more efficiently than a thick monolithic blank.

The armored impact of such a "scrap" is colossal. Due to the relatively small mass - 3.5-4 kilograms - the core of the sub-caliber projectile immediately after the shot accelerates to a significant speed - about 1500 meters per second. When hitting the armor plate, it punches a small hole. The kinetic energy of the projectile is partly used to destroy armor, and partly converted into heat. Red-hot fragments of the core and armor go into the armored space and spread like a fan, hitting the crew and internal mechanisms of the vehicle. This creates multiple fires.

An accurate hit of the BOPS can disable important components and assemblies, destroy or seriously injure crew members, jam the turret, pierce fuel tanks, undermine the ammunition rack, and destroy the undercarriage. Structurally, modern sabots are very different. Projectile bodies are both monolithic and composite - a core or several cores in a shell, as well as longitudinally and transversely multilayered, with various types of plumage.

Leading devices (those same "coils") have different aerodynamics, they are made of steel, light alloys, and composite materials - for example, carbon composites or aramid composites. Ballistic tips and dampers can be installed in the head parts of the BOPS. In a word, for every taste - for any gun, under certain conditions tank battle and a specific goal. The main advantages of such ammunition are high armor penetration, high flight speed, low sensitivity to dynamic protection, low vulnerability to active protection systems, which simply do not have time to react to a fast and inconspicuous "arrow".

"Mango" and "Lead"

For 125 mm smoothbore guns domestic tanks also in Soviet time developed a wide range of feathered "armor-piercing". They were engaged after the appearance of the potential enemy tanks M1 Abrams and Leopard-2. The army, like air, needed shells capable of hitting new types of reinforced armor and overcoming dynamic protection.

One of the most common BOPS in the arsenal of Russian T-72, T-80 and T-90 tanks is the ZBM-44 "Mango" high-power projectile, which was put into service in 1986. Ammunition has a rather complicated design. A ballistic tip is installed in the head part of the swept body, under which there is an armor-piercing cap. Behind him is an armor-piercing damper, also playing important role in penetration. Immediately after the damper are two tungsten alloy cores held inside by a light-alloy metal jacket. When a projectile collides with an obstacle, the shirt melts and releases cores that "bite" into the armor. In the tail of the projectile there is a stabilizer in the form of a plumage with five blades, at the base of the stabilizer there is a tracer. This "scrap" weighs only about five kilograms, but is capable of penetrating almost half a meter of tank armor at a distance of up to two kilometers.

The newer ZBM-48 "Lead" was put into service in 1991. Standard Russian tank autoloaders are limited by the length of the projectiles, so Lead is the most massive domestic tank ammunition of this class. The length of the active part of the projectile is 63.5 centimeters. The core is made of a uranium alloy, it has a high elongation, which increases penetration, and also reduces the impact of dynamic protection. After all, the longer the projectile, the smaller part of it interacts with passive and active obstacles at a certain point in time. Sub-caliber stabilizers improve the accuracy of the projectile, and a new composite "coil" drive device is also used. BOPS "Lead" is the most powerful serial projectile for 125-mm tank guns, capable of competing with leading Western models. The average armor penetration on a homogeneous steel plate from two kilometers is 650 millimeters.

This is not the only such development of the domestic defense industry - the media reported that especially for newest tank T-14 "Armata" created and tested BOPS "Vacuum-1" with a length of 900 millimeters. Their armor penetration came close to a meter.

It is worth noting that probable adversary also does not stand still. Back in 2016, Orbital ATK launched a full-scale production of an advanced armor-piercing feathered sub-caliber projectile with a fifth-generation M829A4 tracer for the M1 tank. According to the developers, the ammunition penetrates 770 millimeters of armor.

AT War Thunder implemented many types of shells, each of which has its own characteristics. In order to competently compare different shells, to choose the main type of ammunition before the battle, and in battle to use suitable shells for different purposes in different situations, you need to know the basics of their design and principle of operation. This article talks about the types of projectiles and their design, as well as gives advice on their use in combat. Do not neglect this knowledge, because the effectiveness of the weapon largely depends on the shells for it.

Types of tank ammunition

Armor-piercing caliber shells

Chamber and solid armor-piercing shells

As the name implies, the purpose of armor-piercing shells is to penetrate armor and thereby hit a tank. Armor-piercing shells are of two types: chamber and solid. Chamber shells have a special cavity inside - a chamber, in which an explosive is located. When such a projectile penetrates the armor, the fuse is triggered and the projectile explodes. The crew of an enemy tank is hit not only by armor fragments, but also by explosions and fragments of a chamber shell. The explosion does not occur immediately, but with a delay, thanks to which the projectile has time to fly into the tank and explode there, causing the most damage. In addition, the sensitivity of the fuse is set to, for example, 15 mm, that is, the fuse will only work if the thickness of the armor being penetrated is above 15 mm. This is necessary so that the chamber projectile explodes in the fighting compartment when it breaks through the main armor, and does not cock against the screens.

A solid projectile does not have a chamber with an explosive, it is just a metal blank. Of course, solid shells deal much less damage, but they penetrate a greater thickness of armor than similar chamber shells, since solid shells are stronger and heavier. For example, the armor-piercing chamber projectile BR-350A from the F-34 cannon pierces 80 mm at a right angle at close range, and the solid BR-350SP projectile as much as 105 mm. The use of solid projectiles is very typical for British school tank building. Things got to the point that the British removed explosives from American 75-mm chamber shells, turning them into solid ones.

The lethal force of solid shells depends on the ratio of the thickness of the armor and the armor penetration of the shell:

  • If the armor is too thin, then the projectile will pierce through it and damage only those elements that it hits along the way.
  • If the armor is too thick (on the border of penetration), then small non-lethal fragments are formed that will not cause much harm.
  • Maximum armor action - in case of penetration of sufficiently thick armor, while the penetration of the projectile should not be completely used up.

Thus, in the presence of several solid shells, the best armor action will be with the one with greater armor penetration. As for chamber shells, the damage also depends on the amount of explosive in TNT equivalent, as well as on whether the fuse worked or not.


Sharp-headed and blunt-headed armor-piercing shells

An oblique blow to the armor: a - a sharp-headed projectile; b - blunt projectile; c - arrow-shaped sub-caliber projectile

Armor-piercing shells are divided not only into chamber and solid shells, but also into sharp-headed and dumb-headed ones. Pointed shells pierce thicker armor at a right angle, since at the moment of impact with the armor, all the impact force falls on a small area of ​​the armor plate. However, the efficiency of work on sloping armor in sharp-headed projectiles is lower due to a greater tendency to ricochet at large angles of impact with the armor. Conversely, blunt-headed shells penetrate thicker armor at an angle than sharp-headed shells, but have less armor penetration at right angles. Let's take for example the armor-piercing chamber shells of the T-34-85 tank. At a distance of 10 meters, the BR-365K sharp-headed projectile penetrates 145 mm at a right angle and 52 mm at an angle of 30 °, and the BR-365A blunt-headed projectile penetrates 142 mm at a right angle, but 58 mm at an angle of 30 °.

In addition to sharp-headed and blunt-headed shells, there are sharp-headed shells with an armor-piercing tip. When meeting armor plate at a right angle, such a projectile works like a sharp-headed one and has good armor penetration compared to a similar blunt-headed projectile. When hitting sloping armor, the armor-piercing tip “bites” the projectile, preventing ricochet, and the projectile works like a dumb-ass.

However, sharp-headed shells with an armor-piercing tip, like blunt-headed shells, have a significant drawback - greater aerodynamic resistance, due to which armor penetration drops more at a distance than sharp-headed shells. To improve aerodynamics, ballistic caps are used, due to which armor penetration is increased at medium and long distances. For example, on the German 128 mm KwK 44 L/55 gun, two armor-piercing chamber shells are available, one with a ballistic cap and the other without it. Armor-piercing sharp-headed projectile with an armor-piercing tip PzGr at a right angle pierces 266 mm at 10 meters and 157 mm at 2000 meters. And here armor-piercing projectile with an armor-piercing tip and a ballistic cap, the PzGr 43 pierces 269 mm at 10 meters and 208 mm at 2000 meters at a right angle. In close combat, there are no special differences between them, but at long distances the difference in armor penetration is huge.

Armor-piercing chamber shells with an armor-piercing tip and a ballistic cap are the most versatile type of armor-piercing ammunition that combines the advantages of sharp-headed and blunt-headed projectiles.

Table of armor-piercing shells

Sharp-headed armor-piercing shells can be chamber or solid. The same applies to blunt-headed shells, as well as sharp-headed shells with an armor-piercing tip, and so on. Let's summarize all the possible options in a table. Under the icon of each projectile, the abbreviated names of the projectile type are written in English terminology, these are the terms used in the book "WWII Ballistics: Armor and Gunnery", according to which many shells in the game are configured. If you hover over the abbreviated name with the mouse cursor, a hint with decoding and translation will appear.


dumb-headed
(with ballistic cap)

sharp-headed

sharp-headed
with armor-piercing tip

sharp-headed
with armor-piercing tip and ballistic cap

Solid projectile

APBC

AP

APC

APCBC

Chamber projectile


APHE

APHEC

Sub-caliber shells

Coil sub-caliber projectiles

The action of the sub-caliber projectile:
1 - ballistic cap
2 - body
3 - core

Armor-piercing caliber shells have been described above. They are called caliber because the diameter of their warhead is equal to the caliber of the gun. There are also armor-piercing sub-caliber shells, the warhead diameter of which is smaller than the caliber of the gun. The simplest type of sub-caliber projectiles is coil (APCR - Armor-Piercing Composite Rigid). The coil sub-caliber projectile consists of three parts: a body, a ballistic cap and a core. The body serves to disperse the projectile in the barrel. At the moment of meeting with the armor, the ballistic cap and the body are crushed, and the core pierces the armor, hitting the tank with shrapnel.

At close range, sub-caliber shells penetrate thicker armor than caliber shells. Firstly, the sabot projectile is smaller and lighter than a conventional armor-piercing projectile, thanks to which it accelerates to higher speeds. Secondly, the core of the projectile is made of hard alloys with a high specific gravity. Thirdly, due to the small size of the core at the moment of contact with the armor, the impact energy falls on a small area of ​​​​the armor.

But coil sub-caliber shells also have significant drawbacks. Due to their relatively light weight, sub-caliber shells are ineffective at long distances, they lose energy faster, hence the drop in accuracy and armor penetration. The core does not have an explosive charge, therefore, in terms of armor action, sub-caliber shells are much weaker than chamber shells. Finally, sub-caliber shells do not work well against sloped armor.

Coil sub-caliber shells were effective only in close combat and were used in cases where enemy tanks were invulnerable against caliber armor-piercing shells. The use of sub-caliber shells made it possible to significantly increase the armor penetration of the existing guns, which made it possible to hit more modern, well-armored armored vehicles even with outdated guns.

Sub-caliber projectiles with a detachable pallet

APDS projectile and its core

Sectional view of an APDS projectile, showing the ballistic-tipped core

Armor-Piercing Discarding Sabot (APDS) - a further development of the design of sabot projectiles.

Coil sub-caliber projectiles had a significant drawback: the hull flew along with the core, increasing aerodynamic drag and, as a result, a drop in accuracy and armor penetration at a distance. For sub-caliber shells with a detachable pallet, a detachable pallet was used instead of the body, which first dispersed the projectile in the gun barrel, and then separated from the core by air resistance. The core flew to the target without a pallet and, due to the significantly lower aerodynamic resistance, did not lose armor penetration at a distance as quickly as coil sub-caliber shells.

During the Second World War, sub-caliber shells with a detachable pallet were distinguished by record-breaking armor penetration and flight speed. For example, the Shot SV Mk.1 sub-caliber projectile for the 17-pounder accelerated to 1203 m/s and pierced 228 mm of soft armor at a right angle at 10 meters, while the Shot Mk.8 armor-piercing caliber projectile only 171 mm under the same conditions.

Sub-caliber feathered shells

Separation of the pallet from BOPS

BOPS projectile

Armor-piercing feathered sabot projectile (APFSDS - Armor-Piercing Fin-Stabilized Discarding Sabot) - the most modern look armor-piercing projectiles, designed to destroy heavily armored vehicles protected the latest species armor and active protection.

These projectiles are a further development of sabot projectiles with a detachable pallet, they are even longer and have a smaller cross section. Spin stabilization is not very effective for high aspect ratio projectiles, so armor piercing finned sabots (BOPS for short) are stabilized by the fins and are generally used to fire smoothbore guns (however, early BOPS and some modern ones are designed to fire rifled guns).

Modern BOPS projectiles have a diameter of 2-3 cm and a length of 50-60 cm. To maximize the specific pressure and kinetic energy of the projectile, high-density materials are used in the manufacture of ammunition - tungsten carbide or an alloy based on depleted uranium. The muzzle velocity of the BOPS is up to 1900 m / s.

Concrete-piercing projectiles

A concrete-piercing projectile is an artillery projectile designed to destroy long-term fortifications and solid buildings of capital construction, as well as to destroy manpower sheltered in them and military equipment enemy. Often, concrete-piercing shells were used to destroy concrete pillboxes.

In terms of design, concrete-piercing shells occupy an intermediate position between armor-piercing chamber and high-explosive fragmentation shells. Compared to high-explosive fragmentation projectiles of the same caliber, with a close destructive potential of the explosive charge, concrete-piercing ammunition has a more massive and durable body, which allows them to penetrate deep into reinforced concrete, stone and brick barriers. Compared to armor-piercing chamber shells, concrete-piercing shells have more explosives, but a less durable body, so concrete-piercing shells are inferior to them in armor penetration.

The G-530 concrete-piercing projectile weighing 40 kg is included in the ammunition load of the KV-2 tank, the main purpose of which was the destruction of pillboxes and other fortifications.

HEAT rounds

Rotating HEAT projectiles

The device of the cumulative projectile:
1 - fairing
2 - air cavity
3 - metal cladding
4 - detonator
5 - explosive
6 - piezoelectric fuse

The cumulative projectile (HEAT - High-Explosive Anti-Tank) differs significantly from kinetic ammunition, which include conventional armor-piercing and sub-caliber shells. It is a thin-walled steel projectile filled with a powerful explosive - RDX, or a mixture of TNT and RDX. In front of the projectile in explosives there is a goblet-shaped or cone-shaped recess lined with metal (usually copper) - a focusing funnel. The projectile has a sensitive head fuse.

When a projectile collides with armor, an explosive is detonated. Due to the presence of a focusing funnel in the projectile, part of the explosion energy is concentrated at one small point, forming a thin cumulative jet consisting of the metal of the lining of the same funnel and explosion products. The cumulative jet flies forward at great speed (approximately 5,000 - 10,000 m / s) and passes through the armor due to the enormous pressure it creates (like a needle through oil), under the influence of which any metal enters a state of superfluidity or, in other words, leads itself as a liquid. The armored damaging effect is provided both by the cumulative jet itself and by hot drops of pierced armor squeezed inward.


The most important advantage of a HEAT projectile is that its armor penetration does not depend on the velocity of the projectile and is the same at all distances. That's why HEAT rounds used on howitzers, since conventional armor-piercing shells would be ineffective for them due to their low flight speed. But the cumulative shells of the Second World War also had significant drawbacks that limited their use. The rotation of the projectile at high initial speeds made it difficult for the formation of a cumulative jet, as a result, the cumulative projectiles had a low initial velocity, a small effective range shooting and high dispersion, which was also facilitated by the shape of the head of the projectile, which was not optimal from the point of view of aerodynamics. The manufacturing technology of these shells at that time was not sufficiently developed, so their armor penetration was relatively low (approximately corresponded to the caliber of the projectile or slightly higher) and was characterized by instability.

Non-rotating (feathered) cumulative projectiles

Non-rotating (feathered) cumulative projectiles (HEAT-FS - High-Explosive Anti-Tank Fin-Stabilized) are a further development of cumulative ammunition. Unlike early cumulative projectiles, they are stabilized in flight not by rotation, but by folding fins. The absence of rotation improves the formation of a cumulative jet and significantly increases armor penetration, while removing all restrictions on the speed of the projectile, which can exceed 1000 m/s. So, for early cumulative shells, typical armor penetration was 1-1.5 calibers, while for post-war shells it was 4 or more. However, feathered projectiles have a slightly lower armor effect compared to conventional HEAT projectiles.

Fragmentation and high-explosive shells

High-explosive shells

A high-explosive fragmentation projectile (HE - High-Explosive) is a thin-walled steel or cast iron projectile filled with an explosive (usually TNT or ammonite), with a head fuse. Upon hitting the target, the projectile immediately explodes, hitting the target with fragments and an explosive wave. Compared to concrete-piercing and armor-piercing shells, high-explosive fragmentation shells have very thin walls, but they have more explosives.

The main purpose of high-explosive fragmentation shells is to defeat enemy manpower, as well as unarmored and lightly armored vehicles. High-explosive shells large caliber can be used very effectively to destroy lightly armored tanks and self-propelled guns, as they break through relatively thin armor and incapacitate the crew with the force of the explosion. Tanks and self-propelled guns with anti-projectile armor are resistant to high-explosive fragmentation shells. However, large-caliber projectiles can even hit them: the explosion destroys the tracks, damages the gun barrel, jams the turret, and the crew is injured and shell-shocked.

Shrapnel shells

The shrapnel projectile is a cylindrical body, divided by a partition (diaphragm) into 2 compartments. An explosive charge is placed in the bottom compartment, and spherical bullets are in the other compartment. A tube filled with a slowly burning pyrotechnic composition passes along the axis of the projectile.

The main purpose of the shrapnel projectile is to defeat the enemy's manpower. It happens in the following way. At the moment of the shot, the composition in the tube ignites. Gradually, it burns out and transfers the fire to the explosive charge. The charge ignites and explodes, squeezing out a partition with bullets. The head of the projectile comes off and the bullets fly out along the axis of the projectile, deviating slightly to the sides and hitting the enemy infantry.

In the absence of armor-piercing shells in the early stages of the war, gunners often used shrapnel shells with a tube set "on impact". In terms of its qualities, such a projectile occupied an intermediate position between high-explosive fragmentation and armor-piercing, which is reflected in the game.

Armor-piercing shells

Armor-piercing high-explosive projectile (HESH - High Explosive Squash Head) - post-war type anti-tank projectile, the principle of operation of which is based on the detonation of a plastic explosive on the surface of the armor, which causes the armor fragments on the back to break off and damage the fighting compartment of the vehicle. An armor-piercing high-explosive projectile has a body with relatively thin walls, designed for plastic deformation when it encounters an obstacle, as well as a bottom fuse. The charge of an armor-piercing high-explosive projectile consists of a plastic explosive that “spreads” over the surface of the armor when the projectile meets an obstacle.

After “spreading”, the charge is detonated by a slow-acting bottom fuse, which causes the destruction of the rear surface of the armor and the formation of spalls that can hit the internal equipment of the vehicle or crew members. In some cases, penetrating armor can also occur in the form of a puncture, a breach, or a broken plug. The penetrating ability of an armor-piercing high-explosive projectile depends less on the angle of the armor in comparison with conventional armor-piercing projectiles.

ATGM Malyutka (1 generation)

Shillelagh ATGM (2 generations)

Anti-tank guided missiles

An anti-tank guided missile (ATGM) is a guided missile designed to destroy tanks and other armored targets. The former name of the ATGM is "anti-tank guided missile". ATGMs in the game are solid-propellant missiles equipped with on-board control systems (operating on the operator's commands) and flight stabilization, devices for receiving and decrypting control signals received via wires (or via infrared or radio command control channels). The warhead is cumulative, with armor penetration of 400-600 mm. The flight speed of missiles is only 150-323 m / s, but the target can be successfully hit at a distance of up to 3 kilometers.

The game features ATGMs of two generations:

  • First generation (manual command guidance system)- in reality, they are manually controlled by the operator using a joystick, eng. MCLOS. In realistic and simulation modes, these missiles are controlled using the WSAD keys.
  • Second generation (semi-automatic command guidance system)- in reality and in all game modes, they are controlled by pointing the sight at the target, eng. SACLOS. The reticle in the game is either the center of the crosshair of the optical sight, or a large white round marker (reload indicator) in the third person view.

In arcade mode, there is no difference between the generations of rockets, they are all controlled with the help of a sight, like second-generation rockets.

ATGMs are also distinguished by the launch method.

  • 1) Launched from the channel of the tank barrel. To do this, you need either a smooth barrel: an example is the smooth barrel of a 125-mm gun of the T-64 tank. Or a keyway is made in a rifled barrel, where a rocket is inserted, for example, in the Sheridan tank.
  • 2) Launched from guides. Closed, tubular (or square), for example, like the RakJPz 2 tank destroyer with the HOT-1 ATGM. Or open, rail (for example, like the IT-1 tank destroyer with the 2K4 Dragon ATGM).

As a rule, the more modern and the larger the caliber of the ATGM, the more it penetrates. ATGMs were constantly improved - manufacturing technology, materials science, and explosives improved. The penetrating effect of ATGMs (as well as cumulative projectiles) can be completely or partially neutralized combined armor and dynamic protection. As well as special anti-cumulative armor screens located at some distance from the main armor.

Appearance and device of shells

    Armor-piercing sharp-headed chamber projectile

    Sharp-headed projectile with armor-piercing tip

    Sharp-headed projectile with armor-piercing tip and ballistic cap

    Armor-piercing blunt projectile with ballistic cap

    Sub-caliber projectile

    Sub-caliber projectile with detachable pallet

    HEAT projectile

    Non-rotating (feathered) cumulative projectile

  • A denormalization phenomenon that increases the path of a projectile through armor

    Starting with game version 1.49, the effect of shells on sloped armor has been redesigned. Now the value of the reduced armor thickness (armor thickness ÷ cosine of the angle of inclination) is valid only for calculating the penetration of HEAT projectiles. For armor-piercing and especially sub-caliber shells, the penetration of sloping armor was significantly reduced due to the denormalization effect, when a short shell turns around during penetration, and its path in the armor increases.

    So, at an angle of inclination of the armor of 60 °, penetration for all shells fell by about 2 times. Now this is true only for cumulative and armor-piercing high-explosive shells. For armor-piercing shells, penetration in this case drops by 2.3-2.9 times, for conventional sub-caliber shells - by 3-4 times, and for sub-caliber shells with a detachable pallet (including BOPS) - by 2.5 times.

    List of shells in order of deterioration of their work on sloped armor:

    1. Cumulative and armor-piercing high-explosive- the most efficient.
    2. Armor-piercing blunt and armor-piercing sharp-headed with an armor-piercing tip.
    3. Armor-piercing sub-caliber with detachable pallet and BOPS.
    4. Armor-piercing sharp-headed and shrapnel.
    5. Armor-piercing sub-caliber- the most inefficient.

    Here, a high-explosive fragmentation projectile stands apart, in which the probability of penetrating the armor does not depend on its angle of inclination at all (provided that no ricochet has occurred).

    Armor-piercing shells

    For such projectiles, the fuse is cocked at the moment of penetration of the armor and undermines the projectile after a certain time, which ensures a very high armor effect. The parameters of the projectile indicate two important: fuse sensitivity and fuse delay.

    If the thickness of the armor is less than the sensitivity of the fuse, then the explosion will not occur, and the projectile will work like a regular solid one, damaging only those modules that are in its path, or simply fly through the target without causing damage. Therefore, when firing at unarmored targets, chamber shells are not very effective (as well as all others, except for high-explosive and shrapnel).

    The fuse delay determines the time after which the projectile will explode after breaking through the armor. Too little delay (in particular, for the Soviet MD-5 fuse) leads to the fact that when it hits a tank attachment (screen, track, undercarriage, caterpillar), the projectile explodes almost immediately and does not have time to penetrate the armor. Therefore, when firing at shielded tanks, it is better not to use such shells. Too much delay of the fuse can cause the projectile to go right through and explode outside the tank (although such cases are very rare).

    If a chamber projectile is detonated in a fuel tank or in an ammunition rack, then with a high probability an explosion will occur and the tank will be destroyed.

    Armor-piercing sharp-headed and blunt-headed projectiles

    Depending on the shape of the armor-piercing part of the projectile, its tendency to ricochet, armor penetration and normalization differ. General rule: blunt-headed shells are best used on opponents with sloped armor, and sharp-headed ones - if the armor is not sloped. However, the difference in armor penetration in both types is not very large.

    The presence of armor-piercing and / or ballistic caps significantly improves the properties of the projectile.

    Sub-caliber shells

    This type of projectile is distinguished by high armor penetration at short distances and a very high flight speed, which makes it easier to shoot at moving targets.

    However, when armor is penetrated, only a thin hard-alloy rod appears in the armored space, which causes damage only to those modules and crew members in which it hits (unlike an armor-piercing chamber projectile, which fills everything with fragments fighting compartment). Therefore, in order to effectively destroy a tank with a sub-caliber projectile, it is necessary to shoot at its weak spots: engine, ammo rack, fuel tanks. But even in this case, one hit may not be enough to disable the tank. If you shoot at random (especially at the same point), it may take a lot of shots to disable the tank, and the enemy may get ahead of you.

    Another problem with sub-caliber projectiles is a strong loss of armor penetration with distance due to their low mass. Studying the armor penetration tables shows at what distance you need to switch to a regular armor-piercing projectile, which, in addition, has a much greater lethality.

    HEAT rounds

    The armor penetration of these shells does not depend on the distance, which allows them to be used with equal efficiency for both close and long-range combat. However, due to design features, HEAT rounds often have a lower flight speed than other types, as a result of which the shot trajectory becomes hinged, accuracy suffers, and hitting moving targets (especially on long distance) becomes very difficult.

    The principle of operation of the cumulative projectile also determines its not very high damaging ability compared to the armor-piercing chamber projectile: the cumulative jet flies for a limited distance inside the tank and inflicts damage only to those components and crew members in which it directly hit. Therefore, when using a cumulative projectile, one should aim just as carefully as in the case of a sub-caliber one.

    If the cumulative projectile hit not the armor, but the hinged element of the tank (screen, track, caterpillar, undercarriage), then it will explode on this element, and the armor penetration of the cumulative jet will significantly decrease (each centimeter of the jet flight in the air reduces armor penetration by 1 mm) . Therefore, other types of shells should be used against tanks with screens, and one should not hope to penetrate the armor with HEAT shells by shooting at the tracks, undercarriage and gun mantlet. Remember that a premature detonation of a projectile can cause any obstacle - a fence, a tree, any building.

    HEAT shells in life and in the game have a high-explosive action, that is, they also work as high-explosive fragmentation shells of reduced power (a light body gives fewer fragments). Thus, large-caliber cumulative projectiles can be quite successfully used instead of high-explosive fragmentation when firing at lightly armored vehicles.

    High-explosive shells

    The striking ability of these shells depends on the ratio of the caliber of your gun and the armor of your target. Thus, shells with a caliber of 50 mm or less are only effective against aircraft and trucks, 75-85 mm - against light tanks with bulletproof armor, 122 mm - against medium tanks such as T-34, 152 mm - against all tanks, with the exception of head-on shooting at the most armored vehicles.

    However, it must be remembered that the damage inflicted significantly depends on the specific point of impact, so there are cases when even a 122-152 mm caliber projectile causes very minor damage. And in the case of guns with a smaller caliber, in doubtful cases, it is better to use an armor-piercing chamber or shrapnel projectile, which have greater penetration and high lethality.

    Shells - part 2

    What is the best way to shoot? Review tank shells by _Omero_


What affects tanks besides grenade launchers and anti-tank systems? How does armor-piercing ammunition work? In this article, we will talk about armor-piercing ammunition. The article, which will be of interest to both dummies and those who understand the topic, was prepared by a member of our team, Eldar Akhundov, who pleases us once again interesting reviews on the subject of armaments.

Story

Armor-piercing shells are designed to hit targets protected by armor, as their name implies. They first began to be widely used in naval battles in the second half of the 19th century with the advent of ships protected by metal armor. The effect of simple high-explosive fragmentation projectiles on armored targets was not enough due to the fact that during the explosion of a projectile, the energy of the explosion is not concentrated in any one direction, but is dissipated into the surrounding space. Only part shock wave affects the armor of the object trying to break through / bend it. As a result, the pressure created by the shock wave is not enough to penetrate thick armor, but some deflection is possible. With the thickening of the armor and the strengthening of the design of armored vehicles, it was necessary to increase the amount of explosives in the projectile by increasing its size (caliber, etc.) or developing new substances, which would be costly and inconvenient. By the way, this applies not only to ships, but also to land armored vehicles.

Initially, the first tanks during the First World War could be fought with high-explosive fragmentation shells, since the tanks had bulletproof thin armor only 10-20 mm thick, which was also connected with rivets, since at that time (early 20th century) welding technology solid armored hulls of tanks and armored vehicles has not yet been worked out. It was enough 3 - 4 kg of explosives with a direct hit to put such a tank out of action. AT this case the shock wave simply tore or pressed the thin armor into the inside of the vehicle, which led to damage to equipment or the death of the crew.

An armor-piercing projectile is a kinetic means of hitting a target - that is, it ensures defeat due to the energy of the impact of the projectile, and not the explosion. In armor-piercing projectiles, energy is actually concentrated at its tip, where a sufficiently large pressure is created on a small area of ​​​​the surface, and the load significantly exceeds the tensile strength of the armor material. As a result, this leads to the introduction of the projectile into the armor and its penetration. Kinetic ammunition was the first mass-produced anti-tank weapon that began to be used in series in various wars. The impact energy of the projectile depends on the mass and its speed at the moment of contact with the target. Mechanical strength, the density of the material of an armor-piercing projectile are also critical factors on which its effectiveness depends. For many years of wars have been developed different types armor-piercing shells that differ in design and for more than a hundred years there has been a constant improvement of both shells and the armor of tanks and armored vehicles.

The first armor-piercing projectiles were an all-steel solid projectile (blank) penetrating armor with impact force (approximately equal to the caliber of the projectile)

Then the design began to get more complicated and for a long time the following scheme became popular: a rod / core made of hard hardened alloy steel, covered in a shell of soft metal (lead or mild steel), or light alloy. The soft shell was needed to reduce wear on the gun barrel, and also because it was not practical to make the entire projectile from hardened alloy steel. The soft shell was crushed when hitting an inclined barrier, thereby preventing the projectile from ricocheting / slipping on the armor. The shell can also serve as a fairing at the same time (depending on the shape) that reduces air resistance during the flight of the projectile.

Another design of the projectile involves the absence of a shell and only the presence of a special soft metal cap as a projectile tip for aerodynamics and to prevent ricochet when hitting sloped armor.

The device of sub-caliber armor-piercing shells

The projectile is called sub-caliber because the caliber (diameter) of its combat / armor-piercing part is 3 less than the caliber of the gun (a - coil, b - streamlined). 1 - ballistic tip, 2 - pallet, 3 - armor-piercing core / armor-piercing part, 4 - tracer, 5 - plastic tip.

The projectile has rings around it made of soft metal, which are called leading belts. They serve to center the projectile in the barrel and obturate the barrel. Obturation is the sealing of the barrel bore when a gun (or a weapon in general) is fired, which prevents the breakthrough of powder gases (accelerating the projectile) into the gap between the projectile itself and the barrel. Thus, the energy of the powder gases is not lost and is transferred to the projectile to the maximum possible extent.

Left- the dependence of the thickness of the armored barrier on its angle of inclination. A plate of thickness B1 inclined at some angle, a has the same strength as a thicker plate of thickness B2 at right angles to the movement of the projectile. It can be seen that the path that the projectile must pierce increases with the increase in the slope of the armor.

On right- blunt projectiles A and B at the time of contact with sloping armor. Below - a sharp-headed arrow-shaped projectile. Due to the special shape of projectile B, its good engagement (biting) on ​​sloping armor is visible, which prevents ricochet. The pointed projectile is less prone to ricochet due to its sharp shape and very high contact pressure upon impact with armor.

The damaging factors when such projectiles hit the target are scattered on high speed fragments and fragments of armor from its inner side, as well as the flying projectile itself or its parts. Particularly affected equipment located on the trajectory of breaking through the armor. In addition, due to the high temperature of the projectile and its fragments, as well as the presence of a large amount of flammable objects and materials inside the tank or armored vehicle, the risk of fire is very high. The image below shows how this happens:

A relatively soft projectile body is visible, crushed during impact and a hard-alloy core that penetrates armor. On the right, a stream of high-velocity fragments is visible from the inside of the armor as one of the main damaging factors. In all modern tanks there is a tendency for the most dense placement of internal equipment and crew to reduce the size and weight of tanks. The flip side of this coin is that if the armor is penetrated, it is almost guaranteed that some important equipment will be damaged or a crew member will be injured. And even if the tank is not destroyed, it usually becomes incapacitated. On modern tanks and armored vehicles, a non-combustible anti-fragmentation lining is installed on the inside of the armor. As a rule, this is a material based on Kevlar or other high-strength materials. Although it does not protect against the core of the projectile itself, it retains some of the armor fragments, thereby reducing the damage done and increasing the survivability of the vehicle and crew.

Above, on the example of an armored vehicle, one can see the armored effect of the projectile and fragments with and without the lining installed. On the left, fragments and the shell itself that pierced the armor are visible. On the right, the installed lining holds most of the armor fragments (but not the projectile itself), thereby reducing damage.

An even more effective type of shells are chamber shells. Chamber armor-piercing projectiles are distinguished by the presence of a chamber (cavity) inside the projectile filled with explosives and a delayed detonator. After penetrating the armor, the projectile explodes inside the object, thereby significantly increasing the damage dealt by fragments and a shock wave in a closed volume. In fact, this is an armor-piercing landmine.

One of the simple examples of a chamber projectile scheme

1 - soft ballistic shell, 2 - armor-piercing steel, 3 - explosive charge, 4 - bottom detonator, working with slowdown, 5 - front and rear leading belts (shoulders).

Chamber shells are not used today as anti-tank shells, since their design is weakened by an internal cavity with explosives and is not designed to penetrate thick armor, that is, a shell tank caliber(105 - 125 mm) will simply collapse in a collision with modern frontal tank armor (equivalent to 400 - 600 mm of armor and above). Such shells were widely used during the Second World War, since their caliber was comparable to the thickness of the armor of some tanks of that time. In naval battles of the past, chamber shells from a large caliber of 203 mm to a monstrous 460 mm (the battleship of the Yamato series) were used, which could well penetrate thick ship steel armor comparable in thickness to their caliber (300 - 500 mm), or a layer of reinforced concrete and stone several meters.

Modern armor-piercing ammunition

Despite the fact that various types of anti-tank missiles were developed after the Second World War, armor-piercing ammunition remains one of the main anti-tank weapons. Despite the indisputable advantages of missiles (mobility, accuracy, homing capabilities, etc.), armor-piercing shells also have their advantages.

Their main advantage lies in the simplicity of design and, accordingly, production, which affects the lower price of the product.

In addition, an armor-piercing projectile, unlike an anti-tank missile, has a very high approach speed to the target (from 1600 m / s and above), it is impossible to “leave” it by maneuvering in time or hiding in a shelter (in a certain sense, when launching a rocket, such there is a possibility). In addition, an anti-tank projectile does not require the need to keep the target on sight, like many, though not all, ATGMs.

It is also impossible to create radio-electronic interference against an armor-piercing projectile due to the fact that it simply does not contain any electronic devices. In the case of anti-tank missiles, this is possible; such complexes as Shtora, Afghanit or Zaslon * are created specifically for this.

A modern armor-piercing projectile widely used in most countries of the world is actually a long rod made of a high-strength metal (tungsten or depleted uranium) or composite (tungsten carbide) alloy and rushing to the target at a speed of 1500 to 1800 m / s and higher. The rod at the end has stabilizers called plumage. The projectile is abbreviated as BOPS (Armor Piercing Feathered Sub-caliber Projectile). You can also just call it BPS (Armor Piercing Sub-caliber Projectile).

Almost all modern armor-piercing ammunition shells have the so-called. "Plumage" - tail flight stabilizers. The reason for the appearance of feathered shells lies in the fact that the shells of the old scheme described above after the Second World War exhausted their potential. It was necessary to lengthen the shells for greater efficiency, but they lost their stability when big length. One of the reasons for the loss of stability was their rotation in flight (since most of the guns were rifling and imparted rotational motion to the projectiles). The strength of the materials of that time did not allow the creation of long projectiles with sufficient strength to penetrate thick composite (puff) armor. The projectile was easier to stabilize not by rotation, but by plumage. An important role in the appearance of plumage was also played by the appearance of smooth-bore guns, the shells of which could be accelerated to higher speeds than when using rifled guns, and the problem of stabilization in which began to be solved with the help of plumage (we will touch on the topic of rifled and smooth-bore guns in the next material).

Materials play a particularly important role in armor-piercing shells. Tungsten carbide** (composite material) has a density of 15.77 g/cm3, which is almost twice that of steel. It has great hardness, wear resistance and melting point (about 2900 C). AT recent times heavier alloys based on tungsten and uranium have become especially widespread. Tungsten or depleted uranium has a very high density, which is almost 2.5 times higher than that of steel (19.25 and 19.1 g/cm3 versus 7.8 g/cm3 for steel) and, accordingly, greater mass and kinetic energy while maintaining minimal dimensions. Also, their mechanical strength (especially in bending) is higher than that of composite tungsten carbide. Thanks to these qualities, it is possible to concentrate more energy in a smaller volume of the projectile, that is, to increase the density of its kinetic energy. Also, these alloys have tremendous strength and hardness compared to even the strongest existing armor or specialty steels.

The projectile is called sub-caliber because the caliber (diameter) of its combat / armor-piercing part is less than the caliber of the gun. Typically, the diameter of such a core is 20 - 36 mm. Recently, projectile developers have been trying to reduce the diameter of the core and increase its length, if possible, maintain or increase mass, reduce drag during flight and, as a result, increase contact pressure at the point of impact with armor.

Uranium ammunition has 10 - 15% greater penetration with the same dimensions due to an interesting feature of the alloy called self-sharpening. The scientific term for this process is "ablative self-sharpening". When passing tungsten projectile through the armor, its tip is deformed and flattened due to the enormous drag. When flattened, its contact area increases, which further increases the resistance to movement and, as a result, penetration suffers. When a uranium projectile passes through the armor at speeds greater than 1600 m/sec, its tip does not deform or flatten, but simply breaks down parallel to the movement of the projectile, that is, it peels off in parts and thus the rod always remains sharp.

In addition to the already listed damaging factors of armor-piercing projectiles, modern BPSs have a high incendiary ability when penetrating armor. This ability is called pyrophoricity - that is, self-ignition of projectile particles after breaking through armor ***.

125 mm BOPS BM-42 "Mango"

The design is a tungsten alloy core in a steel shell. Visible stabilizers at the end of the projectile (empennage). The white circle around the stem is the obturator. On the right, the BPS is equipped (drowned) inside the powder charge and in this form is delivered in tank forces. On the left is the second powder charge with a fuse and a metal pan. As you can see, the whole shot is divided into two parts, and only in this form it is placed in the automatic loader of tanks of the USSR / RF (T-64, 72, 80, 90). That is, first the loading mechanism sends the BPS with the first charge, and then the second charge.

The photo below shows parts of the obturator at the moment of separation from the rod in flight. A burning tracer is visible at the bottom of the rod.

Interesting Facts

*The Russian Shtora system was designed to protect tanks from anti-tank guided missiles. The system determines that a laser beam is aimed at the tank, determines the direction of the laser source, and sends a signal to the crew. The crew can maneuver or hide the car in a shelter. The system is also connected to a smoke rocket launcher that creates a cloud that reflects optical and laser radiation, thereby knocking the ATGM missile off the target. There is also an interaction of "Curtains" with searchlights - emitters that can interfere with the device of an anti-tank missile when they are directed at it. The effectiveness of the Shtora system against various latest-generation ATGMs is still in question. There are controversial opinions on this matter, but, as they say, its presence is better than its complete absence. The last Russian tank "Armata" has a different system - the so-called. system of complex active protection "Afganit", which, according to the developers, is capable of intercepting not only anti-tank missiles, but also armor-piercing shells flying at speeds up to 1700 m/s (in the future it is planned to increase this figure to 2000 m/s). In turn, the Ukrainian development "Barrier" operates on the principle of detonating ammunition on the side of an attacking projectile (rocket) and giving it a powerful impulse in the form of a shock wave and fragments. Thus, the projectile or missile deviates from the originally given trajectory, and is destroyed before meeting the target (or rather, its target). Judging by technical specifications, the most efficient this system maybe against RPGs and ATGMs.

**Tungsten carbide is used not only for the manufacture of projectiles, but also for the manufacture of heavy-duty tools for working with extra hard steels and alloys. For example, an alloy called "Pobedit" (from the word "Victory") was developed in the USSR in 1929. It is a solid homogeneous mixture/alloy of tungsten carbide and cobalt in a ratio of 90:10. Products are obtained by powder metallurgy. Powder metallurgy is the process of obtaining metal powders and manufacturing various high-strength products from them with pre-calculated mechanical, physical, magnetic, and other properties. This process makes it possible to obtain products from mixtures of metals and non-metals that simply cannot be joined by other methods, such as fusion or welding. The mixture of powders is loaded into the mold of the future product. One of the powders is a binding matrix (something like cement), which will firmly connect all the smallest particles / grains of the powder to each other. Examples are nickel and cobalt powders. The mixture is pressed in special presses under pressure from 300 to 10,000 atmospheres. The mixture is then heated to a high temperature (70 to 90% of the melting point of the binder metal). As a result, the mixture becomes denser and the bond between the grains is strengthened.

*** Pyrophoricity is the ability of a solid material to self-ignite in air in the absence of heating and being in a finely divided state. The property can manifest itself upon impact or friction. One material that satisfies this requirement well is depleted uranium. When breaking through the armor, part of the core will just be in a finely divided state. Add to this also high temperature in the place of penetration of the armor, the impact itself and the friction of many particles and we get ideal conditions for ignition. Special additives are also added to tungsten alloys of shells to make them more pyrophoric. how the simplest example Pyrophoricity in everyday life can lead to silicon lighters which are made of an alloy of cerium metal.

Many types of shells are implemented in War Thunder, each of which has its own characteristics. In order to competently compare different shells, to choose the main type of ammunition before the battle, and in battle to use suitable shells for different purposes in different situations, you need to know the basics of their design and principle of operation. This article talks about the types of projectiles and their design, as well as gives advice on their use in combat. Do not neglect this knowledge, because the effectiveness of the weapon largely depends on the shells for it.

Types of tank ammunition

Armor-piercing caliber shells

Chamber and solid armor-piercing shells

As the name implies, the purpose of armor-piercing shells is to penetrate armor and thereby hit a tank. Armor-piercing shells are of two types: chamber and solid. Chamber shells have a special cavity inside - a chamber, in which an explosive is located. When such a projectile penetrates the armor, the fuse is triggered and the projectile explodes. The crew of an enemy tank is hit not only by armor fragments, but also by explosions and fragments of a chamber shell. The explosion does not occur immediately, but with a delay, thanks to which the projectile has time to fly into the tank and explode there, causing the most damage. In addition, the sensitivity of the fuse is set to, for example, 15 mm, that is, the fuse will only work if the thickness of the armor being penetrated is above 15 mm. This is necessary so that the chamber projectile explodes in the fighting compartment when it breaks through the main armor, and does not cock against the screens.

A solid projectile does not have a chamber with an explosive, it is just a metal blank. Of course, solid shells deal much less damage, but they penetrate a greater thickness of armor than similar chamber shells, since solid shells are stronger and heavier. For example, the armor-piercing chamber projectile BR-350A from the F-34 cannon pierces 80 mm at a right angle at close range, and the solid BR-350SP projectile as much as 105 mm. The use of solid shells is very characteristic of the British school of tank building. Things got to the point that the British removed explosives from American 75-mm chamber shells, turning them into solid ones.

The lethal force of solid shells depends on the ratio of the thickness of the armor and the armor penetration of the shell:

  • If the armor is too thin, then the projectile will pierce through it and damage only those elements that it hits along the way.
  • If the armor is too thick (on the border of penetration), then small non-lethal fragments are formed that will not cause much harm.
  • Maximum armor action - in case of penetration of sufficiently thick armor, while the penetration of the projectile should not be completely used up.

Thus, in the presence of several solid shells, the best armor action will be with the one with greater armor penetration. As for chamber shells, the damage also depends on the amount of explosive in TNT equivalent, as well as on whether the fuse worked or not.


Sharp-headed and blunt-headed armor-piercing shells

An oblique blow to the armor: a - a sharp-headed projectile; b - blunt projectile; c - arrow-shaped sub-caliber projectile

Armor-piercing shells are divided not only into chamber and solid shells, but also into sharp-headed and dumb-headed ones. Pointed shells pierce thicker armor at a right angle, since at the moment of impact with the armor, all the impact force falls on a small area of ​​the armor plate. However, the efficiency of work on sloping armor in sharp-headed projectiles is lower due to a greater tendency to ricochet at large angles of impact with the armor. Conversely, blunt-headed shells penetrate thicker armor at an angle than sharp-headed shells, but have less armor penetration at right angles. Let's take for example the armor-piercing chamber shells of the T-34-85 tank. At a distance of 10 meters, the BR-365K sharp-headed projectile penetrates 145 mm at a right angle and 52 mm at an angle of 30 °, and the BR-365A blunt-headed projectile penetrates 142 mm at a right angle, but 58 mm at an angle of 30 °.

In addition to sharp-headed and blunt-headed shells, there are sharp-headed shells with an armor-piercing tip. When meeting armor plate at a right angle, such a projectile works like a sharp-headed one and has good armor penetration compared to a similar blunt-headed projectile. When hitting sloping armor, the armor-piercing tip “bites” the projectile, preventing ricochet, and the projectile works like a dumb-ass.

However, sharp-headed shells with an armor-piercing tip, like blunt-headed shells, have a significant drawback - greater aerodynamic resistance, due to which armor penetration drops more at a distance than sharp-headed shells. To improve aerodynamics, ballistic caps are used, due to which armor penetration is increased at medium and long distances. For example, on the German 128 mm KwK 44 L/55 gun, two armor-piercing chamber shells are available, one with a ballistic cap and the other without it. Armor-piercing sharp-headed projectile with an armor-piercing tip PzGr at a right angle pierces 266 mm at 10 meters and 157 mm at 2000 meters. But an armor-piercing projectile with an armor-piercing tip and a ballistic cap PzGr 43 at a right angle pierces 269 mm at 10 meters and 208 mm at 2000 meters. In close combat, there are no special differences between them, but at long distances the difference in armor penetration is huge.

Armor-piercing chamber shells with an armor-piercing tip and a ballistic cap are the most versatile type of armor-piercing ammunition that combines the advantages of sharp-headed and blunt-headed projectiles.

Table of armor-piercing shells

Sharp-headed armor-piercing shells can be chamber or solid. The same applies to blunt-headed shells, as well as sharp-headed shells with an armor-piercing tip, and so on. Let's summarize all the possible options in a table. Under the icon of each projectile, the abbreviated names of the projectile type are written in English terminology, these are the terms used in the book "WWII Ballistics: Armor and Gunnery", according to which many shells in the game are configured. If you hover over the abbreviated name with the mouse cursor, a hint with decoding and translation will appear.


dumb-headed
(with ballistic cap)

sharp-headed

sharp-headed
with armor-piercing tip

sharp-headed
with armor-piercing tip and ballistic cap

Solid projectile

APBC

AP

APC

APCBC

Chamber projectile


APHE

APHEC

Sub-caliber shells

Coil sub-caliber projectiles

The action of the sub-caliber projectile:
1 - ballistic cap
2 - body
3 - core

Armor-piercing caliber shells have been described above. They are called caliber because the diameter of their warhead is equal to the caliber of the gun. There are also armor-piercing sub-caliber shells, the warhead diameter of which is smaller than the caliber of the gun. The simplest type of sub-caliber projectiles is coil (APCR - Armor-Piercing Composite Rigid). The coil sub-caliber projectile consists of three parts: a body, a ballistic cap and a core. The body serves to disperse the projectile in the barrel. At the moment of meeting with the armor, the ballistic cap and the body are crushed, and the core pierces the armor, hitting the tank with shrapnel.

At close range, sub-caliber shells penetrate thicker armor than caliber shells. Firstly, the sabot projectile is smaller and lighter than a conventional armor-piercing projectile, thanks to which it accelerates to higher speeds. Secondly, the core of the projectile is made of hard alloys with a high specific gravity. Thirdly, due to the small size of the core at the moment of contact with the armor, the impact energy falls on a small area of ​​​​the armor.

But coil sub-caliber shells also have significant drawbacks. Due to their relatively light weight, sub-caliber shells are ineffective at long distances, they lose energy faster, hence the drop in accuracy and armor penetration. The core does not have an explosive charge, therefore, in terms of armor action, sub-caliber shells are much weaker than chamber shells. Finally, sub-caliber shells do not work well against sloped armor.

Coil sub-caliber shells were effective only in close combat and were used in cases where enemy tanks were invulnerable against caliber armor-piercing shells. The use of sub-caliber shells made it possible to significantly increase the armor penetration of the existing guns, which made it possible to hit more modern, well-armored armored vehicles even with outdated guns.

Sub-caliber projectiles with a detachable pallet

APDS projectile and its core

Sectional view of an APDS projectile, showing the ballistic-tipped core

Armor-Piercing Discarding Sabot (APDS) - a further development of the design of sabot projectiles.

Coil sub-caliber projectiles had a significant drawback: the hull flew along with the core, increasing aerodynamic drag and, as a result, a drop in accuracy and armor penetration at a distance. For sub-caliber shells with a detachable pallet, a detachable pallet was used instead of the body, which first dispersed the projectile in the gun barrel, and then separated from the core by air resistance. The core flew to the target without a pallet and, due to the significantly lower aerodynamic resistance, did not lose armor penetration at a distance as quickly as coil sub-caliber shells.

During the Second World War, sub-caliber shells with a detachable pallet were distinguished by record-breaking armor penetration and flight speed. For example, the Shot SV Mk.1 sub-caliber projectile for the 17-pounder accelerated to 1203 m/s and pierced 228 mm of soft armor at a right angle at 10 meters, while the Shot Mk.8 armor-piercing caliber projectile only 171 mm under the same conditions.

Sub-caliber feathered shells

Separation of the pallet from BOPS

BOPS projectile

Armor-Piercing Fin-Stabilized Discarding Sabot (APFSDS) is the most modern type of armor-piercing projectile designed to destroy heavily armored vehicles protected by the latest types of armor and active protection.

These projectiles are a further development of sabot projectiles with a detachable pallet, they are even longer and have a smaller cross section. Spin stabilization is not very effective for high aspect ratio projectiles, so armor piercing finned sabots (BOPS for short) are stabilized by the fins and are generally used to fire smoothbore guns (however, early BOPS and some modern ones are designed to fire rifled guns).

Modern BOPS projectiles have a diameter of 2-3 cm and a length of 50-60 cm. To maximize the specific pressure and kinetic energy of the projectile, high-density materials are used in the manufacture of ammunition - tungsten carbide or an alloy based on depleted uranium. The muzzle velocity of the BOPS is up to 1900 m / s.

Concrete-piercing projectiles

A concrete-piercing projectile is an artillery projectile designed to destroy long-term fortifications and solid capital buildings, as well as to destroy enemy manpower and military equipment hidden in them. Often, concrete-piercing shells were used to destroy concrete pillboxes.

In terms of design, concrete-piercing shells occupy an intermediate position between armor-piercing chamber and high-explosive fragmentation shells. Compared to high-explosive fragmentation projectiles of the same caliber, with a close destructive potential of the explosive charge, concrete-piercing ammunition has a more massive and durable body, which allows them to penetrate deep into reinforced concrete, stone and brick barriers. Compared to armor-piercing chamber shells, concrete-piercing shells have more explosives, but a less durable body, so concrete-piercing shells are inferior to them in armor penetration.

The G-530 concrete-piercing projectile weighing 40 kg is included in the ammunition load of the KV-2 tank, the main purpose of which was the destruction of pillboxes and other fortifications.

HEAT rounds

Rotating HEAT projectiles

The device of the cumulative projectile:
1 - fairing
2 - air cavity
3 - metal cladding
4 - detonator
5 - explosive
6 - piezoelectric fuse

The cumulative projectile (HEAT - High-Explosive Anti-Tank) in terms of the principle of operation differs significantly from kinetic ammunition, which includes conventional armor-piercing and sub-caliber projectiles. It is a thin-walled steel projectile filled with a powerful explosive - RDX, or a mixture of TNT and RDX. In front of the projectile in explosives there is a goblet-shaped or cone-shaped recess lined with metal (usually copper) - a focusing funnel. The projectile has a sensitive head fuse.

When a projectile collides with armor, an explosive is detonated. Due to the presence of a focusing funnel in the projectile, part of the explosion energy is concentrated at one small point, forming a thin cumulative jet consisting of the metal of the lining of the same funnel and explosion products. The cumulative jet flies forward at great speed (approximately 5,000 - 10,000 m / s) and passes through the armor due to the enormous pressure it creates (like a needle through oil), under the influence of which any metal enters a state of superfluidity or, in other words, leads itself as a liquid. The armored damaging effect is provided both by the cumulative jet itself and by hot drops of pierced armor squeezed inward.


The most important advantage of a HEAT projectile is that its armor penetration does not depend on the velocity of the projectile and is the same at all distances. That is why cumulative shells were used on howitzers, since conventional armor-piercing shells would be ineffective for them due to their low flight speed. But the cumulative shells of the Second World War also had significant drawbacks that limited their use. The rotation of the projectile at high initial speeds made it difficult to form a cumulative jet, as a result, the cumulative projectiles had a low initial speed, a small effective range and high dispersion, which was also facilitated by the shape of the projectile head, which was not optimal from the point of view of aerodynamics. The manufacturing technology of these shells at that time was not sufficiently developed, so their armor penetration was relatively low (approximately corresponded to the caliber of the projectile or slightly higher) and was characterized by instability.

Non-rotating (feathered) cumulative projectiles

Non-rotating (feathered) cumulative projectiles (HEAT-FS - High-Explosive Anti-Tank Fin-Stabilized) are a further development of cumulative ammunition. Unlike early cumulative projectiles, they are stabilized in flight not by rotation, but by folding fins. The absence of rotation improves the formation of a cumulative jet and significantly increases armor penetration, while removing all restrictions on the speed of the projectile, which can exceed 1000 m/s. So, for early cumulative shells, typical armor penetration was 1-1.5 calibers, while for post-war shells it was 4 or more. However, feathered projectiles have a slightly lower armor effect compared to conventional HEAT projectiles.

Fragmentation and high-explosive shells

High-explosive shells

A high-explosive fragmentation projectile (HE - High-Explosive) is a thin-walled steel or cast iron projectile filled with an explosive (usually TNT or ammonite), with a head fuse. Upon hitting the target, the projectile immediately explodes, hitting the target with fragments and an explosive wave. Compared to concrete-piercing and armor-piercing shells, high-explosive fragmentation shells have very thin walls, but they have more explosives.

The main purpose of high-explosive fragmentation shells is to defeat enemy manpower, as well as unarmored and lightly armored vehicles. Large-caliber high-explosive fragmentation shells can be very effectively used to destroy lightly armored tanks and self-propelled guns, as they break through relatively thin armor and incapacitate the crew with the force of the explosion. Tanks and self-propelled guns with anti-projectile armor are resistant to high-explosive fragmentation shells. However, large-caliber projectiles can even hit them: the explosion destroys the tracks, damages the gun barrel, jams the turret, and the crew is injured and shell-shocked.

Shrapnel shells

The shrapnel projectile is a cylindrical body, divided by a partition (diaphragm) into 2 compartments. An explosive charge is placed in the bottom compartment, and spherical bullets are in the other compartment. A tube filled with a slowly burning pyrotechnic composition passes along the axis of the projectile.

The main purpose of the shrapnel projectile is to defeat the enemy's manpower. It happens in the following way. At the moment of the shot, the composition in the tube ignites. Gradually, it burns out and transfers the fire to the explosive charge. The charge ignites and explodes, squeezing out a partition with bullets. The head of the projectile comes off and the bullets fly out along the axis of the projectile, deviating slightly to the sides and hitting the enemy infantry.

In the absence of armor-piercing shells in the early stages of the war, gunners often used shrapnel shells with a tube set "on impact". In terms of its qualities, such a projectile occupied an intermediate position between high-explosive fragmentation and armor-piercing, which is reflected in the game.

Armor-piercing shells

Armor-piercing high-explosive projectile (HESH - High Explosive Squash Head) - a post-war type of anti-tank projectile, the principle of operation of which is based on the detonation of a plastic explosive on the surface of the armor, which causes armor fragments on the back to break off and damage the fighting compartment of the vehicle. An armor-piercing high-explosive projectile has a body with relatively thin walls, designed for plastic deformation when it encounters an obstacle, as well as a bottom fuse. The charge of an armor-piercing high-explosive projectile consists of a plastic explosive that “spreads” over the surface of the armor when the projectile meets an obstacle.

After “spreading”, the charge is detonated by a slow-acting bottom fuse, which causes the destruction of the rear surface of the armor and the formation of spalls that can hit the internal equipment of the vehicle or crew members. In some cases, penetrating armor can also occur in the form of a puncture, a breach, or a broken plug. The penetrating ability of an armor-piercing high-explosive projectile depends less on the angle of the armor in comparison with conventional armor-piercing projectiles.

ATGM Malyutka (1 generation)

Shillelagh ATGM (2 generations)

Anti-tank guided missiles

An anti-tank guided missile (ATGM) is a guided missile designed to destroy tanks and other armored targets. The former name of the ATGM is "anti-tank guided missile". ATGMs in the game are solid-propellant missiles equipped with on-board control systems (operating on the operator's commands) and flight stabilization, devices for receiving and decrypting control signals received via wires (or via infrared or radio command control channels). The warhead is cumulative, with armor penetration of 400-600 mm. The flight speed of missiles is only 150-323 m / s, but the target can be successfully hit at a distance of up to 3 kilometers.

The game features ATGMs of two generations:

  • First generation (manual command guidance system)- in reality, they are manually controlled by the operator using a joystick, eng. MCLOS. In realistic and simulation modes, these missiles are controlled using the WSAD keys.
  • Second generation (semi-automatic command guidance system)- in reality and in all game modes, they are controlled by pointing the sight at the target, eng. SACLOS. The reticle in the game is either the center of the crosshair of the optical sight, or a large white round marker (reload indicator) in the third person view.

In arcade mode, there is no difference between the generations of rockets, they are all controlled with the help of a sight, like second-generation rockets.

ATGMs are also distinguished by the launch method.

  • 1) Launched from the channel of the tank barrel. To do this, you need either a smooth barrel: an example is the smooth barrel of a 125-mm gun of the T-64 tank. Or a keyway is made in a rifled barrel, where a rocket is inserted, for example, in the Sheridan tank.
  • 2) Launched from guides. Closed, tubular (or square), for example, like the RakJPz 2 tank destroyer with the HOT-1 ATGM. Or open, rail (for example, like the IT-1 tank destroyer with the 2K4 Dragon ATGM).

As a rule, the more modern and the larger the caliber of the ATGM, the more it penetrates. ATGMs were constantly improved - manufacturing technology, materials science, and explosives improved. The penetrating effect of ATGMs (as well as cumulative projectiles) can be completely or partially neutralized by combined armor and dynamic protection. As well as special anti-cumulative armor screens located at some distance from the main armor.

Appearance and device of shells

    Armor-piercing sharp-headed chamber projectile

    Sharp-headed projectile with armor-piercing tip

    Sharp-headed projectile with armor-piercing tip and ballistic cap

    Armor-piercing blunt projectile with ballistic cap

    Sub-caliber projectile

    Sub-caliber projectile with detachable pallet

    HEAT projectile

    Non-rotating (feathered) cumulative projectile

  • A denormalization phenomenon that increases the path of a projectile through armor

    Starting with game version 1.49, the effect of shells on sloped armor has been redesigned. Now the value of the reduced armor thickness (armor thickness ÷ cosine of the angle of inclination) is valid only for calculating the penetration of HEAT projectiles. For armor-piercing and especially sub-caliber shells, the penetration of sloping armor was significantly reduced due to the denormalization effect, when a short shell turns around during penetration, and its path in the armor increases.

    So, at an angle of inclination of the armor of 60 °, penetration for all shells fell by about 2 times. Now this is true only for cumulative and armor-piercing high-explosive shells. For armor-piercing shells, penetration in this case drops by 2.3-2.9 times, for conventional sub-caliber shells - by 3-4 times, and for sub-caliber shells with a detachable pallet (including BOPS) - by 2.5 times.

    List of shells in order of deterioration of their work on sloped armor:

    1. Cumulative and armor-piercing high-explosive- the most efficient.
    2. Armor-piercing blunt and armor-piercing sharp-headed with an armor-piercing tip.
    3. Armor-piercing sub-caliber with detachable pallet and BOPS.
    4. Armor-piercing sharp-headed and shrapnel.
    5. Armor-piercing sub-caliber- the most inefficient.

    Here, a high-explosive fragmentation projectile stands apart, in which the probability of penetrating the armor does not depend on its angle of inclination at all (provided that no ricochet has occurred).

    Armor-piercing shells

    For such projectiles, the fuse is cocked at the moment of penetration of the armor and undermines the projectile after a certain time, which ensures a very high armor effect. Two important values ​​are specified in the parameters of the projectile: fuse sensitivity and fuse delay.

    If the thickness of the armor is less than the sensitivity of the fuse, then the explosion will not occur, and the projectile will work like a regular solid one, damaging only those modules that are in its path, or simply fly through the target without causing damage. Therefore, when firing at unarmored targets, chamber shells are not very effective (as well as all others, except for high-explosive and shrapnel).

    The fuse delay determines the time after which the projectile will explode after breaking through the armor. Too little delay (in particular, for the Soviet MD-5 fuse) leads to the fact that when it hits a tank attachment (screen, track, undercarriage, caterpillar), the projectile explodes almost immediately and does not have time to penetrate the armor. Therefore, when firing at shielded tanks, it is better not to use such shells. Too much delay of the fuse can cause the projectile to go right through and explode outside the tank (although such cases are very rare).

    If a chamber projectile is detonated in a fuel tank or in an ammunition rack, then with a high probability an explosion will occur and the tank will be destroyed.

    Armor-piercing sharp-headed and blunt-headed projectiles

    Depending on the shape of the armor-piercing part of the projectile, its tendency to ricochet, armor penetration and normalization differ. As a general rule, blunt-headed shells are best used against enemies with sloped armor, and sharp-headed shells - if the armor is not sloped. However, the difference in armor penetration in both types is not very large.

    The presence of armor-piercing and / or ballistic caps significantly improves the properties of the projectile.

    Sub-caliber shells

    This type of projectile is distinguished by high armor penetration at short distances and a very high flight speed, which makes it easier to shoot at moving targets.

    However, when armor is penetrated, only a thin hard-alloy rod appears in the armored space, which causes damage only to those modules and crew members in which it hits (unlike an armor-piercing chamber projectile, which fills the entire fighting compartment with fragments). Therefore, in order to effectively destroy a tank with a sub-caliber projectile, it is necessary to shoot at its weak spots: engine, ammo rack, fuel tanks. But even in this case, one hit may not be enough to disable the tank. If you shoot at random (especially at the same point), it may take a lot of shots to disable the tank, and the enemy may get ahead of you.

    Another problem with sub-caliber projectiles is a strong loss of armor penetration with distance due to their low mass. Studying the armor penetration tables shows at what distance you need to switch to a regular armor-piercing projectile, which, in addition, has a much greater lethality.

    HEAT rounds

    The armor penetration of these shells does not depend on the distance, which allows them to be used with equal efficiency for both close and long-range combat. However, due to design features, HEAT rounds often have a lower flight speed than other types, as a result of which the shot trajectory becomes hinged, accuracy suffers, and it becomes very difficult to hit moving targets (especially at long distances).

    The principle of operation of the cumulative projectile also determines its not very high damaging ability compared to the armor-piercing chamber projectile: the cumulative jet flies for a limited distance inside the tank and inflicts damage only to those components and crew members in which it directly hit. Therefore, when using a cumulative projectile, one should aim just as carefully as in the case of a sub-caliber one.

    If the cumulative projectile hit not the armor, but the hinged element of the tank (screen, track, caterpillar, undercarriage), then it will explode on this element, and the armor penetration of the cumulative jet will significantly decrease (each centimeter of the jet flight in the air reduces armor penetration by 1 mm) . Therefore, other types of shells should be used against tanks with screens, and one should not hope to penetrate the armor with HEAT shells by shooting at the tracks, undercarriage and gun mantlet. Remember that a premature detonation of a projectile can cause any obstacle - a fence, a tree, any building.

    HEAT shells in life and in the game have a high-explosive action, that is, they also work as high-explosive fragmentation shells of reduced power (a light body gives fewer fragments). Thus, large-caliber cumulative projectiles can be quite successfully used instead of high-explosive fragmentation when firing at lightly armored vehicles.

    High-explosive shells

    The striking ability of these shells depends on the ratio of the caliber of your gun and the armor of your target. Thus, shells with a caliber of 50 mm or less are only effective against aircraft and trucks, 75-85 mm - against light tanks with bulletproof armor, 122 mm - against medium tanks such as T-34, 152 mm - against all tanks, with the exception of head-on shooting at the most armored vehicles.

    However, it must be remembered that the damage inflicted significantly depends on the specific point of impact, so there are cases when even a 122-152 mm caliber projectile causes very minor damage. And in the case of guns with a smaller caliber, in doubtful cases, it is better to use an armor-piercing chamber or shrapnel projectile, which have greater penetration and high lethality.

    Shells - part 2

    What is the best way to shoot? Overview of tank shells from _Omero_