The design of modern sub-caliber and armor-piercing shells. Tank. Arrow-shaped and feathered projectiles for ultra-long-range guns

Armor-piercing feathered under caliber projectile (arrow-shaped feathered projectile) - a type of projectile for barreled weapons, stabilized in flight due to aerodynamic forces (similar to stabilization in flight of an arrow). This circumstance distinguishes this type of ammunition from projectiles stabilized in flight by rotation due to gyroscopic forces. Arrow-shaped feathered projectiles can be used both in hunting and military firearms, and in cannon artillery. The main area of ​​application of such projectiles is the destruction of heavily armored vehicles (in particular, tanks). Arrow-shaped feathered projectiles are, as a rule, kinetic-action ammunition, but may also contain an explosive charge.

120 mm shots of the Israeli company IMI. In the foreground is an M829 shot (USA), manufactured by IMI under license.

Terminology

Armor-piercing feathered sub-caliber projectiles (arrow-shaped) can be abbreviated as BOPS, OBPS, OPS, BPS. Currently, the abbreviation BPS is also applied to feathered sabot arrow-shaped projectiles, although it should be correctly used to designate sabot armor-piercing projectiles of the usual elongation for rifled artillery projectiles. The name of the armor-piercing feathered arrow-shaped ammunition applicable to rifled and smoothbore artillery systems.

Device

Ammunition of this type They consist of an arrow-shaped feathered projectile, the body (body) of which (or the core inside the body) is made of a durable and high-density material, and the feathers are made of traditional structural alloys. The materials most used for the body include heavy alloys (of the VNZh type, etc.) and compounds (tungsten carbide), uranium alloys (for example, the American Stabilloy alloy or the domestic analogue of the UNC alloy type). The plumage is made of aluminum alloys or steel.

With the help of annular grooves (forgings), the BOPS body is connected to a sector pallet made of steel or high-strength aluminum alloys (type V-95, V-96Ts1 and similar). A sector pallet is also called a master device (VU) and consists of three or more sectors. The pallets are fastened to each other by leading belts made of metals or plastics and in this form are finally fixed in a metal sleeve or in the body of a burning sleeve. After leaving the gun barrel, the sector pallet is separated from the body of the BOPS under the action of the oncoming air flow, breaking the leading belts, while the body of the projectile itself continues to fly towards the target. Dropped sectors, having high aerodynamic drag, slow down in the air and fall at some distance (from hundreds of meters to more than a kilometer) from the muzzle of the gun. In the event of a miss, the BOPS itself, which has low aerodynamic drag, can fly away to a distance of 30 to more than 50 km from the muzzle of the gun.

The designs of modern BOPS are extremely diverse: the bodies of shells can be either monolithic or composite (a core or several cores in a shell, as well as longitudinally and transversely multilayered), plumage can be almost equal to the caliber of an artillery gun or sub-caliber, made of steel or light alloys. Leading devices (VU) can have a different principle of distribution of the gas pressure action vector into sectors (VU of the “expanding” or “clamping” type), different amount sectors, made of steel, light alloys, as well as composite materials - for example, carbon composites or aramid composites. Ballistic tips and dampers can be installed in the head parts of the BOPS bodies. Additives can be added to the material of tungsten alloy cores to increase the pyrophoricity of the cores. Tracers can be installed in the tail parts of the BOPS.

The mass of BOPS bodies with plumage ranges from 3.6 kg in old models to 5-6 kg or more in models for advanced tank guns of 140-155 mm caliber.

The diameter of BOPS bodies without plumage ranges from 40 mm in older models to 22 mm or less in new promising BOPS with a large elongation. The elongation of BOPS is constantly increasing and ranges from 10 to 30 or more.

In the USSR and Russia, several types of BOPS are widely known, created in different times and having proper names, which originated from the name / cipher R & D . The following are BOPS in chronological order from old to new. The device and material of the BOPS body are briefly indicated:

  • "Hairpin" 3BM-23 - a small core of tungsten carbide in the head of the steel body (1976);
  • "Nadfil-2" 3BM30 - uranium alloy (1982);
  • "Hope" 3BM-27 - a small tungsten alloy core in the tail section of a steel body (1983);
  • "Vant" 3BM-33 - a monolithic body made of a uranium alloy (1985);
  • "Mango" 3BM-44 - two elongated tungsten alloy cores in a steel body jacket (1986);
  • "Lead" 3BM-48 - a monolithic body made of a uranium alloy (1991);
  • Anker 3BM39 (1990s);
  • "Lekalo" 3BM44 M? - improved alloy (details unknown) (1997); perhaps this BOPS is called the "Projectile of increased power";
  • "Lead-2" - judging by the index, a modified projectile with a uranium core (details unknown).

Other BOPS also have proper names. For example, a 100 mm anti-tank smoothbore gun has the Valshchik ammunition, a 115 mm tank gun has the Kamerger ammunition, etc.

Armor penetration indicators

Comparative evaluation of armor penetration indicators is associated with significant difficulties. Enough influence on the assessment of armor penetration indicators different techniques BOPS tests in different countries, the lack of a standard type of armor for testing in different countries, different conditions placement of armor (compact or spaced apart), as well as constant manipulations by developers of all countries with firing ranges of test armor, armor installation angles before testing, various statistical methods for processing test results. As a test material in Russia and NATO countries, homogeneous rolled armor is adopted; composite targets are used to obtain more accurate results. For example, for testing Russian shells, the P11 multilayer barrier developed at the Research Institute of Steel is used, imitating the frontal armor of the M1 Abrams tank. However, the real indicators of armor resistance composite armor and its equivalent homogeneous armor nevertheless, sometimes they differ, which makes it difficult to accurately assess the armor penetration of a particular projectile. In addition, the characteristics of armor penetration, as well as the protection parameters of armored vehicles, are traditionally classified.

As an example, we can take the Spanish BOPS guns of the 105 mm caliber of the company "Empersa Nacional Santa Barbara", which at a speed of 1500 m / s from a distance of 5000 m pierces a NATO standard target at an angle of 60 ° from the line of fire and consisting of an armor plate 120 mm thick and ten additional armor plates of 10 mm, located at a distance of 10 mm from each other.

According to published data, an increase in the elongation of the flight part to a value of 30 made it possible to increase the relative thickness of the RHA homogeneous rolled armor pierced (the ratio of armor thickness to gun caliber) to values: 5.0 in caliber 105 mm, and 6.8 in caliber 120 mm.

History

The emergence of BOPS was associated with insufficient armor penetration of conventional armor-piercing and sub-caliber projectiles for rifled artillery pieces in the years after World War II. Attempts to increase the specific load (that is, to lengthen their core) in sub-caliber projectiles ran into the phenomenon of loss of stabilization by rotation with an increase in the length of the projectile over 6-8 calibers. Strength modern materials did not allow more to increase the angular velocity of rotation of the shells.

Arrow-shaped and feathered projectiles for ultra-long-range guns

In the rocket and artillery design bureau of the Peenemünde training ground Peenemünde-Heeresversuchsanstalt by the end of World War II, the German designer Hanns Gessner designed a series of arrow-shaped feathered projectiles of the PPG index (Peenemünder Pfeilgeschosse) for smooth-bore 310 mm caliber barrels from Krupp and Hanomag, mounted on a carriage of a 28-cm ultra-long-range railway installation K5 (E). The 310-mm high-explosive fragmentation projectile index Sprenge-Granate 4861 had a length of 2012 mm and a mass of 136 kg. The arrow body diameter was 120 mm, the number of stabilizer feathers was 4 pcs. The initial speed of the projectile is 1420 m / s, the mass of the explosive charge is 25 kg, the firing range is 160 km. The shells were used against the Anglo-American troops in the battles near Bonn.

Experiments with arrow-shaped feathered sub-caliber projectiles for high-altitude anti-aircraft artillery were carried out at a training ground near the Polish city of Blizna under the guidance of designer R. Herman ( R. Hermann). have been tested anti-aircraft guns caliber 103 mm with a barrel length of up to 50 calibers. During the tests, it turned out that arrow-shaped feathered projectiles, which reached very high speeds due to their small mass, have insufficient shrapnel action due to the impossibility of placing a significant explosive charge in them. In addition, they demonstrated extremely low accuracy due to rarefied air at high altitudes and, as a result, insufficient aerodynamic stabilization. After it became clear that swept finned shells were not applicable for anti-aircraft fire, attempts were made to use high-velocity finned piercing shells to fight tanks. The work was stopped due to the fact that serial anti-tank and tank guns at that time had sufficient armor penetration, and the Third Reich was living out its last days.

Arrow-shaped bullets of handguns

Russia is developing arrow-shaped (needle-shaped) underwater ammunition without plumage, which are part of the SPS cartridges of 4.5 mm caliber (for special underwater pistol SPP-1; SPP-1M) and MPS cartridges of 5.66 mm caliber (for special underwater machine APS). Unfeathered arrow-shaped bullets for underwater weapons, stabilized in water by a cavitation cavity, practically do not stabilize in the air and require not regular, but special weapons for use under water.

Currently, the most promising underwater-air ammunition, which can be fired with equal efficiency both under water at a depth of up to 50 m, and in air, are cartridges for regular (serial) machine guns and assault rifles, equipped with Polotnev's arrow-shaped feathered bullet, developed at the Federal State Unitary Enterprise "TsNIIKhM". Stabilization of Polotnev's bullets under water is carried out by the cavitation cavity, and in air - by the plumage of the bullet.

IN game world of tanks equipment can be provided different types shells, such as armor-piercing, sub-caliber, cumulative and high-explosive fragmentation. In this article, we will consider the features of the action of each of these shells, the history of their invention and use, the pros and cons of their use in a historical context. The most common and, in most cases, regular shells on the vast majority of vehicles in the game are armor-piercing shells(BB) caliber device or sharp-headed.
According to the Military Encyclopedia of Ivan Sytin, the idea of ​​a prototype of the current armor-piercing shells belongs to the officer of the Italian fleet Bettolo, who in 1877 proposed using the so-called " bottom shock tube for armor-piercing shells"(Before that, the shells were either not equipped at all, or the explosion of the powder charge was calculated on heating the head of the projectile when it hit the armor, which, however, was far from always justified). After breaking through the armor, the damaging effect is provided by shell fragments heated to a high temperature, and armor fragments. During the Second World War, shells of this type were easy to manufacture, reliable, had a fairly high penetration, and worked well against homogeneous armor. But there was also a minus - on the inclined armor, the projectile could ricochet. The thicker the armor, the more armor fragments are formed when pierced by such a projectile, and the higher the lethal force.


The animation below illustrates the action of a chamber sharp-headed armor-piercing projectile. It is similar to an armor-piercing sharp-headed projectile, however, in the rear part there is a cavity (chamber) with an explosive charge of TNT, as well as a bottom fuse. After breaking through the armor, the projectile explodes, hitting the crew and equipment of the tank. In general, this projectile retained most of the advantages and disadvantages of the AR projectile, differing by a significantly higher armor effect and slightly lower armor penetration (due to the lower mass and strength of the projectile). During the War, the bottom shell fuses were not perfect enough, which sometimes led to a premature explosion of the shell before penetrating the armor, or to the failure of the fuse after penetration, but the crew, in case of penetration, rarely became easier from this.

Sub-caliber projectile(BP) has a rather complex design and consists of two main parts - an armor-piercing core and a pallet. The task of the pallet, made of mild steel, is to accelerate the projectile in the bore. When the projectile hits the target, the pallet is crushed, and the heavy and hard sharp-headed core made of tungsten carbide pierces the armor.
The projectile does not have a bursting charge, ensuring that the target is hit by core fragments and armor fragments heated to high temperatures. Sub-caliber projectiles have significantly less weight compared to conventional ones. armor-piercing shells, which allows them to accelerate in the gun barrel to significantly higher speeds. As a result, the penetration of sub-caliber shells is significantly higher. The use of sub-caliber shells made it possible to significantly increase the armor penetration of the existing guns, which made it possible to hit more modern, well-armored armored vehicles even with outdated guns.
At the same time, sub-caliber shells have a number of disadvantages. Their shape resembled a coil (there were shells of this type and streamlined shape, but they were much less common), which greatly worsened the ballistics of the projectile, in addition, the light projectile quickly lost speed; as a result, at long distances, the armor penetration of sub-caliber shells dropped dramatically, turning out to be even lower than that of classic armor-piercing shells. During the Second World War, sabots did not work well on sloped armor, because under the influence of bending loads, the hard but brittle core easily broke. The armor-piercing effect of such shells was inferior to armor-piercing caliber shells. Sub-caliber projectiles of small caliber were ineffective against armored vehicles that had protective shields made of thin steel. These shells were expensive and difficult to manufacture, and most importantly, scarce tungsten was used in their manufacture.
As a result, the number of sub-caliber shells in the ammunition load of guns during the war years was small, they were allowed to be used only to destroy heavily armored targets at short distances. The German army was the first to use sub-caliber shells in small quantities in 1940 during the fighting in France. In 1941, faced with heavily armored Soviet tanks, the Germans switched to the widespread use of sub-caliber shells, which significantly increased the anti-tank capabilities of their artillery and tanks. However, the shortage of tungsten limited the release of shells of this type; as a result, in 1944, the production of German sub-caliber shells was discontinued, while most of the shells fired during the war years had a small caliber (37-50 mm).
In an attempt to get around the problem of tungsten shortages, the Germans produced Pzgr.40(C) sub-caliber shells with a hardened steel core and surrogate Pzgr.40(W) shells with an ordinary steel core. In the USSR, a fairly mass production of sub-caliber shells, created on the basis of captured German ones, began at the beginning of 1943, and most of the shells produced were of 45 mm caliber. The production of these shells is over large calibers was limited by the shortage of tungsten, and they were issued to the troops only when there was a threat of an enemy tank attack, and a report was required for each expended projectile. Also, sub-caliber shells were used to a limited extent by the British and American armies in the second half of the war.

HEAT projectile(CS).
The principle of operation of this armor-piercing ammunition is significantly different from the principle of operation of kinetic ammunition, which includes conventional armor-piercing and sub-caliber projectiles. A cumulative projectile is a thin-walled steel projectile filled with a powerful explosive - RDX, or a mixture of TNT and RDX. At the front of the projectile, explosives have a goblet-shaped recess lined with metal (usually copper). The projectile has a sensitive head fuse. When a projectile collides with armor, an explosive is detonated. At the same time, the lining metal is melted and compressed by an explosion into a thin jet (pestle), flying forward at an extremely high speed and penetrating armor. Armored action is provided by a cumulative jet and splashes of armor metal. The hole of the HEAT projectile is small and has melted edges, which has led to a common misconception that HEAT projectiles “burn through” the armor.
The penetration of a HEAT projectile does not depend on the velocity of the projectile and is the same at all distances. Its manufacture is quite simple, the production of the projectile does not require the use of a large amount of scarce metals. The cumulative projectile can be used against infantry and artillery as a high-explosive fragmentation projectile. At the same time, cumulative shells during the war years were characterized by numerous shortcomings. The manufacturing technology of these projectiles was not sufficiently developed, as a result, their penetration was relatively low (approximately corresponded to the caliber of the projectile or slightly higher) and was characterized by instability. The rotation of the projectile at high initial speeds made it difficult to form a cumulative jet, as a result, the cumulative projectiles had a low initial speed, small effective range shooting and high dispersion, which was also facilitated by the non-optimal form of the projectile head from the point of view of aerodynamics (its configuration was determined by the presence of a notch).
The big problem was the creation of a complex fuse, which should be sensitive enough to quickly undermine the projectile, but stable enough not to explode in the barrel (the USSR was able to work out such a fuse suitable for use in powerful tank and anti-tank guns, only at the end of 1944). The minimum caliber of a cumulative projectile was 75 mm, and the effectiveness of cumulative projectiles of this caliber was greatly reduced. Mass production of HEAT shells required the deployment of large-scale production of hexogen.
The most massive HEAT shells were used by the German army (for the first time in the summer-autumn of 1941), mainly from 75 mm caliber guns and howitzers. Soviet army used cumulative shells, created on the basis of captured German ones, from 1942-43, including them in the ammunition of regimental guns and howitzers that had a low muzzle velocity. The British and American armies used shells of this type, mainly in heavy howitzer ammunition. Thus, in the Second World War (in contrast to the present time, when improved projectiles of this type form the basis of the ammunition load of tank guns), the use of cumulative projectiles was quite limited, mainly they were considered as a means of anti-tank self-defense of guns that had low initial speeds and low armor penetration by traditional projectiles (regimental guns, howitzers). At the same time, other anti-tank weapons were actively used by all participants in the war. cumulative ammunition- grenade launchers, air bombs, hand grenades.

High-explosive fragmentation projectile(OF).
It was developed in the late 40s of the twentieth century in the UK to destroy enemy armored vehicles. It is a thin-walled steel or steel-cast iron projectile filled with an explosive (usually TNT or ammonite), with a head fuse. Unlike armor-piercing shells, high-explosive shells did not have a tracer. Upon hitting the target, the projectile explodes, hitting the target with fragments and a blast wave, either immediately - a fragmentation action, or with some delay (which allows the projectile to go deeper into the ground) - a high-explosive action. The projectile is intended mainly to destroy openly located and covered infantry, artillery, field shelters (trenches, wood-and-earth firing points), unarmored and lightly armored vehicles. Good armored tanks and self-propelled guns are resistant to high-explosive fragmentation shells.
The main advantage high-explosive projectile is its versatility. This type of projectile can be used effectively against the vast majority of targets. Also, the advantages include lower cost than armor-piercing and cumulative shells of the same caliber, which reduces the cost of combat operations and firing practice. With a direct hit on vulnerable areas (turret hatches, engine compartment radiator, knockout screens of the aft ammunition rack, etc.), the HE can disable the tank. Also hit by projectiles large caliber can cause the destruction of lightly armored vehicles, and damage to heavily armored tanks, consisting in cracking of armor plates, jamming of the turret, failure of instruments and mechanisms, injuries and shell shock to the crew.

120 mm shots of the Israeli company IMI. In the foreground is an M829 shot (USA), manufactured by IMI under license.

Terminology

Armor-piercing feathered sub-caliber projectiles can be abbreviated as BOPS, OBPS, OPS, BPS. Currently, the abbreviation BPS is also applied to feathered sabot arrow-shaped projectiles, although it should be correctly used to designate sabot armor-piercing projectiles of the usual elongation for rifled artillery projectiles. The name armor-piercing feathered swept ammunition is applicable to rifled and smooth-bore artillery systems.

Device

Ammunition of this type consists of an arrow-shaped feathered projectile, the body (body) of which (or the core inside the body) is made of a durable and high-density material, and the feathering is made of traditional structural alloys. The materials most used for the body include heavy alloys (of the VNZh type, etc.), uranium alloys (for example, the American Stabilloy alloy or the domestic analogue of the UNTs alloy type). The plumage is made of aluminum alloys or steel.

With the help of annular grooves (forgings), the BOPS body is connected to a sector pallet made of steel or high-strength aluminum alloys (type V-95, V-96Ts1 and similar). A sector pallet is also called a master device (VU) and consists of three or more sectors. The pallets are fastened to each other by leading belts made of metal or plastic and in this form are finally fixed in a metal sleeve or in the body of a burning sleeve. After leaving the gun barrel, the sector pallet is separated from the body of the BOPS under the action of the oncoming air flow, breaking the leading belts, while the body of the projectile itself continues to fly towards the target. Dropped sectors, having high aerodynamic drag, slow down in the air and fall at some distance (from hundreds of meters to more than a kilometer) from the muzzle of the gun. In the event of a miss, the BOPS itself, which has low aerodynamic drag, can fly away to a distance of 30 to more than 50 km from the muzzle of the gun.

The designs of modern BOPS are extremely diverse: the bodies of shells can be either monolithic or composite (a core or several cores in a shell, as well as longitudinally and transversely multilayered), plumage can be almost equal to the caliber of an artillery gun or sub-caliber, made of steel or light alloys. Leading devices (VU) can have a different principle of distribution of the gas pressure action vector into sectors (VU of the "expanding" or "clamping" type), a different number of places for conducting sectors, be made of steel, light alloys, and also composite materials - for example, from carbon composites or aramid composites. Ballistic tips and dampers can be installed in the head parts of the BOPS bodies. Additives can be added to the material of tungsten alloy cores to increase the pyrophoricity of the cores. Tracers can be installed in the tail parts of the BOPS.

The mass of BOPS bodies with plumage ranges from 3.6 kg in old models to 5-6 kg or more in models for advanced tank guns of 140-155 mm caliber.

The diameter of BOPS bodies without plumage ranges from 40 mm in older models to 22 mm or less in new promising BOPS with a large elongation. The elongation of BOPS is constantly increasing and ranges from 10 to 30 or more.

Heavy alloy cores with elongations exceeding 30 are prone to bending deformations when driven through the bore and after separation of the pallet, as well as to destruction when interacting with multi-barrier and spaced armor. The density of the material is currently limited, since at present there are no materials denser than tungsten and uranium in technology that are practically used for military purposes. The speed of the BOPS is also limited to values ​​in the range of 1500-1800 m / s and depends on the design of artillery pieces and ammunition for them. A further increase in speed is associated with research work carried out in the field of projectile throwing with the help of artillery guns on liquid propellant substances (LMP), with the electrothermochemical method of throwing, with the electrothermal method of throwing, with the electric (magnetic) method of throwing with the help of railguns, gauss systems, their combinations, as well as combinations of electrothermochemical and electromagnetic methods of throwing. At the same time, an increase in velocity above 2000 m/s for many variants of projectile materials leads to a decrease in armor penetration. The reason is the destruction of the projectile upon contact with most variants of armored barriers, which ultimately exceeds the increase in armor penetration due to the increase in speed. As such, projectile velocity generally increases armor penetration as it increases, while the durability of armor materials decreases at the same time. The effect in some cases can be summed up, in some - not, if we are talking about complex armored barriers. For mono-obstacles, it is often simple different names the same process.

In the USSR and Russia, several types of BOPS are widely known, created at different times and having their own names, which arose from the name / code R & D. The BOPS are listed below in chronological order from oldest to newest. The device and material of the BOPS body are briefly indicated:

  • "Hairpin" 3BM22 - a small core of tungsten carbide in the head of the steel body (1976);
  • "Nadfil-2" 3BM30 - uranium alloy (1982);
  • "Hope" 3BM27 - a small core made of tungsten alloy in the tail section of a steel body (1983);
  • "Vant" 3BM32 - a monolithic body made of a uranium alloy (1985);
  • "Mango" 3BM42 - two elongated tungsten alloy cores in a steel body jacket (1986);
  • "Lead" 3BM48 - a monolithic body made of a uranium alloy (1991);
  • Anker 3BM39 (1990s);
  • "Lekalo" 3BM44 M? - improved alloy (details unknown) (1997); perhaps this BOPS is called the "Projectile of increased power";
  • "Lead-2" - judging by the index, a modified projectile with a uranium core (details unknown).

Other BOPS also have proper names. For example, a 100 mm anti-tank smoothbore gun has the Valshchik ammunition, a 115 mm tank gun has the Kamerger ammunition, etc.

Armor penetration indicators

Comparative evaluation of armor penetration indicators is associated with significant difficulties. The assessment of armor penetration indicators is influenced by quite different test methods for BOPS in different countries, the lack of a standard type of armor for testing in different countries, different conditions for placing armor (compact or spaced), as well as constant manipulations of developers of all countries with firing distances of the test armor, armor installation angles before testing, various statistical methods for processing test results. As a test material in Russia and NATO countries, homogeneous rolled armor is adopted; composite targets are used to obtain more accurate results.

According to published data [ ] , an increase in the elongation of the flight part to a value of 30 made it possible to increase the relative thickness of the pierced rolled homogeneous armor of the RHA standard (the ratio of the thickness of the armor to the caliber of the gun, b / d p) to the values: 5.0 in the 105 mm caliber, and 6.8 in the 120 caliber mm.

a number of other US

  • BOPS М829А1 for a gun of caliber 120 mm (USA) - 700 mm;
  • BOPS M829A2- 730 mm;
  • BOPS M829A3- 765 mm; often mentioned for many years "before 800"
  • BOPS M829A4 nothing has been announced, outwardly it is quite consistent with its predecessor.

Germany

Of the known BPS of other countries, any record-breaking ammunition for recent decades on the this moment not noticed, which has little to do with the actual state of the situation, especially in the sense of additional data (for example, the number of shells and guns and the security of the carrier).

History

The emergence of BOPS was due to the lack of armor penetration of conventional armor-piercing and sub-caliber rounds for rifled artillery in the years after World War II. Attempts to increase the specific load (that is, to lengthen their core) in sub-caliber projectiles ran into the phenomenon of loss of stabilization by rotation with an increase in the length of the projectile over 6-8 calibers. The strength of modern materials did not allow more increase in the angular velocity of the projectiles.

In 1944, for a 210 mm caliber gun of an ultra-long-range railway installation K12(E) German designers created a caliber projectile with a drop-down plumage. The length of the projectile was 1500 mm, weight 140 kg. With an initial speed of 1850 m / s, the projectile was supposed to have a range of 250 km. For firing feathered projectiles, a smooth artillery barrel 31 m long was created. The projectile and gun did not leave the testing stage.

The most famous project that used an ultra-long-range finned sub-caliber projectile was the project of the chief engineer of the Rechling company Conders. The Conders gun had several names - V-3, "HDP-Pump high pressure”, “Centipede”, “Hardworking Lizhen”, “Friend”. A multi-chamber gun of 150 mm caliber used an arrow-shaped feathered sub-caliber projectile weighing in different versions from 80 kg to 127 kg, with an explosive charge from 5 kg to 25 kg. The caliber of the projectile body ranged from 90 mm to 110 mm. Different variants shells contained from 4 folding to 6 permanent stabilizer feathers. The elongation of some models of projectiles reached 36. A shortened modification of the LRK 15F58 gun fired a 15-cm-Sprgr swept projectile. 4481, designed at Peenemünde, and saw action firing at Luxembourg, Antwerp and the US 3rd Army. At the end of the war, one gun was captured by the Americans and taken to the United States.

Feathered shells of anti-tank guns

In 1944, the Rheinmetall company created a smooth-bore anti-tank artillery gun. 8Н63 caliber 80 mm, firing a feathered cumulative projectile weighing 3.75 kg with an explosive charge of 2.7 kg. The developed guns and shells were used in combat until the end of World War II.

In the same year, the Krupp company created a smooth-bore anti-tank gun. P.W.K. 10.H.64 caliber 105 mm. The gun fired a feathered cumulative projectile weighing 6.5 kg. The projectile and gun did not leave the testing stage.

Experiments were carried out on the use of high-speed arrow-shaped projectiles of the Tsp-Geschoss type (from German Treibspiegelgeschoss - a sub-caliber projectile with a pallet) for anti-tank combat (see below "arrow-shaped anti-aircraft guns"). According to unconfirmed reports, German developers at the end of the war experimented with the use of natural uranium in pierced feathered projectiles, which ended to no avail due to the insufficient strength of unalloyed uranium. However, even then the pyrophoric nature of uranium cores was noted.

Arrow-shaped shells of anti-aircraft guns

Experiments with arrow-shaped feathered sub-caliber projectiles for high-altitude anti-aircraft artillery were carried out at a training ground near the Polish city of Blizna under the guidance of designer R. Herman ( R. Hermann). Anti-aircraft guns of 103 mm caliber with a barrel length of up to 50 calibers were tested. During the tests, it turned out that arrow-shaped feathered projectiles, which reached very high speeds due to their small mass, have insufficient fragmentation action due to the impossibility of placing a significant explosive charge in them. [ ] In addition, they demonstrated extremely low accuracy due to rarefied air at high altitudes and, as a result, insufficient aerodynamic stabilization. After it became clear that swept finned shells were not applicable for anti-aircraft fire, attempts were made to use high-velocity finned piercing shells to fight tanks. The work was stopped due to the fact that serial anti-tank and tank guns at that time had sufficient armor penetration, and the Third Reich was living out its last days.

Arrow-shaped bullets of handguns

Arrow-shaped bullets for manual firearms were first developed by AAI designer Irwin Bahr.

Firms "AAI", "Springfield", "Winchester" designed various arrow-shaped bullets with an arrow mass of 0.68-0.77 grams, with an arrow body diameter of 1.8-2.5 mm with stamped plumage. The initial speed of arrow-shaped bullets varied depending on their type from 900 m/s to 1500 m/s.

The recoil momentum of the rifles when firing arrow-shaped ammunition was several times lower than that of the M16 rifle. During the period from 1989 to 1989, many modifications of arrow-shaped ammunition and special weapons for it were tested in the United States, but the expected advantages over conventional jacketed bullets (both medium and small caliber) were not achieved. Arrow-shaped bullets of small mass and caliber with a high flatness of the trajectory, had insufficient accuracy and insufficient lethal effect at medium and long distances.grain) (19.958 g) in a detachable pallet. With an initial speed of a swept bullet of 1450 m / s, the muzzle energy of a sniper rifle is 20,980 J. At a distance of 800 meters, a tungsten alloy sub-caliber feathered arrow pierces an armor plate 40 mm thick when it hits at an angle of 30 °, when firing at a distance of 1 km, the maximum excess of the trajectory over the aiming line is only 80 cm.

Hunting arrow-shaped bullets

Most types of elongated bullets for hunting smoothbore weapons have an aerodynamic principle of flight stabilization and belong to lancet (arrow-shaped) projectiles. Due to the slight elongation of conventional hunting bullets in most models (1.3-2.5 and even less (for example, the Mayer bullet, which is also stabilized not by the turbine, but by the lancet method)), the lancet (sweep) of hunting bullets is not visually obvious.

The most pronounced arrow-shaped form currently have Russian Zenith bullets (designed by D. I. Shiryaev) and foreign Sovestra bullets. For example, some types of Sovestra bullets have an elongation of up to 4.6-5, and some types of Shiryaev bullets have an elongation of more than 10. Both arrow-shaped feathered bullets with a large elongation differ from other hunting lancet bullets in high rates of accuracy of fire.

Arrow-shaped feathered bullets of underwater weapons

Russia is developing arrow-shaped (needle-shaped) underwater ammunition without plumage, which is part of the SPS cartridges of 4.5 mm caliber (for the special underwater pistol SPP-1; SPP-1M) and MPS cartridges of 5.66 mm caliber (for the special APS underwater assault rifle ). Non-feathered arrow-shaped bullets for underwater weapons, stabilized in water by a cavitation cavity, practically do not stabilize in the air and require not regular, but special weapons for use under water.

At present, the most promising underwater-air ammunition, which can be fired with equal efficiency both under water at a depth of up to 50 m, and in the air, are cartridges for standard (serial) machine guns and assault rifles, equipped with a Polotnev arrow-shaped feathered bullet developed by at the Federal State Unitary Enterprise "TsNIIKhM". Stabilization of Polotnev's bullets under water is carried out by the cavitation cavity, and in air - by the plumage of the bullet.

ISBN 978-5-9524-3370-0; BBK 63.3(0)62 K59.

  • Hogg I. Ammunition: cartridges, grenades, artillery shells, mortar mines. - M.: Eksmo-Press, 2001.
  • Irving D. Weapon of retribution. - M.: Tsentrpoligraf, 2005.
  • Dornberger W. FAU-2. - M.: Tsentrpoligraf, 2004.
  • Katorin Yu. F., Volkovsky N. L., Tarnavsky V. V. Unique and paradoxical military equipment. - St. Petersburg. : Polygon, 2003. - 686 p. - (Military History Library). - ISBN 5-59173-238-6, UDC 623.4, LBC 68.8 K 29.

MOSCOW, July 23 - RIA Novosti, Andrey Kots. If modern tank fired with an armor-piercing "blank" from the Second World War, then, most likely, only a dent will remain at the site of the hit - penetrating through is practically impossible. The "puff" composite armor used today confidently withstands such a blow. But it can still be pierced with an "awl". Or "crowbar", as the tankers themselves call armor-piercing feathered sub-caliber shells (BOPS). About how these munitions work - in the material of RIA Novosti.

Awl instead of a sledgehammer

From the name it is clear that the sub-caliber ammunition is a projectile with a caliber noticeably smaller than the caliber of the gun. Structurally, this is a "coil" with a diameter equal to the diameter of the barrel, in the center of which is the same tungsten or uranium "scrap" that hits the enemy's armor. When leaving the bore, the coil, which provided the core with sufficient kinetic energy and accelerated it to the desired speed, is divided into parts under the action of oncoming air flows, and a thin and strong feathered pin flies at the target. In a collision due to the smaller resistivity it penetrates armor much more effectively than a thick monolithic blank.

The armored impact of such a "scrap" is colossal. Due to the relatively small mass - 3.5-4 kilograms - the core of the sub-caliber projectile immediately after the shot accelerates to a significant speed - about 1500 meters per second. When hitting the armor plate, it punches a small hole. The kinetic energy of the projectile is partly used to destroy armor, and partly converted into heat. Red-hot fragments of the core and armor go into the armored space and spread like a fan, hitting the crew and internal mechanisms of the vehicle. This creates multiple fires.

An accurate hit of the BOPS can disable important components and assemblies, destroy or seriously injure crew members, jam the turret, break through fuel tanks, undermine the ammunition rack, destroy the undercarriage. Structurally, modern sabots are very different. Projectile bodies can be both monolithic and composite - a core or several cores in a shell, as well as longitudinally and transversely multilayered, with various types plumage.

Leading devices (those same "coils") have different aerodynamics, they are made of steel, light alloys, as well as composite materials - for example, carbon composites or aramid composites. Ballistic tips and dampers can be installed in the head parts of the BOPS. In a word, for every taste - for any gun, under certain conditions tank battle and a specific goal. The main advantages of such ammunition are high armor penetration, high flight speed, low sensitivity to dynamic protection, low vulnerability to active protection systems, which simply do not have time to react to a fast and inconspicuous "arrow".

"Mango" and "Lead"

For 125 mm smoothbore guns domestic tanks also in Soviet time developed a wide range of feathered "armor-piercing". They were engaged after the appearance of the potential enemy tanks M1 Abrams and Leopard-2. The army, like air, needed shells capable of hitting new types of reinforced armor and overcoming dynamic protection.

One of the most common BOPS in the arsenal of Russian T-72, T-80 and T-90 tanks is the ZBM-44 "Mango" high-power projectile, which was put into service in 1986. Have enough ammo complex structure. A ballistic tip is installed in the head part of the swept body, under which there is an armor-piercing cap. Behind him is an armor-piercing damper, also playing important role in penetration. Immediately after the damper are two tungsten alloy cores held inside by a light-alloy metal jacket. When a projectile collides with an obstacle, the shirt melts and releases cores that "bite" into the armor. In the tail of the projectile there is a stabilizer in the form of a plumage with five blades, at the base of the stabilizer there is a tracer. This "scrap" weighs only about five kilograms, but is capable of penetrating almost half a meter of tank armor at a distance of up to two kilometers.

The newer ZBM-48 "Lead" was put into service in 1991. Standard Russian tank autoloaders are limited by the length of the projectiles, so Lead is the most massive domestic tank ammunition of this class. The length of the active part of the projectile is 63.5 centimeters. The core is made of a uranium alloy, it has a high elongation, which increases penetration, and also reduces the impact of dynamic protection. After all, what more length projectile, the smaller part of it interacts with passive and active obstacles at a certain point in time. Sub-caliber stabilizers improve the accuracy of the projectile, and a new composite "coil" drive device is also used. BOPS "Lead" is the most powerful serial projectile for 125-mm tank guns, capable of competing with leading Western models. The average armor penetration on a homogeneous steel plate from two kilometers is 650 millimeters.

This is not the only such development of the domestic defense industry - the media reported that especially for newest tank T-14 "Armata" created and tested BOPS "Vacuum-1" with a length of 900 millimeters. Their armor penetration came close to a meter.

It is worth noting that the potential enemy also does not stand still. Back in 2016, Orbital ATK launched a full-scale production of an advanced armor-piercing feathered sub-caliber projectile with a fifth-generation M829A4 tracer for the M1 tank. According to the developers, the ammunition penetrates 770 millimeters of armor.

The term "sub-caliber projectile" is most often used in tank troops. Such shells are used along with cumulative and high-explosive fragmentation. But if earlier there was a division into armor-piercing and sub-caliber ammunition, now it makes sense to talk only about armor-piercing sub-caliber shells. Let's talk about what a subcaliber is and what are its key features and principle of operation.

basic information

The key difference between sub-caliber shells and conventional armored shells is that the diameter of the core, that is, the main part, is less than the caliber of the gun. At the same time, the second main part - the pallet - is made according to the diameter of the gun. The main purpose of such ammunition is to defeat heavily armored targets. Usually this heavy tanks and fortified buildings.

It is worth noting that the armor-piercing sub-caliber projectile has increased penetration due to the high initial flight speed. Also increased the specific pressure when breaking through the armor. To do this, it is desirable to use materials having the highest possible specific gravity as the core. For these purposes, tungsten and depleted uranium are suitable. Stabilization of the flight of the projectile is implemented by plumage. There is nothing new here, since the principle of the flight of an ordinary arrow is used.

Armor-piercing sub-caliber projectile and its description

As we noted above, such ammunition is ideal for firing at tanks. It is interesting that the subcaliber does not have the usual fuse and explosive. The principle of operation of the projectile is completely based on its kinetic energy. In comparison, it is something like a massive high-velocity bullet.

The subcaliber consists of a coil body. A core is inserted into it, which is often made 3 times smaller than the caliber of the gun. High-strength metal-ceramic alloys are used as the core material. If earlier it was tungsten, today depleted uranium is more popular for a number of reasons. During the shot, the pallet takes over the entire load, thereby ensuring the initial flight speed. Since the weight of such a projectile is less than a conventional armor-piercing one, by reducing the caliber, it was possible to increase the flight speed. These are significant values. So, a feathered sub-caliber projectile flies at a speed of 1,600 m/s, while a classic armor-piercing projectile flies at 800-1,000 m/s.

The action of a sub-caliber projectile

Quite interesting is how such ammunition works. During contact with the armor, it creates a small diameter hole in it due to high kinetic energy. Part of the energy is spent on the destruction of the target's armor, and the projectile fragments fly into the armored space. Moreover, the trajectory is similar to a divergent cone. This leads to the fact that the mechanisms and equipment of the equipment fail, the crew is affected. Most importantly, due to high degree Pyrophoric depleted uranium causes numerous fires, which in most cases leads to the complete failure of the combat unit. We can say that the sub-caliber projectile, the principle of which we have considered, has increased armor penetration at long distances. Evidence of this is Operation Desert Storm, when the US Armed Forces used sub-caliber ammunition and hit armored targets at a distance of 3 km.

Varieties of PB shells

Currently, several effective designs of sub-caliber projectiles have been developed, which are used by the armed forces of various countries. In particular, we are talking about the following:

  • With non-separable tray. The projectile passes all the way to the target as a single whole. Only the core is involved in the penetration. This solution has not received sufficient distribution due to increased aerodynamic drag. As a result, the armor penetration rate and accuracy drop significantly with the distance to the target.
  • With non-detachable tray for conical implements. The essence of this solution is that when passing through the conical shaft, the pallet is crushed. This allows you to reduce aerodynamic drag.
  • Sub-caliber projectile with detachable pallet. The bottom line is that the pallet is torn off by air forces or by centrifugal forces (with a rifled gun). This allows you to significantly reduce air resistance in flight.

About cumulatives

For the first time, such ammunition was used by Nazi Germany in 1941. At that time, the USSR did not expect the use of such shells, since their principle of operation, although known, was not yet in service. The key feature of such projectiles was that they had high armor penetration due to the presence of instantaneous fuses and a cumulative recess. The problem that was encountered for the first time was that the projectile rotated during the flight. This led to the dispersion of the cumulative arrow and, as a result, reduced armor penetration. In order to exclude negative effect, it was proposed to use smoothbore guns.

Some interesting facts

It is worth noting that it was in the USSR that arrow-shaped armor-piercing sub-caliber shells were developed. This was a real breakthrough, as it was possible to increase the length of the core. Almost no armor protected from a direct hit of such ammunition. Only a successful angle of inclination of the armor plate and, consequently, its increased thickness in the reduced state could help out. In the end, BOPS had such an advantage as flat trajectory flight at a distance of up to 4 km and high accuracy.

Conclusion

A cumulative sub-caliber projectile is somewhat similar to a conventional sub-caliber. But in its body it has a fuse and an explosive. When breaking through the armor, such ammunition provides destructive action both equipment and manpower. Currently, the most common shells for cannons with a caliber of 115, 120, 125 mm, as well as artillery pieces of 90, 100 and 105 mm. In general, this is all the information on this topic.